cxx11_tensor_forced_eval_sycl.cpp File Reference
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

Macros

#define EIGEN_TEST_NO_LONGDOUBLE
 
#define EIGEN_TEST_NO_COMPLEX
 
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t
 
#define EIGEN_USE_SYCL
 

Functions

template<typename DataType , int DataLayout, typename IndexType >
void test_forced_eval_sycl (const Eigen::SyclDevice &sycl_device)
 
template<typename DataType , typename Dev_selector >
void tensorForced_evalperDevice (Dev_selector s)
 
 EIGEN_DECLARE_TEST (cxx11_tensor_forced_eval_sycl)
 

Macro Definition Documentation

◆ EIGEN_DEFAULT_DENSE_INDEX_TYPE

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t

◆ EIGEN_TEST_NO_COMPLEX

#define EIGEN_TEST_NO_COMPLEX

◆ EIGEN_TEST_NO_LONGDOUBLE

#define EIGEN_TEST_NO_LONGDOUBLE

◆ EIGEN_USE_SYCL

#define EIGEN_USE_SYCL

Function Documentation

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( cxx11_tensor_forced_eval_sycl  )
73  {
74  for (const auto& device : Eigen::get_sycl_supported_devices()) {
75  CALL_SUBTEST(tensorForced_evalperDevice<float>(device));
76  CALL_SUBTEST(tensorForced_evalperDevice<half>(device));
77  }
78 }
#define CALL_SUBTEST(FUNC)
Definition: main.h:382

References CALL_SUBTEST.

◆ tensorForced_evalperDevice()

template<typename DataType , typename Dev_selector >
void tensorForced_evalperDevice ( Dev_selector  s)
67  {
68  QueueInterface queueInterface(s);
69  auto sycl_device = Eigen::SyclDevice(&queueInterface);
70  test_forced_eval_sycl<DataType, RowMajor, int64_t>(sycl_device);
71  test_forced_eval_sycl<DataType, ColMajor, int64_t>(sycl_device);
72 }
RealScalar s
Definition: level1_cplx_impl.h:130

References s.

◆ test_forced_eval_sycl()

template<typename DataType , int DataLayout, typename IndexType >
void test_forced_eval_sycl ( const Eigen::SyclDevice &  sycl_device)

c=(a+b)*b

25  {
26  IndexType sizeDim1 = 100;
27  IndexType sizeDim2 = 20;
28  IndexType sizeDim3 = 20;
29  Eigen::array<IndexType, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}};
33 
34  DataType* gpu_in1_data =
35  static_cast<DataType*>(sycl_device.allocate(in1.dimensions().TotalSize() * sizeof(DataType)));
36  DataType* gpu_in2_data =
37  static_cast<DataType*>(sycl_device.allocate(in2.dimensions().TotalSize() * sizeof(DataType)));
38  DataType* gpu_out_data =
39  static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize() * sizeof(DataType)));
40 
41  in1 = in1.random() + in1.constant(static_cast<DataType>(10.0f));
42  in2 = in2.random() + in2.constant(static_cast<DataType>(10.0f));
43 
44  // creating TensorMap from tensor
48  sycl_device.memcpyHostToDevice(gpu_in1_data, in1.data(), (in1.dimensions().TotalSize()) * sizeof(DataType));
49  sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(), (in2.dimensions().TotalSize()) * sizeof(DataType));
51  gpu_out.device(sycl_device) = (gpu_in1 + gpu_in2).eval() * gpu_in2;
52  sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data, (out.dimensions().TotalSize()) * sizeof(DataType));
53  for (IndexType i = 0; i < sizeDim1; ++i) {
54  for (IndexType j = 0; j < sizeDim2; ++j) {
55  for (IndexType k = 0; k < sizeDim3; ++k) {
56  VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) + in2(i, j, k)) * in2(i, j, k));
57  }
58  }
59  }
60  printf("(a+b)*b Test Passed\n");
61  sycl_device.deallocate(gpu_in1_data);
62  sycl_device.deallocate(gpu_in2_data);
63  sycl_device.deallocate(gpu_out_data);
64 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
A tensor expression mapping an existing array of data.
Definition: TensorMap.h:33
The tensor class.
Definition: Tensor.h:68
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:13
char char char int int * k
Definition: level2_impl.h:374
std::array< T, N > array
Definition: EmulateArray.h:231
internal::nested_eval< T, 1 >::type eval(const T &xpr)
Definition: sparse_permutations.cpp:47
std::ofstream out("Result.txt")
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::data(), Eigen::TensorBase< Derived, AccessLevel >::device(), Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::dimensions(), eval(), i, j, k, out(), Eigen::DSizes< DenseIndex, NumDims >::TotalSize(), and VERIFY_IS_APPROX.