Driver for 1D Poisson problem.
///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
548 MPI_Helpers::init(argc,argv);
551 unsigned n_element=100;
553 #ifdef OOMPH_HAS_TRILINOS
555 clock_t t_start1 = clock();
561 clock_t t_end1 = clock();
565 clock_t t_start2 = clock();
570 if(
problem.communicator_pt()->nproc()==2)
573 unsigned n_element =
problem.mesh_pt()->nelement();
575 for(
unsigned e=0;
e<n_element/2;
e++) {element_partition[
e]=0;}
576 for(
unsigned e=n_element/2;
e<n_element;
e++) {element_partition[
e]=1;}
577 problem.distribute(element_partition);
585 clock_t t_end2 = clock();
587 oomph_info <<
"ANASAZI TIME (non-distributed): "
588 << (
double)(t_end1 - t_start1)/CLOCKS_PER_SEC
592 oomph_info <<
"ANASAZI TIME (distributed): " <<
593 (
double)(t_end2 - t_start2)/CLOCKS_PER_SEC
598 MPI_Helpers::finalize();
Array< double, 1, 3 > e(1./3., 0.5, 2.)
1D Harmonic problem in unit interval.
Definition: eigenproblems/harmonic/harmonic.cc:269
Class for the Anasazi eigensolver.
Definition: trilinos_eigen_solver.h:571
OomphInfo oomph_info
Definition: oomph_definitions.cc:319
Constructor for SteadyAxisymAdvectionDiffusion problem
Definition: steady_axisym_advection_diffusion.cc:213