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1 Background

The configuration of a patchy particle is determined by the center of mass position
R?® in the laboratory frame and the rotation matrix A relative to the lab frame. This
matrix is parameterized by the rotational coordinates «; possible choices include the
Euler angles W, the rotation vector a (see Appendix 8.1), or the quaternions q (see
Appendix 8.3).

The structure of a patchy particle is determined by the positions of the P patches,
relative to the center of mass, in the body-fixed frame: f;, with the bar highlighting
a constant. The positions of the patches in the space or lab frame are calculated as
r; =R°+ Agg.

The use of Euler angles is hampered by strong singularities.

Using a rotation vector to define the rotation matrix softens the strong singularities
to weak singularities. On the down side, the equations of motion become rather
involved.

The quaternions are singularity free, ‘but because there are four quaternions and
only three degrees of rotational motion for a rigid body, the quaterions do not con-
stitute a set of generalized coordinates that describes the angular orientation of
rigid bodies’ [ Naess et al, Physica A 294 323 (2001) ]. ‘The Brownian dynamics
of nanoparticles cannot therefore be readily described by quaternions’ [ Naess and
Elgsaeter, Macromol. Theory Simul. 13 419 (2004) ].

Given the lab-based Cartesian forces f; on the patches, the total lab-based Cartesian
force on the particle is given by F® = Ep f; and the total lab-based Cartesian torque

relative to the particle’s center of mass by T =3 (rj — R®) x f; = ZP(AQE) x 5.

The translational and rotational mobility tensors, pu'(a) and pu"“(ar), respectively,
vary with the orientation of the particle. Given their values in the body-fixed frame,
' and p', one readily shows (see below) that in the laboratory frame p'(o) =
AEtAT and p"® = ABrAT. The superscript a to the rotational mobility matrix

stresses that this matrix depends on the chosen set of rotational coordinates.

We will use ©(t) to denote two time-dependent column vectors whose elements each
have zero mean, unit variance and are delta-correlated in time.

2 Classical mechanics

In classical mechanics, the angular momentum is related to the inertia tensor I and angular

velocity w by

L = Iw. (1)

Its time derivtive reads in an inertial frame as

L =T" (2)



This equation of motion is readily solved! using the following low order integration algo-
rithm, where for clarity we have added superscripts s and b to distinguish between vectors

in the space- or laboratory-fixed frame and vectors in the non-inertial body-fixed frame:?
Lo(t + At) = L3(t) + T°(t) At (3)

WP(t + At) = (I°(t + At))~ Lb(t + AL & (I°) TTATHOL (¢ + Av), (4)

a(t + At) = q(t) + B(H)w"(t + At)At, (5)

q(t + At) = q(t + At)/|q(t + At)| (6)

A(t+ At) = A(q(t + At)). (7)

Here B is the 4 x 3 matrix obtained by eliminating the first column of the B matrix; both
are detailed in Appendix 8.4. Note that this approach does not require the inertia tensor
to be diagonal. Rather then simply rescaling q to its proper length, as in Eq. (6), it would
be more appropriate to constrain.

There exists a similar scheme that uses lab-fixed quantities only, of the form

LS(t + At) = L8(t) + T(¢) At (8)
WS(t + At) = (P(t + At)) Ls(t + A ~ A (I°) TTAT LI+ A, (9)
q(t + At) = q(t) + C(Hw'(t + AH)AL, (10)
q(t + At) = q(t + At)/|a(t + At))| (11)
A(t+ At) = A(q(t + At)). (12)

A problem surfacing in Eqs. (4) and (9) is that both employ the rotation matrix at ¢ rather
then at ¢t + At. One solution would be to iterate. Forward extrapolation can be used to
start with an improved initial value of A(q(t) + q(t)At).

3 Brownian dynamics

3.1 Equation of motion

The generic equation of motion for Brownian dynamics of any set of generalized coordinates
Q has the form

Q(t+ At) — Q(t) = —uQaéAt + /~cBT88Q uCAL + (p,@)l/2 O(t)\/2kpTAt, (13)

where the terms on the right hand side represent

e the average velocity, resulting from the force balance between free-energy ‘forces’
and friction forces, as discussed in more detail below;

e a term to compensate for the spurious-drift that arises in BD algorithms with a
coordinate-dependent friction;

e a Markovian stochastic contribution, related to the friction and the temperature by
the fluctuation-dissipation theorem.

!The conventional way, e.g. in Goldstein section 5.5, is to translate time derivatives of vectors from
one frame to the next: T% = L® = [L® + w x L]*. In the body fixed frame that diagonalizes the inertia
tensor, LD = Ib wa, this yields the Euler equations w® = (Ib) (Tb —w® x lbwb).

2Is this in the body fixed frame or in the frame that momentarily shares the body’s orientation, or ...?



From Eulerian angular velocities to body-fixed angular velocities, Goldstein Eq. (4.87):

w? sinfsiny cosy 0 gf)
wlg = | sinfcosy —siny 0 9
wh cos 0 1 1
Jacobian
b
%‘a =sinf

8.3 Quaternions

Euler-Rodriques formula:

@+ad—dd—a 20142 — 29043 2¢143 + 2qoq2
A= 20102 + 29003 G — G+ @B —GE  2¢q3 — 290
2q193 — 2q0q2 202q3 + 2901 @ — ¢ — a5+ 43

1-2¢3 —2¢3 2q1q2 — 2q0g3 29193 + 29042
= | 2q1¢2+2q093 1—2¢} —2¢3 2q2q3 — 2q0¢1
2013 — 2q0q2  2¢2q3 + 2901 1 — 243 — 243

)

The first form is called ‘homogeneous’, the second form ‘inhomogeneous’.

In index notation:
Aag = 0ap (a6 — @ — @5 — 43) + 20005 — 20€aprds-
Relation to other sets of rotation coordinates:

e Rotation by an angle a around a unit vector a.

g = cos(a/2
q1 = Gy sin(a/2

e Fuler angles

qo = cos 30 cos (¢ + )
g1 = sin %6 coS %(gf) — )
go = sin %0 sin %(gf) — )
g3 = Ccos %49 sin %((;5 + 1)

(Copied from Allen and Tildesley as is.)

8.4 Quaternion time derivatives
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With ¢g referred to as the scalar parameter and q = (q1, g2, q3) as the vector parameter,

' =Ar=r+2¢(qxr)+2(qx(qxr)).
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The rotation matrix A turns the body-fixed vector r” into the space-fixed vector r® = ArP.
Combining the two expressions for the velocity of this point in the lab frame,

i = ArP, (235)
= [wxr]=Alw xr]°, (236)

it follows that
wP xrP = A7TArP (237)

Evaluation of the matrix product yields

_ dA .
(A7), (dt> =2¢°(q-4) (238)
al
dA dA
A —] =" — ) =2¢*(q-¢ 239
( )2a<dt>a2 ( )3a<dt)a3 q (q q) ( )
-1 dA 2 . . . .
(A7)z0 dt = 2¢" (—dog3 + 192 — G2q1 + d3q0) (240)
al
- dA . : . .
(A1), <dt> = 2¢° (+4og2 + 413 — G2q0 — 43q1) (241)
al
- dA . . . .
(A 1)3a (dt) = 2¢% (—dog1 + G190 + G243 — 4342) (242)
a2
dA dA
A =) =—(A! @y
( )ﬁa < t > ( )’ya < dt > (243)
ay af
Element-by-element comparison with
0 —wP w%’
Wxr’ = w0 —wp | (244)
—w}y’ wp 0
then gives'?
wy - @ B ¢ ?1'(1) ~
wi =2¢°| - -5 @ @ i or w’=B'q, (245)
Wy -4 @2 —q1 qo

q3
with the unit length constraint translating into q-q = 0. The latter two equations can be
combined into

( 5 ) - ( a )qulq (246)

where

q0 q1 qz q3

B! = 242 —q1 40 B 2| (247)
—q2 —q3 qo q1
—q3 q2 —q q0

12 Caution: any vector ¢ yields a vector w, but proper rotations require q - ¢ = 0.
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Inversion gives'3

- 0\ _ ~ 0 . & b
q—B<Wb>—(q B)(wb> or q=Bw
with

g —q1 —q2 —G¢3
1 — ~ 1
B-— — q1 q0 q3 a2 and B = —
2¢* | &2 @ @ —a 2q
q3 —q2 a1 q0

Comparing these matrices with their inverse yields
Bfl — 4q6BT,
B! =4¢°BT.

For rotation matrices ¢ = 1, in which case

B! =4BT,

B! =4BT.
and even

B 'B =1,

—q1
qo0
q3

—q2

—q2
—4q3
qo
q1

—q3
qz
—q1
40
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(250)
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though the 3 x 4 matrix B~! and the 4 x 3 matrix B are clearly not eachother’s inverse.

By analogy with Eq. (237), it is also possible to link the time derivatives of the quaternions

directly to the lab-based angular velocities:
W xr*=Ar® = AATS,
etcetera.

For the quaternion equations of motion in the lab frame,
= Ar® = AA 115,
r° = [w xr°
Evaluation of the matrix product yields
dA . ..
(dt) (A1), =24 (a-q)
la
dA _ o
<dt> (A1), = 2¢°(—dogs — G142 + G2q1 + d3q0)
2c
dA _ o
(dt) (A 1)a1 = 2‘12(+QOQ2 — 4193 — G290 + 43q1)
3o

dA . . . . .
(dt) (A 1)a2 = 2‘12(—610611 + 4190 — 4293 + 4392)
3a

(255)

(256)
(257)

(258)

(259)

(260)

(261)

13This is exactly identical to Eq. (3.37) in Allen and Tildesley. Note that they use the transposed

definition of A, because their A rotates from space fixed to body fixed.
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Element-by-element comparison with

0 —wl W
w® xr® = w3 0 —wj |r° (262)
—wy Wy 0
then giV6812
Wy @1 Q@ —4 @ Z? )
wi | =2 ~&2 © @ -a i or w'=C"q, (263)
ws —q3 —q2 q1 q0 .
q3
provided q - g = 0. Combining the last two equations,
0 qT . 1.
(2)-(& e
where
q0 q1 q2 q3
clogp2| @ W ~B @ (265)
—q2 q3 q —q1
—q3 —q2 q1 q0
Inversion gives
) 0 ) = g
q=C e or q= Cuw®, (266)
with
q —q1 —¢2 —qs3 —q1 —q2 —g3
1 _ .1 _
= qa 4o a3 q2 and C == do a3 a2 (267)
2q @2 —493 9 Q1 2q —q3 o ¢
qs3 92 —q1 q0 q2 —q1 q0

An alternative derivation, by comparing the equations of motion in the lab frame with

those in the body frame, gives

—q1 —q2 —q3
- - 1 _
C:BAil—j 4o q3 q2 7
2q —q3 Qo G
q2 —q1 q0

in perfect agreement.

8.5 Inertia tensor

The 4 x 4 product of the tilded matrices gives

GGG —n
BB-l_ L —q190 % + a3 + a3
2 _ _
q 4290 q241
—4340 —43q1
1
=1-—aqq’,

q
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—q0q2
—q192
B+aE+ a3
—434q2

(268)
—qo43
—q24q3
@+ G+
(270)



