743 nIter = len(analysis)
745 nObs = len(analysis[0].obsNames)
747 nPar = len(analysis[0].paramNames)
749 obsData = analysis[0].smcTest.obsData[-1]
751 fig = plt.figure(
'Correlations', figsize=(3 * nPar,
min(3 * nObs, 14)))
752 axs = fig.subplots(nObs, nPar)
753 for iter
in range(nIter):
755 numPar = analysis[iter].smcTest.smcSamples[-1]
757 numObs = analysis[iter].smcTest.DPMData[-1]
758 for par
in range(nPar):
759 for obs
in range(nObs):
760 if nObs==1
and nPar==1:
764 ax.plot(numPar[:, par], numObs[:, obs],
'o',label=
str(iter))
768 ax.plot(ax.get_xlim(), obsData[[obs, obs]],
'r',label=
'exp')
769 ax.set_ylim(0, 2*obsData[[obs]])
771 ax.set_xlabel(analysis[0].paramNames[par])
773 ax.set_ylabel(analysis[0].obsNames[obs])
779 plt.show(block=
False)
780 plt.savefig(
'%s.png' % material, dpi=200)
#define min(a, b)
Definition: datatypes.h:22
str
Definition: compute_granudrum_aor.py:141
def plotParametersAndObservables(analysis, material)
Definition: plotResults.py:741