cxx11_tensor_shuffling_sycl.cpp File Reference
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>

Macros

#define EIGEN_TEST_NO_LONGDOUBLE
 
#define EIGEN_TEST_NO_COMPLEX
 
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t
 
#define EIGEN_USE_SYCL
 

Functions

template<typename DataType , int DataLayout, typename IndexType >
static void test_simple_shuffling_sycl (const Eigen::SyclDevice &sycl_device)
 
template<typename DataType , typename dev_Selector >
void sycl_shuffling_test_per_device (dev_Selector s)
 
 EIGEN_DECLARE_TEST (cxx11_tensor_shuffling_sycl)
 

Macro Definition Documentation

◆ EIGEN_DEFAULT_DENSE_INDEX_TYPE

#define EIGEN_DEFAULT_DENSE_INDEX_TYPE   int64_t

◆ EIGEN_TEST_NO_COMPLEX

#define EIGEN_TEST_NO_COMPLEX

◆ EIGEN_TEST_NO_LONGDOUBLE

#define EIGEN_TEST_NO_LONGDOUBLE

◆ EIGEN_USE_SYCL

#define EIGEN_USE_SYCL

Function Documentation

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( cxx11_tensor_shuffling_sycl  )
109  {
110  for (const auto& device : Eigen::get_sycl_supported_devices()) {
111  CALL_SUBTEST(sycl_shuffling_test_per_device<half>(device));
112  CALL_SUBTEST(sycl_shuffling_test_per_device<float>(device));
113  }
114 }
#define CALL_SUBTEST(FUNC)
Definition: main.h:382

References CALL_SUBTEST.

◆ sycl_shuffling_test_per_device()

template<typename DataType , typename dev_Selector >
void sycl_shuffling_test_per_device ( dev_Selector  s)
103  {
104  QueueInterface queueInterface(s);
105  auto sycl_device = Eigen::SyclDevice(&queueInterface);
106  test_simple_shuffling_sycl<DataType, RowMajor, int64_t>(sycl_device);
107  test_simple_shuffling_sycl<DataType, ColMajor, int64_t>(sycl_device);
108 }
RealScalar s
Definition: level1_cplx_impl.h:130

References s.

◆ test_simple_shuffling_sycl()

template<typename DataType , int DataLayout, typename IndexType >
static void test_simple_shuffling_sycl ( const Eigen::SyclDevice &  sycl_device)
static
30  {
31  IndexType sizeDim1 = 2;
32  IndexType sizeDim2 = 3;
33  IndexType sizeDim3 = 5;
34  IndexType sizeDim4 = 7;
35  array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
37  Tensor<DataType, 4, DataLayout, IndexType> no_shuffle(tensorRange);
38  tensor.setRandom();
39 
40  const size_t buffSize = tensor.size() * sizeof(DataType);
41  array<IndexType, 4> shuffles;
42  shuffles[0] = 0;
43  shuffles[1] = 1;
44  shuffles[2] = 2;
45  shuffles[3] = 3;
46  DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(buffSize));
47  DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(buffSize));
48 
49  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
50  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu2(gpu_data2, tensorRange);
51 
52  sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(), buffSize);
53 
54  gpu2.device(sycl_device) = gpu1.shuffle(shuffles);
55  sycl_device.memcpyDeviceToHost(no_shuffle.data(), gpu_data2, buffSize);
56  sycl_device.synchronize();
57 
58  VERIFY_IS_EQUAL(no_shuffle.dimension(0), sizeDim1);
59  VERIFY_IS_EQUAL(no_shuffle.dimension(1), sizeDim2);
60  VERIFY_IS_EQUAL(no_shuffle.dimension(2), sizeDim3);
61  VERIFY_IS_EQUAL(no_shuffle.dimension(3), sizeDim4);
62 
63  for (IndexType i = 0; i < sizeDim1; ++i) {
64  for (IndexType j = 0; j < sizeDim2; ++j) {
65  for (IndexType k = 0; k < sizeDim3; ++k) {
66  for (IndexType l = 0; l < sizeDim4; ++l) {
67  VERIFY_IS_EQUAL(tensor(i, j, k, l), no_shuffle(i, j, k, l));
68  }
69  }
70  }
71  }
72 
73  shuffles[0] = 2;
74  shuffles[1] = 3;
75  shuffles[2] = 1;
76  shuffles[3] = 0;
77  array<IndexType, 4> tensorrangeShuffle = {{sizeDim3, sizeDim4, sizeDim2, sizeDim1}};
79  DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(buffSize));
80  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu3(gpu_data3, tensorrangeShuffle);
81 
82  gpu3.device(sycl_device) = gpu1.shuffle(shuffles);
83  sycl_device.memcpyDeviceToHost(shuffle.data(), gpu_data3, buffSize);
84  sycl_device.synchronize();
85 
86  VERIFY_IS_EQUAL(shuffle.dimension(0), sizeDim3);
87  VERIFY_IS_EQUAL(shuffle.dimension(1), sizeDim4);
88  VERIFY_IS_EQUAL(shuffle.dimension(2), sizeDim2);
89  VERIFY_IS_EQUAL(shuffle.dimension(3), sizeDim1);
90 
91  for (IndexType i = 0; i < sizeDim1; ++i) {
92  for (IndexType j = 0; j < sizeDim2; ++j) {
93  for (IndexType k = 0; k < sizeDim3; ++k) {
94  for (IndexType l = 0; l < sizeDim4; ++l) {
95  VERIFY_IS_EQUAL(tensor(i, j, k, l), shuffle(k, l, j, i));
96  }
97  }
98  }
99  }
100 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
A tensor expression mapping an existing array of data.
Definition: TensorMap.h:33
The tensor class.
Definition: Tensor.h:68
char char char int int * k
Definition: level2_impl.h:374
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:367
EIGEN_STRONG_INLINE Packet2d shuffle(const Packet2d &m, const Packet2d &n, int mask)
Definition: LSX/PacketMath.h:150
std::array< T, N > array
Definition: EmulateArray.h:231
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::data(), Eigen::TensorBase< Derived, AccessLevel >::device(), Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::dimension(), i, j, k, Eigen::TensorBase< Derived, AccessLevel >::setRandom(), Eigen::internal::shuffle(), Eigen::TensorBase< Derived, AccessLevel >::shuffle(), Eigen::Tensor< Scalar_, NumIndices_, Options_, IndexType_ >::size(), and VERIFY_IS_EQUAL.