Eigen::PolynomialSolver< Scalar_, 1 > Class Template Reference

#include <PolynomialSolver.h>

+ Inheritance diagram for Eigen::PolynomialSolver< Scalar_, 1 >:

Public Types

typedef PolynomialSolverBase< Scalar_, 1 > PS_Base
 
- Public Types inherited from Eigen::PolynomialSolverBase< Scalar_, 1 >
typedef Scalar_ Scalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef std::complex< RealScalarRootType
 
typedef Matrix< RootType, Deg_, 1 > RootsType
 
typedef DenseIndex Index
 

Public Member Functions

template<typename OtherPolynomial >
void compute (const OtherPolynomial &poly)
 
template<typename OtherPolynomial >
 PolynomialSolver (const OtherPolynomial &poly)
 
 PolynomialSolver ()
 
- Public Member Functions inherited from Eigen::PolynomialSolverBase< Scalar_, 1 >
 PolynomialSolverBase (const OtherPolynomial &poly)
 
 PolynomialSolverBase ()
 
const RootsTyperoots () const
 
void realRoots (Stl_back_insertion_sequence &bi_seq, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RootTypegreatestRoot () const
 
const RootTypesmallestRoot () const
 
const RealScalarabsGreatestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalarabsSmallestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalargreatestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalarsmallestRealRoot (bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 

Additional Inherited Members

- Protected Member Functions inherited from Eigen::PolynomialSolverBase< Scalar_, 1 >
void setPolynomial (const OtherPolynomial &poly)
 
const RootTypeselectComplexRoot_withRespectToNorm (squaredNormBinaryPredicate &pred) const
 
const RealScalarselectRealRoot_withRespectToAbsRealPart (squaredRealPartBinaryPredicate &pred, bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
const RealScalarselectRealRoot_withRespectToRealPart (RealPartBinaryPredicate &pred, bool &hasArealRoot, const RealScalar &absImaginaryThreshold=NumTraits< Scalar >::dummy_precision()) const
 
- Protected Attributes inherited from Eigen::PolynomialSolverBase< Scalar_, 1 >
RootsType m_roots
 

Member Typedef Documentation

◆ PS_Base

template<typename Scalar_ >
typedef PolynomialSolverBase<Scalar_, 1> Eigen::PolynomialSolver< Scalar_, 1 >::PS_Base

Constructor & Destructor Documentation

◆ PolynomialSolver() [1/2]

template<typename Scalar_ >
template<typename OtherPolynomial >
Eigen::PolynomialSolver< Scalar_, 1 >::PolynomialSolver ( const OtherPolynomial &  poly)
inline
375  {
376  compute(poly);
377  }
void compute(const OtherPolynomial &poly)
Definition: PolynomialSolver.h:367

References Eigen::PolynomialSolver< Scalar_, Deg_ >::compute().

◆ PolynomialSolver() [2/2]

template<typename Scalar_ >
Eigen::PolynomialSolver< Scalar_, 1 >::PolynomialSolver ( )
inline
379 {}

Member Function Documentation

◆ compute()

template<typename Scalar_ >
template<typename OtherPolynomial >
void Eigen::PolynomialSolver< Scalar_, 1 >::compute ( const OtherPolynomial &  poly)
inline

Computes the complex roots of a new polynomial.

367  {
368  eigen_assert(poly.size() == 2);
369  eigen_assert(Scalar(0) != poly[1]);
370  m_roots[0] = -poly[0] / poly[1];
371  }
#define eigen_assert(x)
Definition: Macros.h:910
Scalar_ Scalar
Definition: PolynomialSolver.h:36
RootsType m_roots
Definition: PolynomialSolver.h:261

References eigen_assert, and Eigen::PolynomialSolver< Scalar_, Deg_ >::m_roots.


The documentation for this class was generated from the following file: