polynomialutils.cpp File Reference
#include "main.h"
#include <unsupported/Eigen/Polynomials>
#include <iostream>

Classes

struct  Eigen::internal::increment_if_fixed_size< Size >
 

Namespaces

 Eigen
 Namespace containing all symbols from the Eigen library.
 
 Eigen::internal
 Namespace containing low-level routines from the Eigen library.
 

Functions

template<typename Scalar_ , int Deg_>
void realRoots_to_monicPolynomial_test (int deg)
 
template<typename Scalar_ >
void realRoots_to_monicPolynomial_scalar ()
 
template<typename Scalar_ , int Deg_>
void CauchyBounds (int deg)
 
template<typename Scalar_ >
void CauchyBounds_scalar ()
 
 EIGEN_DECLARE_TEST (polynomialutils)
 

Function Documentation

◆ CauchyBounds()

template<typename Scalar_ , int Deg_>
void CauchyBounds ( int  deg)
61  {
62  typedef internal::increment_if_fixed_size<Deg_> Dim;
64  typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
65 
66  PolynomialType pols(deg + 1);
67  EvalRootsType roots = EvalRootsType::Random(deg);
68  roots_to_monicPolynomial(roots, pols);
69  Scalar_ M = cauchy_max_bound(pols);
70  Scalar_ m = cauchy_min_bound(pols);
71  Scalar_ Max = roots.array().abs().maxCoeff();
72  Scalar_ min = roots.array().abs().minCoeff();
73  bool eval = (M >= Max) && (m <= min);
74  if (!eval) {
75  cerr << "Roots: " << roots << endl;
76  cerr << "Bounds: (" << m << ", " << M << ")" << endl;
77  cerr << "Min,Max: (" << min << ", " << Max << ")" << endl;
78  }
79  VERIFY(eval);
80 }
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
#define min(a, b)
Definition: datatypes.h:22
int * m
Definition: level2_cplx_impl.h:294
#define VERIFY(a)
Definition: main.h:362
PolynomialType
PolynomialType is used to define how files are opened random fixed-particle bottom.
Definition: Polynomial.h:29
NumTraits< typename Polynomial::Scalar >::Real cauchy_max_bound(const Polynomial &poly)
Definition: PolynomialUtils.h:74
NumTraits< typename Polynomial::Scalar >::Real cauchy_min_bound(const Polynomial &poly)
Definition: PolynomialUtils.h:96
void roots_to_monicPolynomial(const RootVector &rv, Polynomial &poly)
Definition: PolynomialUtils.h:128
static const unsigned Dim
Problem dimension.
Definition: two_d_tilted_square.cc:62
internal::nested_eval< T, 1 >::type eval(const T &xpr)
Definition: sparse_permutations.cpp:47

References Eigen::cauchy_max_bound(), Eigen::cauchy_min_bound(), Global_Variables::Dim, eval(), m, min, Eigen::roots_to_monicPolynomial(), and VERIFY.

◆ CauchyBounds_scalar()

template<typename Scalar_ >
void CauchyBounds_scalar ( )
83  {
84  CALL_SUBTEST_2((CauchyBounds<Scalar_, 2>(2)));
85  CALL_SUBTEST_3((CauchyBounds<Scalar_, 3>(3)));
86  CALL_SUBTEST_4((CauchyBounds<Scalar_, 4>(4)));
87  CALL_SUBTEST_5((CauchyBounds<Scalar_, 5>(5)));
88  CALL_SUBTEST_6((CauchyBounds<Scalar_, 6>(6)));
89  CALL_SUBTEST_7((CauchyBounds<Scalar_, 7>(7)));
90  CALL_SUBTEST_8((CauchyBounds<Scalar_, 17>(17)));
91 
92  CALL_SUBTEST_9((CauchyBounds<Scalar_, Dynamic>(internal::random<int>(18, 26))));
93 }
#define CALL_SUBTEST_6(FUNC)
Definition: split_test_helper.h:34
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
#define CALL_SUBTEST_8(FUNC)
Definition: split_test_helper.h:46
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
#define CALL_SUBTEST_7(FUNC)
Definition: split_test_helper.h:40
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
#define CALL_SUBTEST_9(FUNC)
Definition: split_test_helper.h:52

References CALL_SUBTEST_2, CALL_SUBTEST_3, CALL_SUBTEST_4, CALL_SUBTEST_5, CALL_SUBTEST_6, CALL_SUBTEST_7, CALL_SUBTEST_8, and CALL_SUBTEST_9.

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( polynomialutils  )
95  {
96  for (int i = 0; i < g_repeat; i++) {
97  realRoots_to_monicPolynomial_scalar<double>();
98  realRoots_to_monicPolynomial_scalar<float>();
99  CauchyBounds_scalar<double>();
100  CauchyBounds_scalar<float>();
101  }
102 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
static int g_repeat
Definition: main.h:191

References Eigen::g_repeat, and i.

◆ realRoots_to_monicPolynomial_scalar()

template<typename Scalar_ >
void realRoots_to_monicPolynomial_scalar ( )
48  {
49  CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<Scalar_, 2>(2)));
50  CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<Scalar_, 3>(3)));
51  CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<Scalar_, 4>(4)));
52  CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<Scalar_, 5>(5)));
53  CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<Scalar_, 6>(6)));
54  CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<Scalar_, 7>(7)));
55  CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<Scalar_, 17>(17)));
56 
57  CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<Scalar_, Dynamic>(internal::random<int>(18, 26))));
58 }

References CALL_SUBTEST_2, CALL_SUBTEST_3, CALL_SUBTEST_4, CALL_SUBTEST_5, CALL_SUBTEST_6, CALL_SUBTEST_7, CALL_SUBTEST_8, and CALL_SUBTEST_9.

◆ realRoots_to_monicPolynomial_test()

template<typename Scalar_ , int Deg_>
void realRoots_to_monicPolynomial_test ( int  deg)
26  {
27  typedef internal::increment_if_fixed_size<Deg_> Dim;
29  typedef Matrix<Scalar_, Deg_, 1> EvalRootsType;
30 
31  PolynomialType pols(deg + 1);
32  EvalRootsType roots = EvalRootsType::Random(deg);
33  roots_to_monicPolynomial(roots, pols);
34 
35  EvalRootsType evr(deg);
36  for (int i = 0; i < roots.size(); ++i) {
37  evr[i] = std::abs(poly_eval(pols, roots[i]));
38  }
39 
40  bool evalToZero = evr.isZero(test_precision<Scalar_>());
41  if (!evalToZero) {
42  cerr << evr.transpose() << endl;
43  }
44  VERIFY(evalToZero);
45 }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
T poly_eval(const Polynomials &poly, const T &x)
Definition: PolynomialUtils.h:47

References abs(), Global_Variables::Dim, i, Eigen::poly_eval(), Eigen::roots_to_monicPolynomial(), and VERIFY.