SinterLinInteraction Class Reference

#include <SinterLinInteraction.h>

+ Inheritance diagram for SinterLinInteraction:

Public Types

typedef SinterLinNormalSpecies SpeciesType
 An alias for the corresponding species. More...
 

Public Member Functions

 SinterLinInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 Constructor. More...
 
 SinterLinInteraction (const SinterLinInteraction &p)
 Copy constructor. More...
 
 SinterLinInteraction ()
 
 ~SinterLinInteraction () override
 Destructor. More...
 
void computeNormalForce ()
 Creates a copy of an object of this class. (Deep copy) More...
 
void read (std::istream &is) override
 Interaction read function, which accepts an std::istream as input. More...
 
void write (std::ostream &os) const override
 Interaction write function, which accepts an std::ostream as input. More...
 
virtual std::string getBaseName () const
 Returns the name of the interaction. More...
 
Mdouble getElasticEnergy () const override
 Computes and returns the amount of elastic energy stored in the spring. More...
 
Mdouble getMaxOverlap () const
 
Mdouble getPlasticOverlap () const
 
void setMaxOverlap (Mdouble maxOverlap)
 
void setPlasticOverlap (Mdouble plasticOverlap)
 
Mdouble getUnloadingStiffness () const
 
const SinterLinNormalSpeciesgetSpecies () const
 Returns a const pointer of type LinearViscoelasticNormalSpecies*. More...
 
- Public Member Functions inherited from BaseInteraction
 BaseInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 A constructor takes the BaseInteractable objects which are interacting (come into contact) and time the interaction starts. More...
 
 BaseInteraction ()
 
 BaseInteraction (const BaseInteraction &p)
 Copy constructor. More...
 
 ~BaseInteraction () override
 The destructor. It removes this interactions from the objects that were interacting, and writes the time to a file when needed. More...
 
virtual void actionsOnErase ()
 If an interaction needs to do something before it gets erased, add it here. E.g. Liquid bridges rupture at the end of their lifetime, and the liquid bridge volume has to be redistributed. The reason this action is not done in the destructor is that this action should not be taken when erasing ghost interactions. More...
 
virtual void computeForce ()
 Virtual function that contains the force law between the two objects interacting. More...
 
void writeToFStat (std::ostream &os, Mdouble time) const
 Writes forces data to the FStat file. More...
 
std::string getName () const override
 Virtual function which allows interactions to be named. More...
 
void setDistance (Mdouble distance)
 Sets the interaction distance between the two interacting objects. More...
 
void setNormal (Vec3D normal)
 Sets the normal vector between the two interacting objects. More...
 
void setOverlap (Mdouble overlap)
 Set the overlap between the two interacting object. More...
 
void setContactPoint (Vec3D contactPoint)
 Set the location of the contact point between the two interacting objects. More...
 
void setTimeStamp (unsigned timeStamp)
 Updates the time step of the interacting. Note, time steps used to find completed interactions. More...
 
void setSpecies (const BaseSpecies *species)
 Set the Species of the interaction; note this can either be a Species or MixedSpecies. More...
 
void setP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void setI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
void importP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void importI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
Vec3D getIP () const
 
Vec3D getIC () const
 
Vec3D getCP () const
 
void setLagrangeMultiplier (Mdouble multiplier)
 
Mdouble getLagrangeMultiplier ()
 
void setHandler (InteractionHandler *handler)
 Sets the pointer to the interaction hander which is storing this interaction. More...
 
InteractionHandlergetHandler () const
 Gets a point to the interaction handlers to which this interaction belongs. More...
 
const Vec3DgetForce () const
 Gets the current force (vector) between the two interacting objects. More...
 
const Vec3DgetTorque () const
 Gets the current torque (vector) between the two interacting objects. More...
 
const Vec3DgetNormal () const
 Gets the normal vector between the two interacting objects. More...
 
const Vec3DgetContactPoint () const
 Gets constant reference to contact point (vector). More...
 
Mdouble getOverlap () const
 Returns a Mdouble with the current overlap between the two interacting objects. More...
 
Mdouble getOverlapVolume () const
 Returns the overlap volume between two interacting objects. More...
 
Mdouble getContactRadius () const
 Returns a Mdouble with the current contact between the two interacting objects. More...
 
void removeFromHandler ()
 Removes this interaction from its interaction hander. More...
 
void copySwitchPointer (const BaseInteractable *original, BaseInteractable *ghost) const
 This copies the interactions of the original particle and replaces the original with the ghost copy. More...
 
void gatherContactStatistics ()
 
BaseInteractablegetP ()
 Returns a pointer to first object involved in the interaction (normally a particle). More...
 
BaseInteractablegetI ()
 Returns a pointer to the second object involved in the interaction (often a wall or a particle). More...
 
const BaseInteractablegetP () const
 Returns a constant pointer to the first object involved in the interaction. More...
 
const BaseInteractablegetI () const
 Returns a constant pointer to the second object involved in the interaction. More...
 
Mdouble getTimeStamp () const
 Returns an Mdouble which is the time stamp of the interaction. More...
 
virtual void integrate (Mdouble timeStep)
 integrates variables of the interaction which need to be integrate e.g. the tangential overlap. More...
 
virtual Mdouble getTangentialOverlap () const
 get the length of the current tangential overlap More...
 
Mdouble getDistance () const
 Returns an Mdouble which is the norm (length) of distance vector. More...
 
const Vec3DgetRelativeVelocity () const
 Returns a constant reference to a vector of relative velocity. More...
 
Mdouble getNormalRelativeVelocity () const
 Returns a double which is the norm (length) of the relative velocity vector. More...
 
Mdouble getAbsoluteNormalForce () const
 Returns the absolute value of the norm (length) of the Normal force vector. More...
 
virtual BaseInteractioncopy () const =0
 Makes a copy of the interaction and returns a pointer to the copy. More...
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseWall *I)
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseParticle *I)
 
unsigned int getMultiContactIdentifier () const
 
void setMultiContactIdentifier (unsigned int multiContactIdentifier_)
 
virtual void rotateHistory (Matrix3D &rotationMatrix)
 When periodic particles are used, some interactions need certain history properties rotated (e.g. tangential springs). This is the function for that. More...
 
virtual void actionsAfterTimeStep ()
 
virtual unsigned getNumberOfFieldsVTK () const
 
virtual std::string getTypeVTK (unsigned i) const
 
virtual std::string getNameVTK (unsigned i) const
 
virtual std::vector< MdoublegetFieldVTK (unsigned i) const
 
void addForce (Vec3D force)
 add an force increment to the total force. More...
 
void addTorque (Vec3D torque)
 add a torque increment to the total torque. More...
 
void setForce (Vec3D force)
 set total force (this is used by the normal force, tangential forces are added use addForce) More...
 
void setTorque (Vec3D torque)
 set the total force (this is used by the normal force, tangential torques are added use addTorque) More...
 
const BaseSpeciesgetBaseSpecies () const
 Return a constant point to BaseSpecies of the interaction. More...
 
virtual void createMPIType ()
 
virtual void * createMPIInteractionDataArray (unsigned int numberOfInteractions) const
 
virtual void deleteMPIInteractionDataArray (void *dataArray)
 
virtual void getMPIInteraction (void *historyDataArray, unsigned int index) const
 copies the history interactions into the data array More...
 
virtual void getInteractionDetails (void *interactionDataArray, unsigned int index, unsigned int &identificationP, unsigned int &identificationI, bool &isWallInteraction, unsigned &timeStamp)
 
virtual void setMPIInteraction (void *interactionDataArray, unsigned int index, bool resetPointers)
 
void setBasicMPIInteractionValues (int P, int I, unsigned timeStamp, Vec3D force, Vec3D torque, bool isWallInteraction, bool resetPointers)
 
void setIdentificationP (unsigned int identification)
 
void setIdentificationI (int identification)
 
void setWallInteraction (bool flag)
 
unsigned int getIdentificationP ()
 
int getIdentificationI ()
 
bool isWallInteraction ()
 
virtual bool isBonded () const
 
- Public Member Functions inherited from BaseObject
 BaseObject ()=default
 Default constructor. More...
 
 BaseObject (const BaseObject &p)=default
 Copy constructor, copies all the objects BaseObject contains. More...
 
virtual ~BaseObject ()=default
 virtual destructor More...
 
virtual void moveInHandler (unsigned int index)
 Except that it is virtual, it does the same thing as setIndex() does. More...
 
void setIndex (unsigned int index)
 Allows one to assign an index to an object in the handler/container. More...
 
void setId (unsigned long id)
 Assigns a unique identifier to each object in the handler (container) which remains constant even after the object is deleted from the container/handler. More...
 
unsigned int getIndex () const
 Returns the index of the object in the handler. More...
 
unsigned int getId () const
 Returns the unique identifier of any particular object. More...
 
void setGroupId (unsigned groupId)
 
unsigned getGroupId () const
 

Private Attributes

Mdouble maxOverlap_
 
Mdouble plasticOverlap_
 

Additional Inherited Members

- Protected Member Functions inherited from BaseInteraction
virtual const Vec3D getTangentialForce () const
 
Mdouble getEffectiveRadius () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
Mdouble getEffectiveMass () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
void setRelativeVelocity (Vec3D relativeVelocity)
 set the relative velocity of the current of the interactions. More...
 
void setNormalRelativeVelocity (Mdouble normalRelativeVelocit)
 set the normal component of the relative velocity. More...
 
void setAbsoluteNormalForce (Mdouble absoluteNormalForce)
 the absolute values of the norm (length) of the normal force More...
 
virtual Mdouble getElasticEnergyAtEquilibrium (Mdouble adhesiveForce) const
 
virtual void reverseHistory ()
 When periodic particles some interaction need certain history properties reversing. This is the function for that. More...
 
void writeInteraction (std::ostream &os, bool created) const
 Writes information about a interaction to the interaction file. More...
 

Member Typedef Documentation

◆ SpeciesType

An alias for the corresponding species.

Constructor & Destructor Documentation

◆ SinterLinInteraction() [1/3]

SinterLinInteraction::SinterLinInteraction ( BaseInteractable P,
BaseInteractable I,
unsigned  timeStamp 
)

Constructor.

Parameters
[in]P
[in]I
[in]timeStamp
20  : BaseInteraction(P, I, timeStamp)
21 {
22  plasticOverlap_ = 0;
23 #ifdef DEBUG_CONSTRUCTOR
24  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction() finished"<<std::endl;
25 #endif
26 }
BaseInteraction()
Definition: BaseInteraction.cc:43
Mdouble plasticOverlap_
Definition: SinterLinInteraction.h:109
#define I
Definition: main.h:127
double P
Uniform pressure.
Definition: TwenteMeshGluing.cpp:77

References plasticOverlap_.

◆ SinterLinInteraction() [2/3]

SinterLinInteraction::SinterLinInteraction ( const SinterLinInteraction p)

Copy constructor.

Parameters
[in]p
44 {
45  plasticOverlap_ = p.plasticOverlap_;
46 #ifdef DEBUG_CONSTRUCTOR
47  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction(const LinearPlasticViscoelasticInteraction &p finished"<<std::endl;
48 #endif
49 }
float * p
Definition: Tutorial_Map_using.cpp:9

References p, and plasticOverlap_.

◆ SinterLinInteraction() [3/3]

SinterLinInteraction::SinterLinInteraction ( )
Todo:
: MX add to MPI
30  : BaseInteraction()
31 {
32  plasticOverlap_ = 0;
33 #ifdef DEBUG_CONSTRUCTOR
34  std::cout<<"LinearPlasticViscoelasticInteraction::LinearPlasticViscoelasticInteraction() finished"<<std::endl;
35 #endif
36 }

References plasticOverlap_.

◆ ~SinterLinInteraction()

SinterLinInteraction::~SinterLinInteraction ( )
override

Destructor.

55 {
56 #ifdef DEBUG_DESTRUCTOR
57  std::cout<<"SinterLinInteraction::~SinterLinInteraction() finished"<<std::endl;
58 #endif
59 }

Member Function Documentation

◆ computeNormalForce()

void SinterLinInteraction::computeNormalForce ( )

Creates a copy of an object of this class. (Deep copy)

Computes the normal forces due to linear plastic visco elastic interaction.

95 {
96 
97  // Compute the relative velocity vector of particle P w.r.t. I
99  getP()->getVelocityAtContact(getContactPoint()) - getI()->getVelocityAtContact(getContactPoint()));
100  // Compute the projection of vrel onto the normal (can be negative)
102 
103  if (getOverlap() > 0) //if contact forces
104  {
105  const SinterLinNormalSpecies* species = getSpecies();
106 
107  // calculate the effective diameter, equal to the radius for two equal-sized particles
108  const Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
109 
110  //[1] Compute delta fluid of equilibrium. In this model, it is the same than delta*
111  const Mdouble d_fluid_0 = (species->getUnloadingStiffnessMax()
112  / (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()))
113  * species->getPenetrationDepthMax() * effectiveDiameter;
114 
115  //[2] Compute the rate d(k2/k1)/d(delta0). To obtain this parameter, the linear relationship
116  //between unloading stiffness and maximum overlap is used.
117  const Mdouble dk = (species->getUnloadingStiffnessMax()/species->getLoadingStiffness() - 1.0)*(1.0/d_fluid_0);
118 
119  //Increase max overlap if necessary
120  //Here, two relationships are used. The linear relationship between unloadingstiffness max and
121  // the equilibrium overlap based on the unloading stiffness.
122  //k2 = k1*(1+dk*d), k1*d = k2*(d-d0)
123  //k1*d = k1*(1 + dk*d)*(d-d0)
124  //d = d - d0 +dk*d^2 -dk*d*d0
125  //dk*d^2 = dk *d * d0 + d0
126  //dk*d^2 = (dk*d + 1)*d0
127  //dkd^2/(dk*d + 1) = d0
128  //d0 = d/(1 + 1/(dk*d))
129 
130  //[3] Compute the equilibirum overlap is:
131  const Mdouble d0 = getOverlap()/(1.0 + 1.0/(dk*getOverlap()));
132 
133  const Mdouble minPlasticOverlap = std::min(d0,d_fluid_0);
134 
135  //[4] Determine the plastic overlap
136  plasticOverlap_ = std::max(minPlasticOverlap,plasticOverlap_);
137 
138  //[5] Compute the unloading Stiffness \hat{k2}.
139  const Mdouble unloadingStiffness = species->getLoadingStiffness() * (1.0 + dk * plasticOverlap_);
140 
141  //[6] Compute the elastic force
142  Mdouble normalForce = unloadingStiffness * (getOverlap() - plasticOverlap_);
143 
144  //[7] Add cohesive force (distinct from sinteirng)
145  //Decrease plastic overlap if necessary
146  Mdouble nonSinterAdhesiveForce = -species->getCohesionStiffness() * getOverlap();
147 
148  if (normalForce < nonSinterAdhesiveForce)
149  {
150  plasticOverlap_ = (1.0 + species->getCohesionStiffness() / unloadingStiffness) * getOverlap();
151  normalForce = nonSinterAdhesiveForce;
152  }
153 
154  //[[8] Add dissipative force
155  normalForce -= species->getDissipation() * getNormalRelativeVelocity();
156 
157  //[9] Sintering effect as adhesive force:
158  Mdouble adhesiveForce = species->getSinterAdhesion() * effectiveDiameter;
159 // Mdouble adhesiveForce = species->getSinterAdhesion();
160 
161  //[10] now set the interaction force equal to this normal force (friction and adhesive forces will be added later)
162  setForce(getNormal() * ((normalForce - adhesiveForce)));
163  setTorque(Vec3D(0.0, 0.0, 0.0));
164  //used for tangential force calculations; don't add adhesive force components
165  setAbsoluteNormalForce(std::abs(normalForce));
166 
167  //[11] Checking the overlap to change sintering model
168  //Before this point, the material is unrelaxed, and the contact radious is given by the JKR theory.
169  //Ref: The role of viscoelastic adhesive contact in the sintering of polymeric particles
170  //Author: Y.Y Lin et al.
171  const Mdouble baseNum = (9.0/2.0)*pi*species->getComplianceZero()*species->getSurfTension()/(getEffectiveRadius());
172  const Mdouble a0_R = std::pow(2.0*baseNum,1.0/3.0);
173 
174  //const Mdouble realOverlap = std::sqrt(getOverlap()/effectiveDiameter);
175 
176  DPMBase* dpmBase = getHandler()->getDPMBase();
177  Mdouble rateOverlap;
178  Mdouble rateOverlap2;
179 
180  if (species->getSinterType() == SINTER_APPROACH::FRENKEL)
181  {
182  rateOverlap = 2.0*normalForce * species->getSinterRate() / species->getSinterAdhesion();
183  }
185  {
186  if ((getContactRadius())/getEffectiveRadius() < a0_R)
187  {
188  rateOverlap = 0.0; //normalForce / species->getSinterAdhesion();
189  //ToDo: Measure the evolution of the creep compliance: Art.Contact creep compliance of viscoelastic material via nanoindentation
190  } else {
191  const Mdouble C1 = std::pow((63 * pow(pi, 3.0) / 16.0), 2.0 / 7.0);
192  const Mdouble C2 = pow((species->getSeparationDis()/ getEffectiveRadius()), 2.0 / 7.0);
193  const Mdouble C3 = species->getFluidity()* species->getSurfTension()/getEffectiveRadius();
194 
195  Mdouble time_s = std::pow(8.0*getOverlap()/(getEffectiveRadius()*C1*C2*std::pow(C3,2.0/7.0)),7.0/2.0);
196 
197  rateOverlap = getEffectiveRadius()*C1*C2*((2.0*std::pow(C3,2.0/7.0))/(7.0*std::pow(time_s,5.0/7.0))) * (normalForce / species->getSinterAdhesion());
198 
199  const Mdouble aVisc_R = std::pow(63.0 * std::pow(pi, 3.0), 1.0 / 5.0) *
200  std::pow((1.0/8.0)*(species->getSeparationDis())/ (0.5*getEffectiveRadius()), 2.0 / 5.0);
201 
202 
203  if (getContactRadius()/getEffectiveRadius() > aVisc_R)
204  {
205  Mdouble t = (getOverlap())*(1.0/(4.0* species->getFluidity()* species->getSurfTension()));
206 
207  Mdouble theta = atan(std::pow((8.0* species->getFluidity()* species->getSurfTension()*t)/getEffectiveRadius(),0.5));
208 
209  Mdouble dtheta = (8.0* species->getFluidity()* species->getSurfTension()/getEffectiveRadius());
210 
211  dtheta *= (std::pow(2.0,-5.0/3.0))*cos(theta)*sin(theta);
212  Mdouble K1 = tan(theta)/2.0 - (sin(theta)/6.0)*((2.0*(2.0-cos(theta))+(1.0+cos(theta)))/((1.0+cos(theta)))*(2.0-cos(theta)));
213  dtheta /= std::pow(K1,2.0);
214 
215  dtheta /= (std::pow(2.0-cos(theta),5.0/3.0))*(std::pow(1.0+cos(theta),4.0/3.0));
216  //++++++
217  rateOverlap2 = 2.0*getEffectiveRadius()*std::pow(4.0/(std::pow(1.0+cos(theta),2.0)*(2.0-cos(theta))),2.0/3.0);
218  rateOverlap2 *= sin(theta)*cos(theta)* dtheta;
219 
220  Mdouble term1 = 4.0*std::pow(2.0,1.0/3.0)*std::pow(sin(theta),3.0)*dtheta*(cos(theta)-1.0);
221  Mdouble term2 = std::pow(cos(theta)+1.0,7.0/3.0)*std::pow(-cos(theta)+2.0,5.0/3.0);
222  rateOverlap2 -= term1/term2;
223  rateOverlap2 *= 2.0*getEffectiveRadius()*(normalForce/species->getSinterAdhesion());
224 
225  rateOverlap = rateOverlap2;
226  }
227  }
228  }
229  else{
230  rateOverlap = 0.0;
231  }
232  //[12] Increase plastic overlap due to sintering
233  plasticOverlap_ = std::max(0.0, std::min(d_fluid_0, plasticOverlap_ + rateOverlap * dpmBase->getTimeStep()));
234  }
235  else
236  {
238  setForce(Vec3D(0.0, 0.0, 0.0));
239  setTorque(Vec3D(0.0, 0.0, 0.0));
240  }
241 }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
DPMBase * getDPMBase()
Gets the problem that is solved using this handler.
Definition: BaseHandler.h:733
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
Definition: BaseInteraction.cc:554
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
Definition: BaseInteraction.cc:651
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
Definition: BaseInteraction.h:213
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
Definition: BaseInteraction.h:205
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
Definition: BaseInteraction.cc:565
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap)
Definition: BaseInteraction.cc:774
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
Definition: BaseInteraction.cc:630
BaseInteractable * getI()
Returns a pointer to the second object involved in the interaction (often a wall or a particle).
Definition: BaseInteraction.h:264
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Definition: BaseInteraction.h:253
Mdouble getContactRadius() const
Returns a Mdouble with the current contact between the two interacting objects.
Definition: BaseInteraction.cc:347
InteractionHandler * getHandler() const
Gets a point to the interaction handlers to which this interaction belongs.
Definition: BaseInteraction.cc:247
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
Definition: BaseInteraction.cc:641
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce)
Definition: BaseInteraction.cc:608
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque)
Definition: BaseInteraction.cc:619
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
Definition: BaseInteraction.h:219
The DPMBase header includes quite a few header files, defining all the handlers, which are essential....
Definition: DPMBase.h:56
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1241
const SinterLinNormalSpecies * getSpecies() const
Returns a const pointer of type LinearViscoelasticNormalSpecies*.
Definition: SinterLinInteraction.cc:256
SinterLinNormalSpecies contains the parameters used to describe a plastic-cohesive normal force (Stef...
Definition: SinterLinNormalSpecies.h:30
Mdouble getUnloadingStiffnessMax() const
Returns the maximum unloading stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterLinNormalSpecies.cc:169
Mdouble getSeparationDis() const
accesses the critical separation distance. This mimics inter-surface forces.
Definition: SinterLinNormalSpecies.cc:364
Mdouble getCohesionStiffness() const
Returns the cohesive stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterLinNormalSpecies.cc:177
Mdouble getPenetrationDepthMax() const
Returns the maximum penetration depth of the linear plastic-viscoelastic normal force.
Definition: SinterLinNormalSpecies.cc:185
Mdouble getSinterRate() const
Accesses sinterRate_.
Definition: SinterLinNormalSpecies.cc:344
Mdouble getSinterAdhesion() const
Accesses sinterAdhesion_.
Definition: SinterLinNormalSpecies.cc:336
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterLinNormalSpecies.cc:161
Mdouble getComplianceZero() const
Accesses the instantaneous compliance (compliance zero)
Definition: SinterLinNormalSpecies.cc:349
Mdouble getSurfTension() const
accesses the surface tension.
Definition: SinterLinNormalSpecies.cc:354
SINTER_APPROACH getSinterType() const
Definition: SinterLinNormalSpecies.cc:370
Mdouble getFluidity() const
accesses the fluidity (inverse of viscosity).
Definition: SinterLinNormalSpecies.cc:359
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
Definition: SinterLinNormalSpecies.cc:328
Definition: Kernel/Math/Vector.h:30
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:56
#define min(a, b)
Definition: datatypes.h:22
#define max(a, b)
Definition: datatypes.h:23
double theta
Definition: two_d_biharmonic.cc:236
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atan(const bfloat16 &a)
Definition: BFloat16.h:636
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 tan(const bfloat16 &a)
Definition: BFloat16.h:633
double C1
"Mooney Rivlin" coefficient for generalised Mooney Rivlin law
Definition: TwenteMeshGluing.cpp:74
double C2
"Mooney Rivlin" coefficient for generalised Mooney Rivlin law
Definition: mpi/distribution/airy_cantilever/airy_cantilever2.cc:156
const Mdouble pi
Definition: ExtendedMath.h:23
t
Definition: plotPSD.py:36

References abs(), Eigen::bfloat16_impl::atan(), Global_Physical_Variables::C1, Global_Physical_Variables::C2, cos(), Vec3D::dot(), FRENKEL, SinterLinNormalSpecies::getCohesionStiffness(), SinterLinNormalSpecies::getComplianceZero(), BaseInteraction::getContactPoint(), BaseInteraction::getContactRadius(), SinterLinNormalSpecies::getDissipation(), BaseHandler< T >::getDPMBase(), BaseInteraction::getEffectiveRadius(), SinterLinNormalSpecies::getFluidity(), BaseInteraction::getHandler(), BaseInteraction::getI(), SinterLinNormalSpecies::getLoadingStiffness(), BaseInteraction::getNormal(), BaseInteraction::getNormalRelativeVelocity(), BaseInteraction::getOverlap(), BaseInteraction::getP(), SinterLinNormalSpecies::getPenetrationDepthMax(), BaseInteraction::getRelativeVelocity(), SinterLinNormalSpecies::getSeparationDis(), SinterLinNormalSpecies::getSinterAdhesion(), SinterLinNormalSpecies::getSinterRate(), SinterLinNormalSpecies::getSinterType(), getSpecies(), SinterLinNormalSpecies::getSurfTension(), DPMBase::getTimeStep(), SinterLinNormalSpecies::getUnloadingStiffnessMax(), max, min, constants::pi, plasticOverlap_, Eigen::bfloat16_impl::pow(), BaseInteraction::setAbsoluteNormalForce(), BaseInteraction::setForce(), BaseInteraction::setNormalRelativeVelocity(), BaseInteraction::setRelativeVelocity(), BaseInteraction::setTorque(), sin(), plotPSD::t, Eigen::bfloat16_impl::tan(), BiharmonicTestFunctions2::theta, and VISCOELASTIC_CONTACT.

◆ getBaseName()

std::string SinterLinInteraction::getBaseName ( ) const
virtual

Returns the name of the interaction.

Returns
std::string
87 {
88  return "Sinter";
89 }

◆ getElasticEnergy()

Mdouble SinterLinInteraction::getElasticEnergy ( ) const
overridevirtual

Computes and returns the amount of elastic energy stored in the spring.

Returns
Mdouble
Todo:
TW this is not correct; we should count the return energy

Reimplemented from BaseInteraction.

246 {
247  Mdouble energy = getOverlap() > 0 ? 0.5 * (getSpecies()->getLoadingStiffness() * mathsFunc::square(getOverlap())) : 0.0;
248  if (getSpecies()->getConstantRestitution()) energy *= 2.0*getEffectiveMass();
249  return energy;
251 }
Mdouble getEffectiveMass() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap)
Definition: BaseInteraction.cc:792
bool getConstantRestitution() const
Definition: BaseNormalForce.h:25
T square(const T val)
squares a number
Definition: ExtendedMath.h:86

References BaseNormalForce::getConstantRestitution(), BaseInteraction::getEffectiveMass(), SinterLinNormalSpecies::getLoadingStiffness(), BaseInteraction::getOverlap(), getSpecies(), and mathsFunc::square().

◆ getMaxOverlap()

Mdouble SinterLinInteraction::getMaxOverlap ( ) const
Returns
Mdouble plasticOverlap_
265 {
266  return maxOverlap_;
267 }
Mdouble maxOverlap_
Definition: SinterLinInteraction.h:107

References maxOverlap_.

Referenced by getUnloadingStiffness().

◆ getPlasticOverlap()

Mdouble SinterLinInteraction::getPlasticOverlap ( ) const
Returns
Mdouble plasticOverlap_
273 {
274  return plasticOverlap_;
275 }

References plasticOverlap_.

◆ getSpecies()

const SinterLinNormalSpecies * SinterLinInteraction::getSpecies ( ) const

Returns a const pointer of type LinearViscoelasticNormalSpecies*.

Returns
const SinterLinNormalSpecies*
257 {
258  return dynamic_cast<const SinterLinNormalSpecies*>(getBaseSpecies());
259 }
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
Definition: BaseInteraction.cc:663

References BaseInteraction::getBaseSpecies().

Referenced by computeNormalForce(), getElasticEnergy(), and getUnloadingStiffness().

◆ getUnloadingStiffness()

Mdouble SinterLinInteraction::getUnloadingStiffness ( ) const
Returns
Mdouble
300 {
301 
302  const SinterLinNormalSpecies* species = getSpecies();
303  const Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
304 
305  Mdouble d_max_fluid = (species->getUnloadingStiffnessMax() / (species->getUnloadingStiffnessMax()
306  - species->getLoadingStiffness()))* species->getPenetrationDepthMax() *
307  effectiveDiameter;
308 
309  if (getOverlap() > d_max_fluid)
310  return species->getUnloadingStiffnessMax();
311  else
312  return species->getLoadingStiffness() +
313  (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()) * getMaxOverlap() / d_max_fluid;
314 }
Mdouble getMaxOverlap() const
Definition: SinterLinInteraction.cc:264

References BaseInteraction::getEffectiveRadius(), SinterLinNormalSpecies::getLoadingStiffness(), getMaxOverlap(), BaseInteraction::getOverlap(), SinterLinNormalSpecies::getPenetrationDepthMax(), getSpecies(), and SinterLinNormalSpecies::getUnloadingStiffnessMax().

◆ read()

void SinterLinInteraction::read ( std::istream &  is)
overridevirtual

Interaction read function, which accepts an std::istream as input.

Calls the read function of BaseInteraction().

Parameters
[in,out]is

Reimplemented from BaseInteraction.

76 {
78  std::string dummy;
79  is >> dummy >> plasticOverlap_;
80  //helpers::readOptionalVariable<Mdouble>(is, "maxOverlap", maxOverlap_);
81 }
void read(std::istream &is) override
Interaction read function, which accepts an std::istream as input.
Definition: BaseInteraction.cc:165
std::string string(const unsigned &i)
Definition: oomph_definitions.cc:286

References plasticOverlap_, BaseInteraction::read(), and oomph::Global_string_for_annotation::string().

◆ setMaxOverlap()

void SinterLinInteraction::setMaxOverlap ( Mdouble  maxOverlap)
Parameters
[in]maxOverlap
283 {
284  maxOverlap_ = maxOverlap;
285 }

References maxOverlap_.

◆ setPlasticOverlap()

void SinterLinInteraction::setPlasticOverlap ( Mdouble  plasticOverlap)
Parameters
[in]maxOverlap
291 {
292  plasticOverlap_ = plasticOverlap;
293 }

References plasticOverlap_.

◆ write()

void SinterLinInteraction::write ( std::ostream &  os) const
overridevirtual

Interaction write function, which accepts an std::ostream as input.

Calls the write function of BaseInteraction().

Parameters
[in,out]os

Reimplemented from BaseInteraction.

66 {
68  os << " plasticOverlap " << plasticOverlap_;
69 }
void write(std::ostream &os) const override
Interaction print function, which accepts an std::ostream as input.
Definition: BaseInteraction.cc:137

References plasticOverlap_, and BaseInteraction::write().

Member Data Documentation

◆ maxOverlap_

Mdouble SinterLinInteraction::maxOverlap_
private

Referenced by getMaxOverlap(), and setMaxOverlap().

◆ plasticOverlap_

Mdouble SinterLinInteraction::plasticOverlap_
private

The documentation for this class was generated from the following files: