Global_parameters Namespace Reference

Namespace. More...

Functions

double b (const double &r)
 Blending function based on the rectangular function but made smoother. More...
 
Vector< doublex1 (const Vector< double > &coord)
 Cartesian coordinates centered at the point (0.5,1) More...
 
Vector< doublex2 (const Vector< double > &coord)
 Cartesian coordinates centered at the point (1.5,1) More...
 
Vector< doublepolar (const Vector< double > &coord)
 Polar coordinates (r,phi) centered at the point x. More...
 
Vector< doublepolar1 (const Vector< double > &coord)
 Polar coordinates (r,phi) centered at the point (0.5,1) More...
 
Vector< doublepolar2 (const Vector< double > &coord)
 Polar coordinates (r,phi) centered at the point (1.5,1) More...
 
double f1_exact (const Vector< double > &coord)
 function that contributs to u_exact More...
 
double f1 (const Vector< double > &coord)
 f1 function, in front of the C1 unknown More...
 
Vector< doublegrad_f1 (const Vector< double > &coord)
 
double f2_exact (const Vector< double > &coord)
 function that contributes to u_exact More...
 
double f2 (const Vector< double > &coord)
 f2 function, in front of the C2 unknown More...
 
Vector< doublegrad_f2 (const Vector< double > &coord)
 gradient of f2 function More...
 
void get_exact_u (const Vector< double > &coord, Vector< double > &u)
 
void source_function (const Vector< double > &coord, double &source)
 Source function required to make the solution above an exact solution. More...
 

Variables

unsigned Element_multiplier =1
 element multiplier for convergence tess More...
 
bool Blend = false
 Boolean that imposes the blending or not. More...
 
double R_blend = 0.5
 Limit of the blending region. More...
 
unsigned Direction = 1
 

Detailed Description

Namespace.

Function Documentation

◆ b()

double Global_parameters::b ( const double r)

Blending function based on the rectangular function but made smoother.

66  {
67  using namespace MathematicalConstants;
68  if (Blend)
69  {
70  if (r<R_blend)
71  {
72  return 0.5+0.5*cos(Pi*r/R_blend);
73  }
74  else
75  {
76  return 0.0;
77  }
78  }
79  else
80  {
81  return 1.0;
82  }
83  }
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
double Pi
Definition: two_d_biharmonic.cc:235
bool Blend
Boolean that imposes the blending or not.
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:55
double R_blend
Limit of the blending region.
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:58
r
Definition: UniformPSDSelfTest.py:20

References Blend, cos(), BiharmonicTestFunctions2::Pi, UniformPSDSelfTest::r, and R_blend.

Referenced by f1(), and f2().

◆ f1()

double Global_parameters::f1 ( const Vector< double > &  coord)

f1 function, in front of the C1 unknown

148  {
149  // Compute r1
150  double r1 = polar1(coord)[0];
151  return f1_exact(coord)*b(r1);
152  }
double f1_exact(const Vector< double > &coord)
function that contributs to u_exact
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:137
Vector< double > polar1(const Vector< double > &coord)
Polar coordinates (r,phi) centered at the point (0.5,1)
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:125
double b(const double &r)
Blending function based on the rectangular function but made smoother.
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:65

References b(), f1_exact(), and polar1().

Referenced by alignedvector3(), array_generic(), CRBond_Bessel::bessikna(), CRBond_Bessel::bessiknb(), CRBond_Bessel::bessikv(), CRBond_Bessel::bessjyna(), CRBond_Bessel::bessjynb(), CRBond_Bessel::bessjyv(), LiquidBridgeClassicalWilletInteraction::computeAdhesionForce(), Eigen::bfloat16_impl::fmax(), Eigen::bfloat16_impl::fmin(), gemv_complex_col(), Eigen::bfloat16_impl::max(), Eigen::half_impl::max(), Eigen::bfloat16_impl::min(), Eigen::half_impl::min(), CRBond_Bessel::msta1(), CRBond_Bessel::msta2(), replicate(), DrumRot::setRollingFriction(), RotatingDrum::setRollingFriction(), DrumRot::setSlidingFriction(), RotatingDrum::setSlidingFriction(), DrumRot::setTorsionFriction(), RotatingDrum::setTorsionFriction(), and oomph::RungeKutta< ORDER >::timestep().

◆ f1_exact()

double Global_parameters::f1_exact ( const Vector< double > &  coord)

function that contributs to u_exact

138  {
139  // Polar coordinates centered at the point (0.5,1)
140  double r1 = polar1(coord)[0];
141  double phi1 = polar1(coord)[1];
142 
143  return 1.0-sqrt(r1)*abs(sin(phi1/2.0));
144  } // End of function
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134

References abs(), polar1(), sin(), and sqrt().

Referenced by f1(), and get_exact_u().

◆ f2()

double Global_parameters::f2 ( const Vector< double > &  coord)

f2 function, in front of the C2 unknown

234  {
235  // Compute r2
236  double r2 = polar2(coord)[0];
237 
238  return f2_exact(coord)*b(r2);
239  }
Vector< double > polar2(const Vector< double > &coord)
Polar coordinates (r,phi) centered at the point (1.5,1)
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:131
double f2_exact(const Vector< double > &coord)
function that contributes to u_exact
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:222

References b(), f2_exact(), and polar2().

Referenced by alignedvector3(), array_generic(), CRBond_Bessel::bessikv(), CRBond_Bessel::bessjyna(), CRBond_Bessel::bessjynb(), CRBond_Bessel::bessjyv(), LiquidBridgeClassicalWilletInteraction::computeAdhesionForce(), Eigen::bfloat16_impl::fmax(), Eigen::bfloat16_impl::fmin(), gemv_complex_col(), Eigen::bfloat16_impl::max(), Eigen::half_impl::max(), Eigen::bfloat16_impl::min(), Eigen::half_impl::min(), replicate(), RotatingDrum::setRollingFriction(), RotatingDrum::setSlidingFriction(), RotatingDrum::setTorsionFriction(), and oomph::RungeKutta< ORDER >::timestep().

◆ f2_exact()

double Global_parameters::f2_exact ( const Vector< double > &  coord)

function that contributes to u_exact

223  {
224 
225  // Polar coordinates centered at the point (1.5,1)
226  double r2 = polar2(coord)[0];
227  double phi2 = polar2(coord)[1];
228 
229  return 1.0-sqrt(r2)*cos(phi2/2.0);
230  } // End of function

References cos(), polar2(), and sqrt().

Referenced by f2(), and get_exact_u().

◆ get_exact_u()

void Global_parameters::get_exact_u ( const Vector< double > &  coord,
Vector< double > &  u 
)
292  {
293  using namespace MathematicalConstants;
294  u[0] = sin((Pi/2.0)*coord[1])*cos(coord[0]) + f1_exact(coord) + f2_exact(coord);
295  }

References cos(), f1_exact(), f2_exact(), BiharmonicTestFunctions2::Pi, and sin().

◆ grad_f1()

Vector<double> Global_parameters::grad_f1 ( const Vector< double > &  coord)

Without blending

With blending

156  {
157  using namespace MathematicalConstants;
158  Vector<double> df1(2);
159 
160  // Cartesian coordinates
161  double x = coord[0];
162  double y = coord[1];
163  if (y>1.0)
164  {
165  y=1.0;
166  }
167  if (not(Blend))
168  {
170  df1[0] = -(x/2.0 - 0.25)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
171  /pow((-x + 0.5)*(-x + 0.5) +(-y + 1.0)*(-y + 1.0),3.0/4.0) + 0.5*(y - 1.0)
172  *cos(0.5*atan2(-y + 1.0, -x + 0.5))
173  /pow((-x + 0.5)*(-x + 0.5)+ (-y + 1.0)*(-y + 1.0),3.0/4.0);
174 
175  df1[1] = 0.5*(-x + 0.5)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
176  /pow((-x + 0.5)*(-x + 0.5)
177  + (-y + 1.0)*(-y + 1.0),3.0/4.0) - (y/2.0 - 1.0/2.0)
178  *sin(0.5*atan2(-y + 1.0, -x + 0.5))
179  /pow((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0),3.0/4.0);
180  }
181 
182  else
183  {
185  // Compute r1
186  double r1 = polar1(coord)[0];
187 
188  if (r1>R_blend)
189  {
190  df1[0] = 0.0;
191  df1[1] = 0.0;
192  }
193 
194  else
195  {
196  df1[0] = (-(x/2.0 - 0.25)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
197  /pow((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0),3.0/4.0) + 0.5
198  *(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
199  /pow((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0),3.0/4.0))
200  *(0.5*cos(Pi*sqrt((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0))/R_blend) + 0.5)
201  - 0.5*Pi*(x - 0.5)*(-pow((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0),1.0/4.0)
202  *sin(0.5*atan2(-y + 1.0, -x + 0.5)) + 1.0)
203  *sin(Pi*sqrt((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0))/R_blend)
204  /(R_blend*sqrt((-x + 0.5)*(-x + 0.5) + (-y + 1.0)*(-y + 1.0)));
205 
206  df1[1] = (0.5*(-x + 0.5)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
207  /pow(pow(-x + 0.5,2) + pow(-y + 1.0,2),3.0/4.0)
208  - (y/2.0 - 1.0/2.0)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
209  /pow(pow(-x + 0.5,2) + pow(-y + 1.0,2),3.0/4.0))
210  *(0.5*cos(Pi*sqrt(pow(-x + 0.5,2) + pow(-y + 1.0,2))/R_blend) + 0.5)
211  - 0.5*Pi*(y - 1.0)*(-pow(pow(-x + 0.5,2) + pow(-y + 1.0,2),1.0/4.0)
212  *sin(0.5*atan2(-y + 1.0, -x + 0.5)) + 1.0)
213  *sin(Pi*sqrt(pow(-x + 0.5,2) + pow(-y + 1.0,2))/R_blend)
214  /(R_blend*sqrt(pow(-x + 0.5,2) + pow(-y + 1.0,2)));
215  }
216 
217  }
218  return df1;
219  }
AnnoyingScalar atan2(const AnnoyingScalar &y, const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:139
Scalar * y
Definition: level1_cplx_impl.h:128
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
list x
Definition: plotDoE.py:28

References atan2(), Blend, cos(), BiharmonicTestFunctions2::Pi, polar1(), Eigen::bfloat16_impl::pow(), R_blend, sin(), sqrt(), plotDoE::x, and y.

◆ grad_f2()

Vector<double> Global_parameters::grad_f2 ( const Vector< double > &  coord)

gradient of f2 function

Without blending

With blending

243  {
244  using namespace MathematicalConstants;
245  Vector<double> df2(2);
246 
247  // Cartesian coordinates
248  double x = coord[0];
249  double y = coord[1];
250 
251  if (not(Blend))
252  {
254  df2[0] = -(x/2.0 - 0.75)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
255  /pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0) - 0.5*(y - 1.0)
256  *sin(0.5*atan2(-y + 1.0, -x + 1.5))
257  /pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0);
258 
259  df2[1] = -0.5*(-x + 1.5)*sin(0.5*atan2(-y + 1.0, -x + 1.5))
260  /pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0) - (y/2.0 - 1.0/2.0)
261  *cos(0.5*atan2(-y + 1.0, -x + 1.5))
262  /pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0);
263  }
264 
265  else
266  {
268 
269  // Compute r2
270  double r2 = polar2(coord)[0];
271 
272  if (r2>R_blend)
273  {
274  df2[0] = 0.0;
275  df2[1] = 0.0;
276  }
277  else
278  {
279  df2[0] = (-(x/2.0 - 0.75)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
280  /pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0) - 0.5*(y - 1.0)
281  *sin(0.5*atan2(-y + 1.0, -x + 1.5))
282  /pow(pow(-x + 1.5,2)+ pow(-y + 1.0,2),3.0/4.0))*(0.5*cos(Pi*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2))/R_blend) + 0.5) - 0.5*Pi*(x - 1.5)*(-pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),1.0/4.0)*cos(0.5*atan2(-y + 1.0, -x + 1.5)) + 1.0)*sin(Pi*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2))/R_blend)/(R_blend*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2)));
283 
284  df2[1] = (-0.5*(-x + 1.5)*sin(0.5*atan2(-y + 1.0, -x + 1.5))/pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0) - (y/2.0 - 1.0/2.0)*cos(0.5*atan2(-y + 1.0, -x + 1.5))/pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),3.0/4.0))*(0.5*cos(Pi*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2))/R_blend) + 0.5) - 0.5*Pi*(y - 1.0)*(-pow(pow(-x + 1.5,2) + pow(-y + 1.0,2),1.0/4.0)*cos(0.5*atan2(-y + 1.0, -x + 1.5)) + 1.0)*sin(Pi*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2))/R_blend)/(R_blend*sqrt(pow(-x + 1.5,2) + pow(-y + 1.0,2)));
285  }
286  }
287  return df2;
288  }

References atan2(), Blend, cos(), BiharmonicTestFunctions2::Pi, polar2(), Eigen::bfloat16_impl::pow(), R_blend, sin(), sqrt(), plotDoE::x, and y.

◆ polar()

Vector<double> Global_parameters::polar ( const Vector< double > &  coord)

Polar coordinates (r,phi) centered at the point x.

112  {
113  Vector<double> polar_coord(2);
114 
115  // r
116  polar_coord[0] = sqrt(coord[0]*coord[0]+coord[1]*coord[1]);
117 
118  // phi
119  polar_coord[1] = atan2(coord[1],coord[0]);
120 
121  return polar_coord;
122  }

References atan2(), and sqrt().

Referenced by polar1(), and polar2().

◆ polar1()

Vector<double> Global_parameters::polar1 ( const Vector< double > &  coord)

Polar coordinates (r,phi) centered at the point (0.5,1)

126  {
127  return polar(x1(coord));
128  }
Vector< double > x1(const Vector< double > &coord)
Cartesian coordinates centered at the point (0.5,1)
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:86
Vector< double > polar(const Vector< double > &coord)
Polar coordinates (r,phi) centered at the point x.
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:111

References polar(), and x1().

Referenced by f1(), f1_exact(), and grad_f1().

◆ polar2()

Vector<double> Global_parameters::polar2 ( const Vector< double > &  coord)

Polar coordinates (r,phi) centered at the point (1.5,1)

132  {
133  return polar(x2(coord));
134  }
Vector< double > x2(const Vector< double > &coord)
Cartesian coordinates centered at the point (1.5,1)
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:102

References polar(), and x2().

Referenced by f2(), f2_exact(), and grad_f2().

◆ source_function()

void Global_parameters::source_function ( const Vector< double > &  coord,
double source 
)

Source function required to make the solution above an exact solution.

u_FE = sin((Pi/2)y)cos(x)

299  {
300  using namespace MathematicalConstants;
301 
303  double x = coord[0];
304  double y = coord[1];
305 
306  source = (x - 1.5)*(3.0*x - 4.5)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
307  /(4.0*pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0)) - 0.25
308  *(x - 1.5)*(y - 1.0)*sin(0.5*atan2(-y + 1.0, -x + 1.5))
309  /pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0) + (x - 0.5)
310  *(3.0*x - 1.5)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
311  /(4.0*pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0)) + (x - 0.5)
312  *(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
313  /(4.0*pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0)) + (3.0*x - 4.5)
314  *(y - 1.0)*sin(0.5*atan2(-y + 1.0, -x + 1.5))
315  /(4.0*pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0)) - 0.25
316  *(3.0*x - 1.5)*(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
317  /pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0) + (y - 1.0)
318  *(y - 1.0)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
319  /(4.0*pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0)) + (y - 1.0)
320  *(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
321  /(4.0*pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0))
322  + ((x - 1.5)*(x - 1.5)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
323  /pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0) - 2.0*(x - 1.5)
324  *(y - 1.0)*sin(0.5*atan2(-y + 1.0, -x + 1.5))
325  /pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0) + (x - 0.5)
326  *(x - 0.5)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
327  /pow((x - 0.5)*(x - 0.5)+ (y - 1.0)*(y - 1.0),7.0/4.0) + 2.0
328  *(x - 0.5)*(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 0.5))
329  /pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0) + 3.0
330  *(y - 1.0)*(y - 1.0)*sin(0.5*atan2(-y + 1.0, -x + 0.5))
331  /pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),7.0/4.0) + 3.0
332  *(y - 1.0)*(y - 1.0)*cos(0.5*atan2(-y + 1.0, -x + 1.5))
333  /pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),7.0/4.0) - 1.0
334  *Pi*Pi*sin(0.5*Pi*y)*cos(x) - 2.0*sin(0.5*atan2(-y + 1.0, -x + 0.5))
335  /pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),3.0/4.0) - 2.0
336  *cos(0.5*atan2(-y + 1.0, -x + 1.5))
337  /pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),3.0/4.0))
338  /4.0 - sin(0.5*Pi*y)*cos(x) - sin(0.5*atan2(-y + 1.0, -x + 0.5))
339  /(2.0*pow((x - 0.5)*(x - 0.5) + (y - 1.0)*(y - 1.0),3.0/4.0))
340  - cos(0.5*atan2(-y + 1.0, -x + 1.5))
341  /(2.0*pow((x - 1.5)*(x - 1.5) + (y - 1.0)*(y - 1.0),3.0/4.0));
342  }
void source(const Vector< double > &x, Vector< double > &f)
Source function.
Definition: unstructured_two_d_circle.cc:46

References atan2(), cos(), BiharmonicTestFunctions2::Pi, Eigen::bfloat16_impl::pow(), sin(), TestProblem::source(), plotDoE::x, and y.

Referenced by main().

◆ x1()

Vector<double> Global_parameters::x1 ( const Vector< double > &  coord)

◆ x2()

Vector<double> Global_parameters::x2 ( const Vector< double > &  coord)

Cartesian coordinates centered at the point (1.5,1)

103  {
104  Vector<double> new_x(2);
105  new_x[0] = 1.5-coord[0];
106  new_x[1] = 1.0-coord[1];
107  return new_x;
108  }

Referenced by CRBond_Bessel::bessik01a(), CRBond_Bessel::bessikv(), CRBond_Bessel::bessjy01a(), CRBond_Bessel::bessjyv(), check_sparse_solving(), mathsFunc::cos(), create_fluid_and_solid_surface_mesh_from_fluid_xda_mesh(), Chute::createBottom(), Eigen::internal::erf_over_x_double_small(), Eigen::internal::erfc_double_large(), Eigen::internal::idrstabl(), main(), CompareElementCoordinate< ELEMENT >::operator()(), CompareNodes::operator()(), Eigen::internal::pacos_float(), Eigen::internal::pasin_float(), Eigen::internal::patanh_double(), Eigen::internal::patanh_float(), Eigen::internal::pexp< Packet2d >(), Eigen::internal::pexp< Packet4f >(), Eigen::internal::pexp_double(), Eigen::internal::plog< Packet4f >(), Eigen::internal::plog_impl_double(), polar2(), Eigen::internal::psincos_float(), Eigen::internal::ptanh< Packet4f >(), Eigen::internal::ptanh_double(), Eigen::internal::ptanh_float(), replicate(), oomph::BlockPitchForkLinearSolver::resolve(), Eigen::internal::patan_reduced< Scalar >::run(), Eigen::internal::generic_fast_erf< Scalar >::run(), Eigen::internal::generic_fast_erfc< Scalar >::run(), mathsFunc::sin(), smallVectors(), oomph::TetMeshBase::snap_nodes_onto_geometric_objects(), oomph::BlockPitchForkLinearSolver::solve(), oomph::deriv_functions::stiff_test(), test_coeff_wise(), test_complex_operators(), test_dense_types(), and test_product().

Variable Documentation

◆ Blend

bool Global_parameters::Blend = false

Boolean that imposes the blending or not.

Referenced by b(), grad_f1(), grad_f2(), and main().

◆ Direction

unsigned Global_parameters::Direction = 1

◆ Element_multiplier

unsigned Global_parameters::Element_multiplier =1

element multiplier for convergence tess

Referenced by main().

◆ R_blend

double Global_parameters::R_blend = 0.5

Limit of the blending region.

Referenced by b(), grad_f1(), grad_f2(), and main().