///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// Demonstrate how to solve an unsteady heat problem in deformable domain with mesh adaptation. Command line arguments specify the name of the restart file.
1069 problem.bulk_mesh_pt()->max_permitted_error()=0.001;
1070 problem.bulk_mesh_pt()->min_permitted_error()=0.0001;
1078 unsigned max_adapt=10;
1081 problem.set_initial_condition();
1087 cout <<
"Doing first timestep with dt: " << dt << std::endl;
1107 problem.write_trace_file_header();
1111 while (
problem.time_pt()->time()<t_max)
1115 problem.doubly_adaptive_unsteady_newton_solve(dt,
problem.epsilon_t(),
1117 cout <<
"Suggested new dt: " << dt_new << std::endl;
Unsteady heat problem in deformable ellipse domain.
Definition: two_d_unsteady_heat_2adapt_load_balance.cc:223
void setup(Time *time_pt)
Create all GeomObjects needed to define the cylinder and the flag.
Definition: turek_flag_non_fsi.cc:277
void get_source(const double &time, const Vector< double > &x, double &source)
Source function to make it an exact solution.
Definition: optimisation/disable_ALE/unsteady_heat/two_d_unsteady_heat_adapt.cc:140
int Argc
Number of arguments + 1.
Definition: oomph_utilities.cc:407
Constructor for SteadyAxisymAdvectionDiffusion problem
Definition: steady_axisym_advection_diffusion.cc:213