__ess | smc.smc | private |
__init__(self, sigma, ess, obsWeights, DPMFile='', DPMDataDir='', obsDataFile='', obsCtrl='', simDataKeys='', simName='sim', DPMVersion='yade-batch', scaleWithMax=True, loadSamples=True, skipDEM=True, standAlone=True, verbose=False) | smc.smc | |
__maxNumComponents | smc.smc | private |
__obsMatrix | smc.smc | private |
__pool | smc.smc | private |
__priorWeight | smc.smc | private |
__scenes | smc.smc | private |
__sigma | smc.smc | private |
covs | smc.smc | |
DPMData | smc.smc | |
DPMDataDir | smc.smc | |
DPMFile | smc.smc | |
DPMVersion | smc.smc | |
getCovMatrix(self, caliStep, weights) | smc.smc | |
getDPMData(self, DPMDataFiles) | smc.smc | |
getEffectiveSampleSize(self) | smc.smc | |
getInitParams(self, paramRanges, numSamples, threads) | smc.smc | |
getLikelihood(self, caliStep) | smc.smc | |
getNames(self) | smc.smc | |
getNumSteps(self) | smc.smc | |
getObsData(self) | smc.smc | |
getObsDataFromFile(self, obsDataFile, obsCtrl) | smc.smc | |
getParamsFromTable(self, paramsFile, names, paramRanges, iterNO=-1) | smc.smc | |
getPosterior(self) | smc.smc | |
getSmcSamples(self) | smc.smc | |
initialize(self, paramNames, paramRanges, numSamples, maxNumComponents, priorWeight, paramsFile='', proposalFile='', threads=4) | smc.smc | |
ips | smc.smc | |
likelihood | smc.smc | |
loadProposalFromFile(self, proposalFile, iterNO) | smc.smc | |
loadSamples | smc.smc | |
numParams | smc.smc | |
numSamples | smc.smc | |
numSteps | smc.smc | |
obsCtrl | smc.smc | |
obsCtrlData | smc.smc | |
obsData | smc.smc | |
obsDataFile | smc.smc | |
obsWeights | smc.smc | |
paramNames | smc.smc | |
paramRanges | smc.smc | |
paramsFiles | smc.smc | |
posterior | smc.smc | |
proposal | smc.smc | |
recursiveBayesian(self, caliStep, iterNO=-1) | smc.smc | |
removeDegeneracy(self, caliStep=-1) | smc.smc | |
resampleParams(self, caliStep, thread=4, iterNO=-1) | smc.smc | |
run(self, iterNO=-1, reverse=False, threads=1) | smc.smc | |
scaleCovWithMax | smc.smc | |
simDataKeys | smc.smc | |
simName | smc.smc | |
skipDEM | smc.smc | |
smcSamples | smc.smc | |
standAlone | smc.smc | |
trainGMMinTime(self, maxNumComponents, iterNO=-1) | smc.smc | |
update(self, caliStep, likelihood) | smc.smc | |
verbose | smc.smc | |
writeBayeStatsToFile(self, reverse) | smc.smc | |