Eigen::internal::default_packet_traits Struct Reference

#include <GenericPacketMath.h>

+ Inheritance diagram for Eigen::internal::default_packet_traits:

Public Types

enum  {
  HasAdd = 1 , HasSub = 1 , HasShift = 1 , HasMul = 1 ,
  HasNegate = 1 , HasAbs = 1 , HasAbs2 = 1 , HasMin = 1 ,
  HasMax = 1 , HasConj = 1 , HasSetLinear = 1 , HasSign = 1 ,
  HasRound = 1 , HasArg = 0 , HasAbsDiff = 0 , HasBlend = 0 ,
  HasCmp = 0 , HasDiv = 0 , HasReciprocal = 0 , HasSqrt = 0 ,
  HasRsqrt = 0 , HasExp = 0 , HasExpm1 = 0 , HasLog = 0 ,
  HasLog1p = 0 , HasLog10 = 0 , HasPow = 0 , HasSin = 0 ,
  HasCos = 0 , HasTan = 0 , HasASin = 0 , HasACos = 0 ,
  HasATan = 0 , HasATanh = 0 , HasSinh = 0 , HasCosh = 0 ,
  HasTanh = 0 , HasLGamma = 0 , HasDiGamma = 0 , HasZeta = 0 ,
  HasPolygamma = 0 , HasErf = 0 , HasErfc = 0 , HasNdtri = 0 ,
  HasBessel = 0 , HasIGamma = 0 , HasIGammaDerA = 0 , HasGammaSampleDerAlpha = 0 ,
  HasIGammac = 0 , HasBetaInc = 0
}
 

Member Enumeration Documentation

◆ anonymous enum

anonymous enum
Enumerator
HasAdd 
HasSub 
HasShift 
HasMul 
HasNegate 
HasAbs 
HasAbs2 
HasMin 
HasMax 
HasConj 
HasSetLinear 
HasSign 
HasRound 
HasArg 
HasAbsDiff 
HasBlend 
HasCmp 
HasDiv 
HasReciprocal 
HasSqrt 
HasRsqrt 
HasExp 
HasExpm1 
HasLog 
HasLog1p 
HasLog10 
HasPow 
HasSin 
HasCos 
HasTan 
HasASin 
HasACos 
HasATan 
HasATanh 
HasSinh 
HasCosh 
HasTanh 
HasLGamma 
HasDiGamma 
HasZeta 
HasPolygamma 
HasErf 
HasErfc 
HasNdtri 
HasBessel 
HasIGamma 
HasIGammaDerA 
HasGammaSampleDerAlpha 
HasIGammac 
HasBetaInc 
46  {
47  // Ops that are implemented for most types.
48  HasAdd = 1,
49  HasSub = 1,
50  HasShift = 1,
51  HasMul = 1,
52  HasNegate = 1,
53  HasAbs = 1,
54  HasAbs2 = 1,
55  HasMin = 1,
56  HasMax = 1,
57  HasConj = 1,
58  HasSetLinear = 1,
59  HasSign = 1,
60  // By default, the nearest integer functions (rint, round, floor, ceil, trunc) are enabled for all scalar and packet
61  // types
62  HasRound = 1,
63 
64  HasArg = 0,
65  HasAbsDiff = 0,
66  HasBlend = 0,
67  // This flag is used to indicate whether packet comparison is supported.
68  // pcmp_eq, pcmp_lt and pcmp_le should be defined for it to be true.
69  HasCmp = 0,
70 
71  HasDiv = 0,
72  HasReciprocal = 0,
73  HasSqrt = 0,
74  HasRsqrt = 0,
75  HasExp = 0,
76  HasExpm1 = 0,
77  HasLog = 0,
78  HasLog1p = 0,
79  HasLog10 = 0,
80  HasPow = 0,
81  HasSin = 0,
82  HasCos = 0,
83  HasTan = 0,
84  HasASin = 0,
85  HasACos = 0,
86  HasATan = 0,
87  HasATanh = 0,
88  HasSinh = 0,
89  HasCosh = 0,
90  HasTanh = 0,
91  HasLGamma = 0,
92  HasDiGamma = 0,
93  HasZeta = 0,
94  HasPolygamma = 0,
95  HasErf = 0,
96  HasErfc = 0,
97  HasNdtri = 0,
98  HasBessel = 0,
99  HasIGamma = 0,
100  HasIGammaDerA = 0,
102  HasIGammac = 0,
103  HasBetaInc = 0
104  };
@ HasSign
Definition: GenericPacketMath.h:59
@ HasZeta
Definition: GenericPacketMath.h:93
@ HasASin
Definition: GenericPacketMath.h:84
@ HasIGamma
Definition: GenericPacketMath.h:99
@ HasATanh
Definition: GenericPacketMath.h:87
@ HasSub
Definition: GenericPacketMath.h:49
@ HasRsqrt
Definition: GenericPacketMath.h:74
@ HasSin
Definition: GenericPacketMath.h:81
@ HasBlend
Definition: GenericPacketMath.h:66
@ HasLog10
Definition: GenericPacketMath.h:79
@ HasTan
Definition: GenericPacketMath.h:83
@ HasErfc
Definition: GenericPacketMath.h:96
@ HasACos
Definition: GenericPacketMath.h:85
@ HasAbsDiff
Definition: GenericPacketMath.h:65
@ HasMin
Definition: GenericPacketMath.h:55
@ HasArg
Definition: GenericPacketMath.h:64
@ HasNdtri
Definition: GenericPacketMath.h:97
@ HasCos
Definition: GenericPacketMath.h:82
@ HasSinh
Definition: GenericPacketMath.h:88
@ HasPolygamma
Definition: GenericPacketMath.h:94
@ HasCmp
Definition: GenericPacketMath.h:69
@ HasDiGamma
Definition: GenericPacketMath.h:92
@ HasConj
Definition: GenericPacketMath.h:57
@ HasSetLinear
Definition: GenericPacketMath.h:58
@ HasReciprocal
Definition: GenericPacketMath.h:72
@ HasShift
Definition: GenericPacketMath.h:50
@ HasLog1p
Definition: GenericPacketMath.h:78
@ HasMax
Definition: GenericPacketMath.h:56
@ HasPow
Definition: GenericPacketMath.h:80
@ HasIGammac
Definition: GenericPacketMath.h:102
@ HasNegate
Definition: GenericPacketMath.h:52
@ HasAdd
Definition: GenericPacketMath.h:48
@ HasExp
Definition: GenericPacketMath.h:75
@ HasRound
Definition: GenericPacketMath.h:62
@ HasBetaInc
Definition: GenericPacketMath.h:103
@ HasSqrt
Definition: GenericPacketMath.h:73
@ HasLGamma
Definition: GenericPacketMath.h:91
@ HasErf
Definition: GenericPacketMath.h:95
@ HasBessel
Definition: GenericPacketMath.h:98
@ HasAbs
Definition: GenericPacketMath.h:53
@ HasCosh
Definition: GenericPacketMath.h:89
@ HasExpm1
Definition: GenericPacketMath.h:76
@ HasLog
Definition: GenericPacketMath.h:77
@ HasTanh
Definition: GenericPacketMath.h:90
@ HasMul
Definition: GenericPacketMath.h:51
@ HasAbs2
Definition: GenericPacketMath.h:54
@ HasGammaSampleDerAlpha
Definition: GenericPacketMath.h:101
@ HasIGammaDerA
Definition: GenericPacketMath.h:100
@ HasATan
Definition: GenericPacketMath.h:86
@ HasDiv
Definition: GenericPacketMath.h:71

The documentation for this struct was generated from the following file: