FlowAroundHalfCylinderProblem< ELEMENT > Class Template Reference

Flow around a cylinder in rectangular domain. More...

+ Inheritance diagram for FlowAroundHalfCylinderProblem< ELEMENT >:

Public Member Functions

 FlowAroundHalfCylinderProblem (GeomObject *cylinder_pt, const double &radius, const double &length)
 Constructor. More...
 
void actions_after_newton_solve ()
 Update the problem specs after solve (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_adapt ()
 After adaptation: Unpin pressure and pin redudant pressure dofs. More...
 
RefineableHalfRectangleWithHoleMesh< ELEMENT > * mesh_pt ()
 Access function for the specific mesh. More...
 
void compute_drag_nusselt (Vector< double > &drag, double &nusselt, double &area)
 
 FlowAroundHalfCylinderProblem (GeomObject *cylinder_pt, const double &radius, const double &length)
 
void actions_after_newton_solve ()
 Update the problem specs after solve (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_adapt ()
 After adaptation: Unpin pressure and pin redudant pressure dofs. More...
 
RefineableHalfRectangleWithHoleMesh< NST_ELEMENT > * nst_mesh_pt ()
 Access function for the specific mesh. More...
 
RefineableHalfRectangleWithHoleMesh< AD_ELEMENT > * adv_diff_mesh_pt ()
 Access function for the specific mesh. More...
 
 FlowAroundHalfCylinderProblem (GeomObject *cylinder_pt, const double &radius, const double &length)
 
void actions_after_newton_solve ()
 Update the problem specs after solve (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_adapt ()
 After adaptation: Unpin pressure and pin redudant pressure dofs. More...
 
RefineableHalfRectangleWithHoleMesh< ELEMENT > * mesh_pt ()
 Access function for the specific mesh. More...
 
void compute_drag_nusselt (Vector< double > &drag, double &nusselt, double &area)
 
 FlowAroundHalfCylinderProblem (GeomObject *cylinder_pt, const double &radius, const double &length)
 
void actions_after_newton_solve ()
 Update the problem specs after solve (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_adapt ()
 After adaptation: Unpin pressure and pin redudant pressure dofs. More...
 
RefineableHalfRectangleWithHoleMesh< NST_ELEMENT > * nst_mesh_pt ()
 Access function for the specific mesh. More...
 
RefineableHalfRectangleWithHoleMesh< AD_ELEMENT > * adv_diff_mesh_pt ()
 Access function for the specific mesh. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Attributes

double Domain_radius
 Height of the domain. More...
 
double Domain_length
 Length of the domain. More...
 
RefineableQuadMesh< NST_ELEMENT > * Nst_mesh_pt
 Navier Stokes mesh. More...
 
RefineableQuadMesh< AD_ELEMENT > * Adv_diff_mesh_pt
 Advection diffusion mesh. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class FlowAroundHalfCylinderProblem< ELEMENT >

Flow around a cylinder in rectangular domain.

//////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////

Constructor & Destructor Documentation

◆ FlowAroundHalfCylinderProblem() [1/4]

template<class NST_ELEMENT , class AD_ELEMENT >
FlowAroundHalfCylinderProblem< NST_ELEMENT, AD_ELEMENT >::FlowAroundHalfCylinderProblem ( GeomObject cylinder_pt,
const double radius,
const double length 
)

Constructor.

Constructor: Pass geometric object that represents central cylinder, and length and height of domain.

387 {
389  Domain_length = length;
390 
391  // Build mesh
392  Problem::mesh_pt()=
394  49.0,2,49.0,2,1.0,2);
395 
396  // Set error estimator
398  mesh_pt()->spatial_error_estimator_pt()=error_estimator_pt;
399 
400  //Allow a fair amount of refinement
401  //mesh_pt()->max_refinement_level() = 10;
402 
403  // Set the boundary conditions for this problem: All nodes are
404  // free by default -- just pin the ones that have Dirichlet conditions
405  // here.
406 
407  //Pin all swirl velocities
408  unsigned n_node = mesh_pt()->nnode();
409  for(unsigned n=0;n<n_node;n++)
410  {
411  mesh_pt()->node_pt(n)->pin(2);
412  }
413 
414  //Set boundary conditions
415  unsigned num_bound = mesh_pt()->nboundary();
416  for(unsigned ibound=0;ibound<num_bound;ibound++)
417  {
418  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
419  for (unsigned inod=0;inod<num_nod;inod++)
420  {
421  //Pin boundary conditions on cylinder and inlet
422  if((ibound==0) || (ibound==4))
423  {
424  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
425  mesh_pt()->boundary_node_pt(ibound,inod)->pin(1);
426  mesh_pt()->boundary_node_pt(ibound,inod)->pin(3);
427  }
428  //Otherwise pin radial flow
429  else
430  {
431  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
432  }
433 
434  //Pin outlet concentration
435  /*if(ibound==2)
436  {
437  mesh_pt()->boundary_node_pt(ibound,inod)->pin(3);
438  }*/
439  }
440  }
441 
442  // Pin redudant pressure dofs
443  RefineableAxisymmetricNavierStokesEquations::
444  pin_redundant_nodal_pressures(mesh_pt()->element_pt());
445 
446  // Pass pointer to Reynolds number to elements
447  unsigned nelem=mesh_pt()->nelement();
448  for (unsigned e=0;e<nelem;e++)
449  {
450  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
451 
452  // Set the Peclet number
453  el_pt->pe_pt() = &Global_Parameters::Pe;
454 
455  // Set the Peclet number multiplied by the Strouhal number
456  el_pt->pe_st_pt() =&Global_Parameters::Pe;
457 
458  // Set the Reynolds number (1/Pr in our non-dimensionalisation)
459  el_pt->re_pt() = &Global_Parameters::Re;
460 
461  // Set ReSt (also 1/Pr in our non-dimensionalisation)
462  el_pt->re_st_pt() = &Global_Parameters::Re;
463 
464  // Set the Rayleigh number
465  el_pt->ra_pt() = &Global_Parameters::Ra;
466 
467  //Set Gravity vector
468  el_pt->g_pt() = &Global_Parameters::G;
469 
470  }
471 
472  //Attach the boundary conditions to the mesh
473  cout <<"Number of equations: " << assign_eqn_numbers() << endl;
474 
475 
476  //Set swirl velocity to zero
477  for(unsigned n=0;n<n_node;n++)
478  {
479  mesh_pt()->node_pt(n)->set_value(2,0.0);
480  }
481 
482  /*ofstream boundary[5];
483  boundary[0].open("bound0.dat");
484  boundary[1].open("bound1.dat");
485  boundary[2].open("bound2.dat");
486  boundary[3].open("bound3.dat");
487  boundary[4].open("bound4.dat");
488 
489  ofstream output("initial.dat");
490  mesh_pt()->output(output,3);
491  output.close();*/
492 
493  //Plug flow everywhere
494  for(unsigned ibound=0;ibound<5;++ibound)
495  {
496  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
497  for (unsigned inod=0;inod<num_nod;inod++)
498  {
499  /*boundary[ibound] << mesh_pt()->boundary_node_pt(ibound,inod)->x(0)
500  << " "
501  << mesh_pt()->boundary_node_pt(ibound,inod)->x(1)
502  << "\n";*/
503 
504  //No radial flow on symmetry boundary
505  if(ibound==3)
506  {
507  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
508  }
509 
510  //No radial flow on outlet
511  if(ibound==2)
512  {
513  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
514  }
515 
516  //No radial flow on side boundary
517  if(ibound==1)
518  {
519  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
520  }
521 
522 
523  //Plug flow and zero concentration on inlet
524  if(ibound==0)
525  {
526  //Specify the exact flow at inlet
527  /*Vector<double> x(2);
528  x[0] = mesh_pt()->boundary_node_pt(ibound,inod)->x(0);
529  x[1] = mesh_pt()->boundary_node_pt(ibound,inod)->x(1);
530  Vector<double> wind(2);
531  StokesFlowExactWind::get_wind(x,wind);
532  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,wind[0]);
533  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,wind[1]);*/
534 
535  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
536  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,1.0);
537  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,0.0);
538  }
539 
540  //No slip on sphere and fixed concentration
541  if(ibound==4)
542  {
543  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
544  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
545  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,1.0);
546  }
547  }
548  }
549 }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
double Domain_radius
Height of the domain.
Definition: axisym_heat_sphere.cc:371
RefineableHalfRectangleWithHoleMesh< ELEMENT > * mesh_pt()
Access function for the specific mesh.
Definition: axisym_heat_sphere.cc:320
double Domain_length
Length of the domain.
Definition: axisym_heat_sphere.cc:374
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: axisym_heat_sphere/half_rectangle_with_hole_mesh.h:927
Definition: error_estimator.h:266
double Pe
Peclet number.
Definition: axisym_heat_sphere.cc:59
Vector< double > G
Gravity.
Definition: axisym_heat_sphere.cc:65
double Ra
Rayleigh number.
Definition: axisym_heat_sphere.cc:62
double Re
reynolds number
Definition: adaptive_hopf.cc:54
Z2ErrorEstimator * error_estimator_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:190
radius
Definition: UniformPSDSelfTest.py:15

References ProblemParameters::Domain_radius, e(), MeshRefinement::error_estimator_pt, Global_Parameters::G, n, Global_Parameters::Pe, Global_Parameters::Ra, UniformPSDSelfTest::radius, and Global_Parameters::Re.

◆ FlowAroundHalfCylinderProblem() [2/4]

template<class ELEMENT >
FlowAroundHalfCylinderProblem< ELEMENT >::FlowAroundHalfCylinderProblem ( GeomObject cylinder_pt,
const double radius,
const double length 
)

Constructor: Pass geometric object that represents central cylinder, and length and height of domain.

◆ FlowAroundHalfCylinderProblem() [3/4]

template<class ELEMENT >
FlowAroundHalfCylinderProblem< ELEMENT >::FlowAroundHalfCylinderProblem ( GeomObject cylinder_pt,
const double radius,
const double length 
)

Constructor: Pass geometric object that represents central cylinder, and length and height of domain.

◆ FlowAroundHalfCylinderProblem() [4/4]

template<class ELEMENT >
FlowAroundHalfCylinderProblem< ELEMENT >::FlowAroundHalfCylinderProblem ( GeomObject cylinder_pt,
const double radius,
const double length 
)

Constructor: Pass geometric object that represents central cylinder, and length and height of domain.

Member Function Documentation

◆ actions_after_adapt() [1/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

After adaptation: Unpin pressure and pin redudant pressure dofs.

Reimplemented from oomph::Problem.

246  {
247  // Unpin all pressure dofs
248  RefineableAxisymmetricNavierStokesEquations::
249  unpin_all_pressure_dofs(mesh_pt()->element_pt());
250 
251  // Pin redundant pressure dofs
252  RefineableAxisymmetricNavierStokesEquations::
253  pin_redundant_nodal_pressures(mesh_pt()->element_pt());
254 
255  //Pin all swirl velocities to zero
256  unsigned n_node = mesh_pt()->nnode();
257  for(unsigned n=0;n<n_node;n++)
258  {
259  mesh_pt()->node_pt(n)->pin(2);
260  mesh_pt()->node_pt(n)->set_value(2,0.0);
261  }
262 
263 
264  //Plug flow everywhere
265  for(unsigned ibound=0;ibound<5;++ibound)
266  {
267  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
268  for (unsigned inod=0;inod<num_nod;inod++)
269  {
270  //No radial flow on symmetry boundary
271  if(ibound==3)
272  {
273  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
274  }
275 
276  //No radial flow on outlet
277  if(ibound==2)
278  {
279  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
280  }
281 
282  //No radial flow on side boundary
283  if(ibound==1)
284  {
285  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
286  }
287 
288  //Plug flow and no concentration on inlet only
289  if(ibound==0)
290  {
291  //Specify the exact flow at inlet
292  /*Vector<double> x(2);
293  x[0] = mesh_pt()->boundary_node_pt(ibound,inod)->x(0);
294  x[1] = mesh_pt()->boundary_node_pt(ibound,inod)->x(1);
295  Vector<double> wind(2);
296  StokesFlowExactWind::get_wind(x,wind);
297  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,wind[0]);
298  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,wind[1]);*/
299 
300 
301  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
302  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,1.0);
303  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,0.0);
304  }
305 
306  //No slip on sphere and fixed concentration on sphere
307  if(ibound==4)
308  {
309  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
310  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
311  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,1.0);
312  }
313  }
314  }
315 
316  } // end_of_actions_after_adapt

References n.

◆ actions_after_adapt() [2/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

After adaptation: Unpin pressure and pin redudant pressure dofs.

Reimplemented from oomph::Problem.

102  {
103  // Unpin all pressure dofs
104  RefineableAxisymmetricNavierStokesEquations::
105  unpin_all_pressure_dofs(nst_mesh_pt()->element_pt());
106 
107  // Pin redundant pressure dofs
108  RefineableAxisymmetricNavierStokesEquations::
109  pin_redundant_nodal_pressures(nst_mesh_pt()->element_pt());
110 
111  //Pin all swirl velocities to zero
112  unsigned n_node = nst_mesh_pt()->nnode();
113  for(unsigned n=0;n<n_node;n++)
114  {
115  nst_mesh_pt()->node_pt(n)->pin(2);
116  nst_mesh_pt()->node_pt(n)->set_value(2,0.0);
117  }
118 
119  //Plug flow everywhere
120  for(unsigned ibound=0;ibound<5;++ibound)
121  {
122  unsigned num_nod= nst_mesh_pt()->nboundary_node(ibound);
123  for (unsigned inod=0;inod<num_nod;inod++)
124  {
125  //No radial flow on symmetry boundary
126  if(ibound==3)
127  {
128  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
129  }
130 
131  //No radial flow on outlet
132  if(ibound==2)
133  {
134  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
135  }
136 
137 
138  //No radial flow on side boundary
139  if(ibound==1)
140  {
141  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
142  }
143 
144  //Plug flow on inlet and side boundary
145  if(ibound==0)
146  {
147  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
148  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,1.0);
149  }
150 
151  //No slip on sphere
152  if(ibound==4)
153  {
154  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
155  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
156  }
157  }
158  }
159 
160  //Fixed concentration on sphere
161  for(unsigned ibound=0;ibound<5;++ibound)
162  {
163  unsigned num_nod= adv_diff_mesh_pt()->nboundary_node(ibound);
164  for (unsigned inod=0;inod<num_nod;inod++)
165  {
166  //No concentration on inlet
167  if(ibound==0)
168  {
169  adv_diff_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
170  }
171  //Fixed concentration on sphere
172  if(ibound==4)
173  {
174  adv_diff_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,1.0);
175  }
176  }
177  }
178  // Set external elements for the multi-domain solution.
179  Multi_domain_functions::
180  setup_multi_domain_interactions<NST_ELEMENT,AD_ELEMENT>
181  (this,nst_mesh_pt(),adv_diff_mesh_pt());
182 
183  } // end_of_actions_after_adapt
RefineableHalfRectangleWithHoleMesh< AD_ELEMENT > * adv_diff_mesh_pt()
Access function for the specific mesh.
Definition: multi_domain_axisym_heat_sphere.cc:194
RefineableHalfRectangleWithHoleMesh< NST_ELEMENT > * nst_mesh_pt()
Access function for the specific mesh.
Definition: multi_domain_axisym_heat_sphere.cc:187

References n.

◆ actions_after_adapt() [3/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

After adaptation: Unpin pressure and pin redudant pressure dofs.

Reimplemented from oomph::Problem.

244  {
245  // Unpin all pressure dofs
246  RefineableAxisymmetricNavierStokesEquations::
247  unpin_all_pressure_dofs(mesh_pt()->element_pt());
248 
249  // Pin redundant pressure dofs
250  RefineableAxisymmetricNavierStokesEquations::
251  pin_redundant_nodal_pressures(mesh_pt()->element_pt());
252 
253  //Pin all swirl velocities to zero
254  unsigned n_node = mesh_pt()->nnode();
255  for(unsigned n=0;n<n_node;n++)
256  {
257  mesh_pt()->node_pt(n)->pin(2);
258  mesh_pt()->node_pt(n)->set_value(2,0.0);
259  }
260 
261 
262  //Plug flow everywhere
263  for(unsigned ibound=0;ibound<5;++ibound)
264  {
265  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
266  for (unsigned inod=0;inod<num_nod;inod++)
267  {
268  //No radial flow on symmetry boundary
269  if(ibound==3)
270  {
271  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
272  }
273 
274  //No radial flow or concentration on outlet
275  if(ibound==2)
276  {
277  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
278  }
279 
280  //No flow and concentration on side boundary
281  if(ibound==1)
282  {
283  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
284  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
285  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,0.0);
286  }
287 
288  //Plug flow and no concentration on inlet only
289  if(ibound==0)
290  {
291  //Specify the exact flow at inlet
292  /*Vector<double> x(2);
293  x[0] = mesh_pt()->boundary_node_pt(ibound,inod)->x(0);
294  x[1] = mesh_pt()->boundary_node_pt(ibound,inod)->x(1);
295  Vector<double> wind(2);
296  StokesFlowExactWind::get_wind(x,wind);
297  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,wind[0]);
298  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,wind[1]);*/
299 
300 
301  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
302  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
303  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,0.0);
304  }
305 
306  //No slip on sphere and fixed concentration on sphere
307  if(ibound==4)
308  {
309  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
310  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
311  mesh_pt()->boundary_node_pt(ibound,inod)->set_value(3,1.0);
312  }
313  }
314  }
315 
316  } // end_of_actions_after_adapt

References n.

◆ actions_after_adapt() [4/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

After adaptation: Unpin pressure and pin redudant pressure dofs.

Reimplemented from oomph::Problem.

102  {
103  // Unpin all pressure dofs
104  RefineableAxisymmetricNavierStokesEquations::
105  unpin_all_pressure_dofs(nst_mesh_pt()->element_pt());
106 
107  // Pin redundant pressure dofs
108  RefineableAxisymmetricNavierStokesEquations::
109  pin_redundant_nodal_pressures(nst_mesh_pt()->element_pt());
110 
111  //Pin all swirl velocities to zero
112  unsigned n_node = nst_mesh_pt()->nnode();
113  for(unsigned n=0;n<n_node;n++)
114  {
115  nst_mesh_pt()->node_pt(n)->pin(2);
116  nst_mesh_pt()->node_pt(n)->set_value(2,0.0);
117  }
118 
119  //Plug flow everywhere
120  for(unsigned ibound=0;ibound<5;++ibound)
121  {
122  unsigned num_nod= nst_mesh_pt()->nboundary_node(ibound);
123  for (unsigned inod=0;inod<num_nod;inod++)
124  {
125  //No radial flow on symmetry boundary
126  if(ibound==3)
127  {
128  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
129  }
130 
131  //No radial flow on outlet
132  if(ibound==2)
133  {
134  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
135  }
136 
137 
138  //No flow on side boundary
139  if(ibound==1)
140  {
141  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
142  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
143  }
144 
145  //No flow on inlet
146  if(ibound==0)
147  {
148  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
149  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
150  }
151 
152  //No slip on sphere
153  if(ibound==4)
154  {
155  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
156  nst_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(1,0.0);
157  }
158  }
159  }
160 
161  //Fixed concentration on sphere
162  for(unsigned ibound=0;ibound<5;++ibound)
163  {
164  unsigned num_nod= adv_diff_mesh_pt()->nboundary_node(ibound);
165  for (unsigned inod=0;inod<num_nod;inod++)
166  {
167  //No concentration on inlet
168  if(ibound==0)
169  {
170  adv_diff_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
171  }
172  //No concentration on side boundary
173  if(ibound==1)
174  {
175  adv_diff_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,0.0);
176  }
177  //Fixed concentration on sphere
178  if(ibound==4)
179  {
180  adv_diff_mesh_pt()->boundary_node_pt(ibound,inod)->set_value(0,1.0);
181  }
182  }
183  }
184  // Set external elements for the multi-domain solution.
185  Multi_domain_functions::
186  setup_multi_domain_interactions<NST_ELEMENT,AD_ELEMENT>
187  (this,nst_mesh_pt(),adv_diff_mesh_pt());
188 
189  } // end_of_actions_after_adapt

References n.

◆ actions_after_newton_solve() [1/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem specs after solve (empty)

Reimplemented from oomph::Problem.

236 {}

◆ actions_after_newton_solve() [2/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem specs after solve (empty)

Reimplemented from oomph::Problem.

92 {}

◆ actions_after_newton_solve() [3/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem specs after solve (empty)

Reimplemented from oomph::Problem.

234 {}

◆ actions_after_newton_solve() [4/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem specs after solve (empty)

Reimplemented from oomph::Problem.

92 {}

◆ actions_before_newton_solve() [1/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty; all prescribed velocities are constant along their respective boundares, therefore their FE interpolation onto the newly created nodes is sufficiently accurate)

Reimplemented from oomph::Problem.

242 {}

◆ actions_before_newton_solve() [2/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty; all prescribed velocities are constant along their respective boundares, therefore their FE interpolation onto the newly created nodes is sufficiently accurate)

Reimplemented from oomph::Problem.

98 {}

◆ actions_before_newton_solve() [3/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty; all prescribed velocities are constant along their respective boundares, therefore their FE interpolation onto the newly created nodes is sufficiently accurate)

Reimplemented from oomph::Problem.

240 {}

◆ actions_before_newton_solve() [4/4]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty; all prescribed velocities are constant along their respective boundares, therefore their FE interpolation onto the newly created nodes is sufficiently accurate)

Reimplemented from oomph::Problem.

98 {}

◆ adv_diff_mesh_pt() [1/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<AD_ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::adv_diff_mesh_pt ( )
inline

Access function for the specific mesh.

195  {
198  }
RefineableQuadMesh< AD_ELEMENT > * Adv_diff_mesh_pt
Advection diffusion mesh.
Definition: multi_domain_axisym_heat_sphere.cc:213

◆ adv_diff_mesh_pt() [2/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<AD_ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::adv_diff_mesh_pt ( )
inline

Access function for the specific mesh.

201  {
204  }

◆ compute_drag_nusselt() [1/2]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::compute_drag_nusselt ( Vector< double > &  drag,
double nusselt,
double area 
)
inline
328  {
329  unsigned bound = 4;
330  //Loop over the elements adjacent to the boundary 4 and make face elements
331  unsigned n_bound_element = this->mesh_pt()->nboundary_element(bound);
332 
333  drag[0] = 0.0; drag[1] = 0.0; nusselt = 0.0; area = 0.0;
334 
335  for(unsigned e=0;e<n_bound_element;e++)
336  {
337  //Get pointer to the bulk element
338  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
339  this->mesh_pt()->boundary_element_pt(bound,e));
340 
341  //FInd the face index
342  int face_index = this->mesh_pt()->face_index_at_boundary(bound,e);
343 
344  //Build the flux element
345  DragNusseltCalculationElement<ELEMENT>* drag_element_pt = new
346  DragNusseltCalculationElement<ELEMENT>(bulk_elem_pt,face_index);
347 
348  //Now calculate the torque
349  Vector<double> el_drag(2);
350  double el_nusselt, el_area;
351  drag_element_pt->calculate_drag_nusselt(el_drag,el_nusselt,el_area);
352  //Delete our element (it's work is done)
353  delete drag_element_pt;
354 
355  //Add elemental contribution to total
356  drag[0] += el_drag[0]; drag[1] += el_drag[1];
357  nusselt += el_nusselt; area += el_area;
358  }
359 
360  //Need to multiply the drag and area by the aziumthal component
361  double two_pi = 2.0*MathematicalConstants::Pi;
362 
363  //Multiply the drag by the surface area of the sphere
364  drag[0] *= two_pi; drag[1] *= two_pi; area *= two_pi;
365  }
Definition: axisym_heat_sphere.cc:113
void calculate_drag_nusselt(Vector< double > &drag, double &nusselt, double &area)
Return the torque calculation.
Definition: axisym_heat_sphere.cc:132
double Pi
Definition: two_d_biharmonic.cc:235

References DragNusseltCalculationElement< ELEMENT >::calculate_drag_nusselt(), e(), and BiharmonicTestFunctions2::Pi.

◆ compute_drag_nusselt() [2/2]

template<class ELEMENT >
void FlowAroundHalfCylinderProblem< ELEMENT >::compute_drag_nusselt ( Vector< double > &  drag,
double nusselt,
double area 
)
inline
328  {
329  unsigned bound = 4;
330  //Loop over the elements adjacent to the boundary 4 and make face elements
331  unsigned n_bound_element = this->mesh_pt()->nboundary_element(bound);
332 
333  drag[0] = 0.0; drag[1] = 0.0; nusselt = 0.0; area = 0.0;
334 
335  for(unsigned e=0;e<n_bound_element;e++)
336  {
337  //Get pointer to the bulk element
338  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
339  this->mesh_pt()->boundary_element_pt(bound,e));
340 
341  //FInd the face index
342  int face_index = this->mesh_pt()->face_index_at_boundary(bound,e);
343 
344  //Build the flux element
345  DragNusseltCalculationElement<ELEMENT>* drag_element_pt = new
346  DragNusseltCalculationElement<ELEMENT>(bulk_elem_pt,face_index);
347 
348  //Now calculate the torque
349  Vector<double> el_drag(2);
350  double el_nusselt, el_area;
351  drag_element_pt->calculate_drag_nusselt(el_drag,el_nusselt,el_area);
352  //Delete our element (it's work is done)
353  delete drag_element_pt;
354 
355  //Add elemental contribution to total
356  drag[0] += el_drag[0]; drag[1] += el_drag[1];
357  nusselt += el_nusselt; area += el_area;
358  }
359 
360  //Need to multiply the drag and area by the aziumthal component
361  double two_pi = 2.0*MathematicalConstants::Pi;
362 
363  //Multiply the drag by the surface area of the sphere
364  drag[0] *= two_pi; drag[1] *= two_pi; area *= two_pi;
365  }

References DragNusseltCalculationElement< ELEMENT >::calculate_drag_nusselt(), e(), and BiharmonicTestFunctions2::Pi.

◆ mesh_pt() [1/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::mesh_pt ( )
inline

Access function for the specific mesh.

321  {
323  (Problem::mesh_pt());
324  }

◆ mesh_pt() [2/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::mesh_pt ( )
inline

Access function for the specific mesh.

321  {
323  (Problem::mesh_pt());
324  }

◆ nst_mesh_pt() [1/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<NST_ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::nst_mesh_pt ( )
inline

Access function for the specific mesh.

188  {
190  (Nst_mesh_pt);
191  }
RefineableQuadMesh< NST_ELEMENT > * Nst_mesh_pt
Navier Stokes mesh.
Definition: multi_domain_axisym_heat_sphere.cc:210

◆ nst_mesh_pt() [2/2]

template<class ELEMENT >
RefineableHalfRectangleWithHoleMesh<NST_ELEMENT>* FlowAroundHalfCylinderProblem< ELEMENT >::nst_mesh_pt ( )
inline

Access function for the specific mesh.

194  {
196  (Nst_mesh_pt);
197  }

Member Data Documentation

◆ Adv_diff_mesh_pt

template<class ELEMENT >
RefineableQuadMesh< AD_ELEMENT > * FlowAroundHalfCylinderProblem< ELEMENT >::Adv_diff_mesh_pt
private

Advection diffusion mesh.

◆ Domain_length

template<class ELEMENT >
double FlowAroundHalfCylinderProblem< ELEMENT >::Domain_length
private

Length of the domain.

◆ Domain_radius

template<class ELEMENT >
double FlowAroundHalfCylinderProblem< ELEMENT >::Domain_radius
private

Height of the domain.

◆ Nst_mesh_pt

template<class ELEMENT >
RefineableQuadMesh< NST_ELEMENT > * FlowAroundHalfCylinderProblem< ELEMENT >::Nst_mesh_pt
private

Navier Stokes mesh.


The documentation for this class was generated from the following files: