///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// Solve an unsteady heat problem with mesh adaptation with and without ALE terms
939 problem.bulk_mesh_pt()->max_permitted_error()=0.001;
940 problem.bulk_mesh_pt()->min_permitted_error()=0.0001;
948 unsigned max_adapt=10;
951 problem.set_initial_condition();
955 double dt=
problem.time_pt()->dt();
975 problem.set_initial_condition();
985 clock_t t_start = clock();
988 for (
unsigned istep=0;istep<nstep;istep++)
991 problem.unsteady_newton_solve(dt,max_adapt,first);
1007 clock_t t_end = clock();
1009 std::cout <<
"Total time for solution: "
1010 <<
double(t_end-t_start)/CLOCKS_PER_SEC
Unsteady heat problem in deformable ellipse domain.
Definition: two_d_unsteady_heat_2adapt_load_balance.cc:223
void get_source(const double &time, const Vector< double > &x, double &source)
Source function to make it an exact solution.
Definition: optimisation/disable_ALE/unsteady_heat/two_d_unsteady_heat_adapt.cc:140
int Argc
Number of arguments + 1.
Definition: oomph_utilities.cc:407
Constructor for SteadyAxisymAdvectionDiffusion problem
Definition: steady_axisym_advection_diffusion.cc:213