cxx11_tensor_scan_sycl.cpp File Reference
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

Macros

#define EIGEN_TEST_NO_LONGDOUBLE
 
#define EIGEN_TEST_NO_COMPLEX
 
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t
 
#define EIGEN_USE_SYCL
 

Typedefs

typedef Tensor< float, 1 >::DimensionPair DimPair
 

Functions

template<typename DataType , int DataLayout, typename IndexType >
void test_sycl_cumsum (const Eigen::SyclDevice &sycl_device, IndexType m_size, IndexType k_size, IndexType n_size, int consume_dim, bool exclusive)
 
template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim0_per_device (const Dev &sycl_device)
 
template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim1_per_device (const Dev &sycl_device)
 
template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim2_per_device (const Dev &sycl_device)
 
template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim0_per_device (const Dev &sycl_device)
 
template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim1_per_device (const Dev &sycl_device)
 
template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim2_per_device (const Dev &sycl_device)
 
 EIGEN_DECLARE_TEST (cxx11_tensor_scan_sycl)
 

Macro Definition Documentation

◆ EIGEN_DEFAULT_DENSE_INDEX_TYPE

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t

◆ EIGEN_TEST_NO_COMPLEX

#define EIGEN_TEST_NO_COMPLEX

◆ EIGEN_TEST_NO_LONGDOUBLE

#define EIGEN_TEST_NO_LONGDOUBLE

◆ EIGEN_USE_SYCL

#define EIGEN_USE_SYCL

Typedef Documentation

◆ DimPair

typedef Tensor<float, 1>::DimensionPair DimPair

Function Documentation

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( cxx11_tensor_scan_sycl  )
100  {
101  for (const auto& device : Eigen::get_sycl_supported_devices()) {
102  std::cout << "Running on " << device.template get_info<cl::sycl::info::device::name>() << std::endl;
103  QueueInterface queueInterface(device);
104  auto sycl_device = Eigen::SyclDevice(&queueInterface);
105  CALL_SUBTEST_1(sycl_scan_test_exclusive_dim0_per_device<float>(sycl_device));
106  CALL_SUBTEST_2(sycl_scan_test_exclusive_dim1_per_device<float>(sycl_device));
107  CALL_SUBTEST_3(sycl_scan_test_exclusive_dim2_per_device<float>(sycl_device));
108  CALL_SUBTEST_4(sycl_scan_test_inclusive_dim0_per_device<float>(sycl_device));
109  CALL_SUBTEST_5(sycl_scan_test_inclusive_dim1_per_device<float>(sycl_device));
110  CALL_SUBTEST_6(sycl_scan_test_inclusive_dim2_per_device<float>(sycl_device));
111  }
112 }
#define CALL_SUBTEST_6(FUNC)
Definition: split_test_helper.h:34
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22

References CALL_SUBTEST_1, CALL_SUBTEST_2, CALL_SUBTEST_3, CALL_SUBTEST_4, CALL_SUBTEST_5, and CALL_SUBTEST_6.

◆ sycl_scan_test_exclusive_dim0_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim0_per_device ( const Dev &  sycl_device)
71  {
72  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, true);
73  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, true);
74 }

◆ sycl_scan_test_exclusive_dim1_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim1_per_device ( const Dev &  sycl_device)
76  {
77  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, true);
78  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, true);
79 }

◆ sycl_scan_test_exclusive_dim2_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_exclusive_dim2_per_device ( const Dev &  sycl_device)
81  {
82  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, true);
83  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, true);
84 }

◆ sycl_scan_test_inclusive_dim0_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim0_per_device ( const Dev &  sycl_device)
86  {
87  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, false);
88  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0, false);
89 }

◆ sycl_scan_test_inclusive_dim1_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim1_per_device ( const Dev &  sycl_device)
91  {
92  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, false);
93  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1, false);
94 }

◆ sycl_scan_test_inclusive_dim2_per_device()

template<typename DataType , typename Dev >
void sycl_scan_test_inclusive_dim2_per_device ( const Dev &  sycl_device)
96  {
97  test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, false);
98  test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2, false);
99 }

◆ test_sycl_cumsum()

template<typename DataType , int DataLayout, typename IndexType >
void test_sycl_cumsum ( const Eigen::SyclDevice &  sycl_device,
IndexType  m_size,
IndexType  k_size,
IndexType  n_size,
int  consume_dim,
bool  exclusive 
)
27  {
28  static const DataType error_threshold = 1e-4f;
29  std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << " consume_dim : " << consume_dim << ")"
30  << std::endl;
31  Tensor<DataType, 3, DataLayout, IndexType> t_input(m_size, k_size, n_size);
32  Tensor<DataType, 3, DataLayout, IndexType> t_result(m_size, k_size, n_size);
33  Tensor<DataType, 3, DataLayout, IndexType> t_result_gpu(m_size, k_size, n_size);
34 
35  t_input.setRandom();
36  std::size_t t_input_bytes = t_input.size() * sizeof(DataType);
37  std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
38 
39  DataType* gpu_data_in = static_cast<DataType*>(sycl_device.allocate(t_input_bytes));
40  DataType* gpu_data_out = static_cast<DataType*>(sycl_device.allocate(t_result_bytes));
41 
42  array<IndexType, 3> tensorRange = {{m_size, k_size, n_size}};
43  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_input(gpu_data_in, tensorRange);
44  TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_result(gpu_data_out, tensorRange);
45  sycl_device.memcpyHostToDevice(gpu_data_in, t_input.data(), t_input_bytes);
46  sycl_device.memcpyHostToDevice(gpu_data_out, t_input.data(), t_input_bytes);
47 
48  gpu_t_result.device(sycl_device) = gpu_t_input.cumsum(consume_dim, exclusive);
49 
50  t_result = t_input.cumsum(consume_dim, exclusive);
51 
52  sycl_device.memcpyDeviceToHost(t_result_gpu.data(), gpu_data_out, t_result_bytes);
53  sycl_device.synchronize();
54 
55  for (IndexType i = 0; i < t_result.size(); i++) {
56  if (static_cast<DataType>(std::fabs(static_cast<DataType>(t_result(i) - t_result_gpu(i)))) < error_threshold) {
57  continue;
58  }
59  if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
60  continue;
61  }
62  std::cout << "mismatch detected at index " << i << " CPU : " << t_result(i) << " vs SYCL : " << t_result_gpu(i)
63  << std::endl;
64  assert(false);
65  }
66  sycl_device.deallocate(gpu_data_in);
67  sycl_device.deallocate(gpu_data_out);
68 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
#define assert(e,...)
Definition: Logger.h:744
A tensor expression mapping an existing array of data.
Definition: TensorMap.h:33
The tensor class.
Definition: Tensor.h:68
static const float error_threshold
Definition: cxx11_tensor_convolution_sycl.cpp:32
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1923
std::array< T, N > array
Definition: EmulateArray.h:231
Real fabs(const Real &a)
Definition: boostmultiprec.cpp:117

References assert, Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::data(), Eigen::TensorBase< Derived, AccessLevel >::device(), error_threshold, boost::multiprecision::fabs(), i, Eigen::internal::isApprox(), Eigen::TensorBase< Derived, AccessLevel >::setRandom(), and Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::size().