oomph::TimeHarmonicIsotropicElasticityTensor Class Reference

#include <time_harmonic_elasticity_tensor.h>

+ Inheritance diagram for oomph::TimeHarmonicIsotropicElasticityTensor:

Public Member Functions

 TimeHarmonicIsotropicElasticityTensor (const double &nu, const double &E)
 
 TimeHarmonicIsotropicElasticityTensor (const double &nu)
 
void update_constitutive_parameters (const double &nu, const double &E=1.0)
 
double independent_component (const unsigned &i) const
 Overload the independent coefficient function. More...
 
- Public Member Functions inherited from oomph::TimeHarmonicElasticityTensor
virtual ~TimeHarmonicElasticityTensor ()
 Empty virtual Destructor. More...
 
double operator() (const unsigned &i, const unsigned &j, const unsigned &k, const unsigned &l) const
 

Private Member Functions

void set_lame_coefficients (const double &lambda, const double &mu)
 

Private Attributes

double C [4]
 

Static Private Attributes

static const unsigned StaticIndex [21]
 Translation scheme for the isotropic elasticity tensor. More...
 

Additional Inherited Members

- Protected Member Functions inherited from oomph::TimeHarmonicElasticityTensor
void range_check (const unsigned &i, const unsigned &j, const unsigned &k, const unsigned &l) const
 
 TimeHarmonicElasticityTensor ()
 Empty Constructor. More...
 

Detailed Description

An isotropic elasticity tensor defined in terms of Young's modulus and Poisson's ratio. The elasticity tensor is assumed to be non-dimensionalised on some reference value for Young's modulus so the value provided to the constructor (if any) is to be interpreted as the ratio of the actual Young's modulus to the Young's modulus used to non-dimensionalise the stresses/tractions in the governing equations.

Constructor & Destructor Documentation

◆ TimeHarmonicIsotropicElasticityTensor() [1/2]

oomph::TimeHarmonicIsotropicElasticityTensor::TimeHarmonicIsotropicElasticityTensor ( const double nu,
const double E 
)
inline

Constructor. Passing in the values of the Poisson's ratio and Young's modulus (interpreted as the ratio of the actual Young's modulus to the Young's modulus (or other reference stiffness) used to non-dimensionalise stresses and tractions in the governing equations).

163  {
164  // Set the three indepdent components
165  C[0] = 0.0;
166  double lambda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu));
167  double mu = E / (2.0 * (1.0 + nu));
168  this->set_lame_coefficients(lambda, mu);
169  }
cout<< "The eigenvalues of A are:"<< endl<< ces.eigenvalues()<< endl;cout<< "The matrix of eigenvectors, V, is:"<< endl<< ces.eigenvectors()<< endl<< endl;complex< float > lambda
Definition: ComplexEigenSolver_compute.cpp:9
Definition: matrices.h:74
TimeHarmonicElasticityTensor()
Empty Constructor.
Definition: time_harmonic_elasticity_tensor.h:113
void set_lame_coefficients(const double &lambda, const double &mu)
Definition: time_harmonic_elasticity_tensor.h:211
std::complex< double > mu
Definition: time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc:52
double E
Elastic modulus.
Definition: TwenteMeshGluing.cpp:68

References Global_Physical_Variables::E, lambda, Global_Parameters::mu, and set_lame_coefficients().

◆ TimeHarmonicIsotropicElasticityTensor() [2/2]

oomph::TimeHarmonicIsotropicElasticityTensor::TimeHarmonicIsotropicElasticityTensor ( const double nu)
inline

Constructor. Passing in the value of the Poisson's ratio. Stresses and tractions in the governing equations are assumed to have been non-dimensionalised on Young's modulus.

176  {
177  // Set the three indepdent components
178  C[0] = 0.0;
179 
180  // reference value
181  double E = 1.0;
182  double lambda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu));
183  double mu = E / (2.0 * (1.0 + nu));
184  this->set_lame_coefficients(lambda, mu);
185  }

References Global_Physical_Variables::E, lambda, Global_Parameters::mu, and set_lame_coefficients().

Member Function Documentation

◆ independent_component()

double oomph::TimeHarmonicIsotropicElasticityTensor::independent_component ( const unsigned i) const
inlinevirtual

Overload the independent coefficient function.

Reimplemented from oomph::TimeHarmonicElasticityTensor.

204  {
205  return C[StaticIndex[i]];
206  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
static const unsigned StaticIndex[21]
Translation scheme for the isotropic elasticity tensor.
Definition: time_harmonic_elasticity_tensor.h:153

References i, and StaticIndex.

◆ set_lame_coefficients()

void oomph::TimeHarmonicIsotropicElasticityTensor::set_lame_coefficients ( const double lambda,
const double mu 
)
inlineprivate
212  {
213  C[1] = lambda + 2.0 * mu;
214  C[2] = lambda;
215  C[3] = mu;
216  }

References lambda, and Global_Parameters::mu.

Referenced by TimeHarmonicIsotropicElasticityTensor(), and update_constitutive_parameters().

◆ update_constitutive_parameters()

void oomph::TimeHarmonicIsotropicElasticityTensor::update_constitutive_parameters ( const double nu,
const double E = 1.0 
)
inline

Update parameters: Specify values of the Poisson's ratio and (optionally) Young's modulus (interpreted as the ratio of the actual Young's modulus to the Young's modulus (or other reference stiffness) used to non-dimensionalise stresses and tractions in the governing equations).

193  {
194  // Set the three indepdent components
195  C[0] = 0.0;
196  double lambda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu));
197  double mu = E / (2.0 * (1.0 + nu));
198  this->set_lame_coefficients(lambda, mu);
199  }

References Global_Physical_Variables::E, lambda, Global_Parameters::mu, and set_lame_coefficients().

Member Data Documentation

◆ C

double oomph::TimeHarmonicIsotropicElasticityTensor::C[4]
private

◆ StaticIndex

const unsigned oomph::TimeHarmonicIsotropicElasticityTensor::StaticIndex
staticprivate
Initial value:
= {
1, 0, 2, 3, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 2, 3, 0, 1}

Translation scheme for the isotropic elasticity tensor.

Referenced by independent_component().


The documentation for this class was generated from the following files: