MatrixLogarithm.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATRIX_LOGARITHM
12 #define EIGEN_MATRIX_LOGARITHM
13 
14 // IWYU pragma: private
15 #include "./InternalHeaderCheck.h"
16 
17 namespace Eigen {
18 
19 namespace internal {
20 
21 template <typename Scalar>
23  static const int value = 3;
24 };
25 
26 template <typename Scalar>
29  static const int value = std::numeric_limits<RealScalar>::digits <= 24 ? 5 : // single precision
30  std::numeric_limits<RealScalar>::digits <= 53 ? 7
31  : // double precision
32  std::numeric_limits<RealScalar>::digits <= 64 ? 8
33  : // extended precision
34  std::numeric_limits<RealScalar>::digits <= 106 ? 10
35  : // double-double
36  11; // quadruple precision
37 };
38 
40 template <typename MatrixType>
42  typedef typename MatrixType::Scalar Scalar;
43  typedef typename MatrixType::RealScalar RealScalar;
44  using std::abs;
45  using std::ceil;
46  using std::imag;
47  using std::log;
48 
49  Scalar logA00 = log(A(0, 0));
50  Scalar logA11 = log(A(1, 1));
51 
52  result(0, 0) = logA00;
53  result(1, 0) = Scalar(0);
54  result(1, 1) = logA11;
55 
56  Scalar y = A(1, 1) - A(0, 0);
57  if (y == Scalar(0)) {
58  result(0, 1) = A(0, 1) / A(0, 0);
59  } else if ((abs(A(0, 0)) < RealScalar(0.5) * abs(A(1, 1))) || (abs(A(0, 0)) > 2 * abs(A(1, 1)))) {
60  result(0, 1) = A(0, 1) * (logA11 - logA00) / y;
61  } else {
62  // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
63  RealScalar unwindingNumber = ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2 * EIGEN_PI));
64  result(0, 1) = A(0, 1) * (numext::log1p(y / A(0, 0)) + Scalar(0, RealScalar(2 * EIGEN_PI) * unwindingNumber)) / y;
65  }
66 }
67 
68 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
69 inline int matrix_log_get_pade_degree(float normTminusI) {
70  const float maxNormForPade[] = {2.5111573934555054e-1 /* degree = 3 */, 4.0535837411880493e-1, 5.3149729967117310e-1};
71  const int minPadeDegree = matrix_log_min_pade_degree<float>::value;
72  const int maxPadeDegree = matrix_log_max_pade_degree<float>::value;
73  int degree = minPadeDegree;
74  for (; degree <= maxPadeDegree; ++degree)
75  if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break;
76  return degree;
77 }
78 
79 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
80 inline int matrix_log_get_pade_degree(double normTminusI) {
81  const double maxNormForPade[] = {1.6206284795015624e-2 /* degree = 3 */, 5.3873532631381171e-2, 1.1352802267628681e-1,
82  1.8662860613541288e-1, 2.642960831111435e-1};
83  const int minPadeDegree = matrix_log_min_pade_degree<double>::value;
84  const int maxPadeDegree = matrix_log_max_pade_degree<double>::value;
85  int degree = minPadeDegree;
86  for (; degree <= maxPadeDegree; ++degree)
87  if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break;
88  return degree;
89 }
90 
91 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
92 inline int matrix_log_get_pade_degree(long double normTminusI) {
93 #if LDBL_MANT_DIG == 53 // double precision
94  const long double maxNormForPade[] = {1.6206284795015624e-2L /* degree = 3 */, 5.3873532631381171e-2L,
95  1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L};
96 #elif LDBL_MANT_DIG <= 64 // extended precision
97  const long double maxNormForPade[] = {5.48256690357782863103e-3L /* degree = 3 */,
98  2.34559162387971167321e-2L,
99  5.84603923897347449857e-2L,
100  1.08486423756725170223e-1L,
101  1.68385767881294446649e-1L,
102  2.32777776523703892094e-1L};
103 #elif LDBL_MANT_DIG <= 106 // double-double
104  const long double maxNormForPade[] = {8.58970550342939562202529664318890e-5L /* degree = 3 */,
105  9.34074328446359654039446552677759e-4L,
106  4.26117194647672175773064114582860e-3L,
107  1.21546224740281848743149666560464e-2L,
108  2.61100544998339436713088248557444e-2L,
109  4.66170074627052749243018566390567e-2L,
110  7.32585144444135027565872014932387e-2L,
111  1.05026503471351080481093652651105e-1L};
112 #else // quadruple precision
113  const long double maxNormForPade[] = {4.7419931187193005048501568167858103e-5L /* degree = 3 */,
114  5.8853168473544560470387769480192666e-4L,
115  2.9216120366601315391789493628113520e-3L,
116  8.8415758124319434347116734705174308e-3L,
117  1.9850836029449446668518049562565291e-2L,
118  3.6688019729653446926585242192447447e-2L,
119  5.9290962294020186998954055264528393e-2L,
120  8.6998436081634343903250580992127677e-2L,
121  1.1880960220216759245467951592883642e-1L};
122 #endif
123  const int minPadeDegree = matrix_log_min_pade_degree<long double>::value;
124  const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value;
125  int degree = minPadeDegree;
126  for (; degree <= maxPadeDegree; ++degree)
127  if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break;
128  return degree;
129 }
130 
131 /* \brief Compute Pade approximation to matrix logarithm */
132 template <typename MatrixType>
135  const int minPadeDegree = 3;
136  const int maxPadeDegree = 11;
137  eigen_assert(degree >= minPadeDegree && degree <= maxPadeDegree);
138  // FIXME this creates float-conversion-warnings if these are enabled.
139  // Either manually convert each value, or disable the warning locally
140  const RealScalar nodes[][maxPadeDegree] = {
141  {0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3
142  0.8872983346207416885179265399782400L},
143  {0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4
144  0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L},
145  {0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5
146  0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
147  0.9530899229693319963988134391496965L},
148  {0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6
149  0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
150  0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L},
151  {0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7
152  0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
153  0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
154  0.9745539561713792622630948420239256L},
155  {0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8
156  0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
157  0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
158  0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L},
159  {0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9
160  0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
161  0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
162  0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
163  0.9840801197538130449177881014518364L},
164  {0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10
165  0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
166  0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
167  0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
168  0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L},
169  {0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11
170  0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
171  0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
172  0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
173  0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
174  0.9891143290730284964019690005614287L}};
175 
176  const RealScalar weights[][maxPadeDegree] = {
177  {0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3
178  0.2777777777777777777777777777777778L},
179  {0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4
180  0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L},
181  {0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5
182  0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
183  0.1184634425280945437571320203599587L},
184  {0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6
185  0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
186  0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L},
187  {0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7
188  0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
189  0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
190  0.0647424830844348466353057163395410L},
191  {0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8
192  0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
193  0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
194  0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L},
195  {0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9
196  0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
197  0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
198  0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
199  0.0406371941807872059859460790552618L},
200  {0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10
201  0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
202  0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
203  0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
204  0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L},
205  {0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11
206  0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
207  0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
208  0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
209  0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
210  0.0278342835580868332413768602212743L}};
211 
212  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
213  result.setZero(T.rows(), T.rows());
214  for (int k = 0; k < degree; ++k) {
215  RealScalar weight = weights[degree - minPadeDegree][k];
216  RealScalar node = nodes[degree - minPadeDegree][k];
217  result +=
218  weight *
219  (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI).template triangularView<Upper>().solve(TminusI);
220  }
221 }
222 
225 template <typename MatrixType>
227  typedef typename MatrixType::Scalar Scalar;
228  typedef typename NumTraits<Scalar>::Real RealScalar;
229  using std::pow;
230 
231  int numberOfSquareRoots = 0;
232  int numberOfExtraSquareRoots = 0;
233  int degree;
234  MatrixType T = A, sqrtT;
235 
236  const int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value;
237  const RealScalar maxNormForPade = RealScalar(maxPadeDegree <= 5 ? 5.3149729967117310e-1L : // single precision
238  maxPadeDegree <= 7 ? 2.6429608311114350e-1L
239  : // double precision
240  maxPadeDegree <= 8 ? 2.32777776523703892094e-1L
241  : // extended precision
242  maxPadeDegree <= 10 ? 1.05026503471351080481093652651105e-1L
243  : // double-double
244  1.1880960220216759245467951592883642e-1L); // quadruple precision
245 
246  while (true) {
247  RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
248  if (normTminusI < maxNormForPade) {
249  degree = matrix_log_get_pade_degree(normTminusI);
250  int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2));
251  if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) break;
252  ++numberOfExtraSquareRoots;
253  }
254  matrix_sqrt_triangular(T, sqrtT);
255  T = sqrtT.template triangularView<Upper>();
256  ++numberOfSquareRoots;
257  }
258 
259  matrix_log_compute_pade(result, T, degree);
260  result *= pow(RealScalar(2), RealScalar(numberOfSquareRoots)); // TODO replace by bitshift if possible
261 }
262 
271 template <typename MatrixType>
273  public:
278  MatrixType compute(const MatrixType& A);
279 };
280 
281 template <typename MatrixType>
283  using std::log;
284  MatrixType result(A.rows(), A.rows());
285  if (A.rows() == 1)
286  result(0, 0) = log(A(0, 0));
287  else if (A.rows() == 2)
288  matrix_log_compute_2x2(A, result);
289  else
290  matrix_log_compute_big(A, result);
291  return result;
292 }
293 
294 } // end of namespace internal
295 
308 template <typename Derived>
309 class MatrixLogarithmReturnValue : public ReturnByValue<MatrixLogarithmReturnValue<Derived> > {
310  public:
311  typedef typename Derived::Scalar Scalar;
312  typedef typename Derived::Index Index;
313 
314  protected:
316 
317  public:
322  explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) {}
323 
328  template <typename ResultType>
329  inline void evalTo(ResultType& result) const {
330  typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType;
331  typedef internal::remove_all_t<DerivedEvalType> DerivedEvalTypeClean;
333  typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
335  DynMatrixType;
337  AtomicType atomic;
338 
340  }
341 
342  Index rows() const { return m_A.rows(); }
343  Index cols() const { return m_A.cols(); }
344 
345  private:
347 };
348 
349 namespace internal {
350 template <typename Derived>
352  typedef typename Derived::PlainObject ReturnType;
353 };
354 } // namespace internal
355 
356 /********** MatrixBase method **********/
357 
358 template <typename Derived>
360  eigen_assert(rows() == cols());
361  return MatrixLogarithmReturnValue<Derived>(derived());
362 }
363 
364 } // end namespace Eigen
365 
366 #endif // EIGEN_MATRIX_LOGARITHM
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
AnnoyingScalar imag(const AnnoyingScalar &)
Definition: AnnoyingScalar.h:132
#define eigen_assert(x)
Definition: Macros.h:910
#define EIGEN_PI
Definition: MathFunctions.h:16
int rows
Definition: Tutorial_commainit_02.cpp:1
int cols
Definition: Tutorial_commainit_02.cpp:1
SCALAR Scalar
Definition: bench_gemm.cpp:45
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:46
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
boost::multiprecision::number< boost::multiprecision::cpp_dec_float< 100 >, boost::multiprecision::et_on > Real
Definition: boostmultiprec.cpp:77
Proxy for the matrix logarithm of some matrix (expression).
Definition: MatrixLogarithm.h:309
Index rows() const
Definition: MatrixLogarithm.h:342
internal::ref_selector< Derived >::type DerivedNested
Definition: MatrixLogarithm.h:315
const DerivedNested m_A
Definition: MatrixLogarithm.h:346
Index cols() const
Definition: MatrixLogarithm.h:343
Derived::Index Index
Definition: MatrixLogarithm.h:312
void evalTo(ResultType &result) const
Compute the matrix logarithm.
Definition: MatrixLogarithm.h:329
Derived::Scalar Scalar
Definition: MatrixLogarithm.h:311
MatrixLogarithmReturnValue(const Derived &A)
Constructor.
Definition: MatrixLogarithm.h:322
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:191
Definition: ReturnByValue.h:50
Helper class for computing matrix logarithm of atomic matrices.
Definition: MatrixLogarithm.h:272
MatrixType compute(const MatrixType &A)
Compute matrix logarithm of atomic matrix.
Definition: MatrixLogarithm.h:282
char char char int int * k
Definition: level2_impl.h:374
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 ceil(const bfloat16 &a)
Definition: BFloat16.h:644
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log(const bfloat16 &a)
Definition: BFloat16.h:618
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log1p(const bfloat16 &a)
Definition: BFloat16.h:619
void matrix_log_compute_2x2(const MatrixType &A, MatrixType &result)
Compute logarithm of 2x2 triangular matrix.
Definition: MatrixLogarithm.h:41
void matrix_log_compute_pade(MatrixType &result, const MatrixType &T, int degree)
Definition: MatrixLogarithm.h:133
const Scalar & y
Definition: RandomImpl.h:36
typename remove_all< T >::type remove_all_t
Definition: Meta.h:142
void matrix_log_compute_big(const MatrixType &A, MatrixType &result)
Compute logarithm of triangular matrices with size > 2.
Definition: MatrixLogarithm.h:226
int matrix_log_get_pade_degree(float normTminusI)
Definition: MatrixLogarithm.h:69
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:70
DerType::Scalar imag(const AutoDiffScalar< DerType > &)
Definition: AutoDiffScalar.h:490
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:83
void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
Compute matrix square root of triangular matrix.
Definition: MatrixSquareRoot.h:194
list weights
Definition: calibrate.py:94
const Mdouble degree
Definition: ExtendedMath.h:32
Definition: Eigen_Colamd.h:49
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:217
static void run(const MatrixType &A, AtomicType &atomic, ResultType &result)
Compute the matrix function.
Definition: MatrixLogarithm.h:27
static const int value
Definition: MatrixLogarithm.h:29
NumTraits< Scalar >::Real RealScalar
Definition: MatrixLogarithm.h:28
Definition: MatrixLogarithm.h:22
static const int value
Definition: MatrixLogarithm.h:23
std::conditional_t< Evaluate, PlainObject, typename ref_selector< T >::type > type
Definition: XprHelper.h:549
std::conditional_t< bool(traits< T >::Flags &NestByRefBit), T const &, const T > type
Definition: XprHelper.h:507
Derived::PlainObject ReturnType
Definition: MatrixLogarithm.h:352
Definition: ForwardDeclarations.h:21