mpreal_support.cpp File Reference
#include <mpreal.h>
#include "main.h"
#include <Eigen/MPRealSupport>
#include <Eigen/LU>
#include <Eigen/Eigenvalues>
#include <sstream>

Functions

 EIGEN_DECLARE_TEST (mpreal_support)
 

Function Documentation

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( mpreal_support  )
11  {
12  // set precision to 256 bits (double has only 53 bits)
13  mpreal::set_default_prec(256);
16 
17  std::cerr << "epsilon = " << NumTraits<mpreal>::epsilon() << "\n";
18  std::cerr << "dummy_precision = " << NumTraits<mpreal>::dummy_precision() << "\n";
19  std::cerr << "highest = " << NumTraits<mpreal>::highest() << "\n";
20  std::cerr << "lowest = " << NumTraits<mpreal>::lowest() << "\n";
21  std::cerr << "digits10 = " << NumTraits<mpreal>::digits10() << "\n";
22  std::cerr << "max_digits10 = " << NumTraits<mpreal>::max_digits10() << "\n";
23 
24  for (int i = 0; i < g_repeat; i++) {
25  int s = Eigen::internal::random<int>(1, 100);
26  MatrixXmp A = MatrixXmp::Random(s, s);
27  MatrixXmp B = MatrixXmp::Random(s, s);
28  MatrixXmp S = A.adjoint() * A;
29  MatrixXmp X;
30  MatrixXcmp Ac = MatrixXcmp::Random(s, s);
31  MatrixXcmp Bc = MatrixXcmp::Random(s, s);
32  MatrixXcmp Sc = Ac.adjoint() * Ac;
33  MatrixXcmp Xc;
34 
35  // Basic stuffs
36  VERIFY_IS_APPROX(A.real(), A);
37  VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm()));
38  VERIFY_IS_APPROX(A.array().exp(), exp(A.array()));
39  VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs());
40  VERIFY_IS_APPROX(A.array().sin(), sin(A.array()));
41  VERIFY_IS_APPROX(A.array().cos(), cos(A.array()));
42 
43  // Cholesky
44  X = S.selfadjointView<Lower>().llt().solve(B);
45  VERIFY_IS_APPROX((S.selfadjointView<Lower>() * X).eval(), B);
46 
47  Xc = Sc.selfadjointView<Lower>().llt().solve(Bc);
48  VERIFY_IS_APPROX((Sc.selfadjointView<Lower>() * Xc).eval(), Bc);
49 
50  // partial LU
51  X = A.lu().solve(B);
52  VERIFY_IS_APPROX((A * X).eval(), B);
53 
54  // symmetric eigenvalues
56  VERIFY_IS_EQUAL(eig.info(), Success);
57  VERIFY(
58  (S.selfadjointView<Lower>() * eig.eigenvectors())
59  .isApprox(eig.eigenvectors() * eig.eigenvalues().asDiagonal(), NumTraits<mpreal>::dummy_precision() * 1e3));
60  }
61 
62  {
63  MatrixXmp A(8, 3);
64  A.setRandom();
65  // test output (interesting things happen in this code)
66  std::stringstream stream;
67  stream << A;
68  }
69 }
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
Derived & setRandom(Index size)
Definition: Random.h:147
Computes eigenvalues and eigenvectors of selfadjoint matrices.
Definition: SelfAdjointEigenSolver.h:82
Definition: matrices.h:74
@ Lower
Definition: Constants.h:211
@ Success
Definition: Constants.h:440
#define X
Definition: icosphere.cpp:20
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:13
RealScalar s
Definition: level1_cplx_impl.h:130
EIGEN_DONT_INLINE void llt(const Mat &A, const Mat &B, Mat &C)
Definition: llt.cpp:4
#define VERIFY(a)
Definition: main.h:362
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:367
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 exp(const bfloat16 &a)
Definition: BFloat16.h:615
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1923
static int g_repeat
Definition: main.h:191
const int Dynamic
Definition: Constants.h:25
@ S
Definition: quadtree.h:62
double epsilon
Definition: osc_ring_sarah_asymptotics.h:43
internal::nested_eval< T, 1 >::type eval(const T &xpr)
Definition: sparse_permutations.cpp:47
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:217

References cos(), Eigen::Dynamic, Eigen::SelfAdjointEigenSolver< MatrixType_ >::eigenvalues(), Eigen::SelfAdjointEigenSolver< MatrixType_ >::eigenvectors(), oomph::SarahBL::epsilon, eval(), Eigen::bfloat16_impl::exp(), Eigen::g_repeat, i, Eigen::SelfAdjointEigenSolver< MatrixType_ >::info(), Eigen::internal::isApprox(), llt(), Eigen::Lower, s, oomph::QuadTreeNames::S, Eigen::PlainObjectBase< Derived >::setRandom(), sin(), Eigen::Success, VERIFY, VERIFY_IS_APPROX, VERIFY_IS_EQUAL, and X.