Driver for 1D Poisson problem.
///////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////
532 MPI_Helpers::init(argc,argv);
536 unsigned n_element=100;
538 clock_t t_start1 = clock();
544 std::cout <<
"Matrix size " <<
problem.ndof() << std::endl;
548 clock_t t_end1 = clock();
550 clock_t t_start2 = clock();
558 clock_t t_end2 = clock();
560 #ifdef OOMPH_HAS_TRILINOS
561 clock_t t_start3 = clock();
567 clock_t t_end3 = clock();
570 std::cout <<
"ARPACK TIME: " << (
double)(t_end1 - t_start1)/CLOCKS_PER_SEC
573 std::cout <<
"LAPACK TIME: " << (
double)(t_end2 - t_start2)/CLOCKS_PER_SEC
576 #ifdef OOMPH_HAS_TRILINOS
577 std::cout <<
"ANASAZI TIME: " << (
double)(t_end3 - t_start3)/CLOCKS_PER_SEC
582 MPI_Helpers::finalize();
1D ComplexHarmonic problem in unit interval.
Definition: complex_harmonic.cc:350
Class for the Anasazi eigensolver.
Definition: trilinos_eigen_solver.h:571
Class for the ARPACK eigensolver.
Definition: eigen_solver.h:104
Class for the LAPACK eigensolver.
Definition: eigen_solver.h:224
Constructor for SteadyAxisymAdvectionDiffusion problem
Definition: steady_axisym_advection_diffusion.cc:213