RotatingDrum Class Reference
+ Inheritance diagram for RotatingDrum:

Public Member Functions

 RotatingDrum ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setDrumRadius (double radius)
 
void setRevolutionSpeed (double rpm)
 
void setSizeAndDensityRatio (double sr, double dr)
 
void setFractionalPolydispersity (double fpd)
 
void setDrumFillFraction (double dff)
 
void setSpeciesVolumeFraction (double vf)
 
void setFrictionCoeff (double pwf, double ppf)
 
void setCOR (double drumCOR, double COR1, double COR2)
 
void setSlidingFriction (double drum, double f1, double f2)
 
void setRollingFriction (double drum, double f1, double f2)
 
void setTorsionFriction (double drum, double f1, double f2)
 
double getDrumRadius ()
 
void setVibrationFrequency (double f)
 
void setVibrationAmplitude (double A)
 
 RotatingDrum ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setDrumRadius (double radius)
 
void setRevolutionSpeed (double rpm)
 
void setSizeAndDensityRatio (double sr, double dr)
 
void setFractionalPolydispersity (double fpd)
 
void setDrumFillFraction (double dff)
 
void setSpeciesVolumeFraction (double vf)
 
void setFrictionCoeff (double pwf, double ppf)
 
void setCOR (double drumCOR, double COR1, double COR2)
 
void setSlidingFriction (double drum, double f1, double f2)
 
void setRollingFriction (double drum, double f1, double f2)
 
void setTorsionFriction (double drum, double f1, double f2)
 
double getDrumRadius ()
 
void setVibrationFrequency (double f)
 
void setVibrationAmplitude (double A)
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setDrumRadius (double radius)
 
void setRevolutionSpeed (double rpm)
 
void setSizeAndDensityRatio (double sr, double dr)
 
void setFractionalPolydispersity (double fpd)
 
void setDrumFillFraction (double dff)
 
void setSpeciesVolumeFraction (double vf)
 
void setFrictionCoeff (double pwf, double ppf)
 
void setCOR (double drumCOR, double COR1, double COR2)
 
void setSlidingFriction (double drum, double f1, double f2)
 
void setRollingFriction (double drum, double f1, double f2)
 
void setTorsionFriction (double drum, double f1, double f2)
 
double getDrumRadius ()
 
void setVibrationFrequency (double f)
 
void setVibrationAmplitude (double A)
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< intget1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
void initialiseSolve ()
 Beginning of the solve routine, before time stepping. More...
 
void finaliseSolve ()
 End of the solve routine, after time stepping. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
virtual Mdouble getInfo (const BaseParticle &P) const
 A virtual function that returns some user-specified information about a particle. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURYDPM_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURYDPM_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURYDPM_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURYDPM_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURYDPM_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURYDPM_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURYDPM_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURYDPM_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 Returns a constant reference to an Interactions file. More...
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setVTKOutputDirectory (const std::string &dir)
 Sets the output directory of the VTK files. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
MERCURYDPM_DEPRECATED FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Mdouble getXCenter () const
 
Mdouble getYCenter () const
 
Mdouble getZCenter () const
 
Vec3D getCenter () const
 get center of domain More...
 
Vec3D getMin () const
 Returns the minimum coordinates of the problem domain. More...
 
Vec3D getMax () const
 Returns the maximum coordinates of the problem domain. More...
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 Sets the number of omp threads. More...
 
int getNumberOfOMPThreads () const
 Returns the number of omp threads. More...
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setBackgroundDrag (Mdouble backgroundDrag)
 Simple access function to turn on a background drag. The force of particleVelocity*drag is applied (note, it allowed to be negative i.e. create energy) More...
 
const Mdouble getBackgroundDrag () const
 Return the background drag. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy (Vec3D origin={0, 0, 0}) const
 Returns the global gravitational potential energy stored relative to a user-defined origin in the system. Note, if no origin is specified the real origin i.e. (0,0,0) is taken. More...
 
Mdouble getRotationalEnergy () const
 Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsignedgetNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 Handles the addition of particles to the particleHandler. More...
 
void writePythonFileForVTKVisualisation () const
 writes .py file for ParaView More...
 
void setWritePythonFileForVTKVisualisation (bool forceWritePythonFileForVTKVisualisation)
 
bool getWritePythonFileForVTKVisualisation () const
 
WallVTKWritergetWallVTKWriter ()
 

Private Attributes

double radiusS1
 
double radiusS2
 
double rhoS1
 
double rhoS2
 
double massS1
 
double massS2
 
double CORDrum
 
double CORS1
 
double CORS2
 
double tc
 
double sizeRatio
 
double densityRatio
 
double drumFillFraction
 
double volumeFraction
 
double particleWallFriction
 
double particleParticleFriction
 
int numS1
 
int numS2
 
int numS1ToBeInserted
 
int numS2ToBeInserted
 
double drumRadius
 
double revolutionsPerSecond
 
double fractionalPolydispersity
 
double slidingFrictionDrum
 
double slidingFriction1
 
double slidingFriction2
 
double rollingFrictionDrum
 
double rollingFriction1
 
double rollingFriction2
 
double torsionFrictionDrum
 
double torsionFriction1
 
double torsionFriction2
 
int step
 
double checkTime
 
double vibrationAmp
 
double vibrationFreq
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum class  ReadOptions : int { ReadAll , ReadNoInteractions , ReadNoParticlesAndInteractions }
 
enum class  DomainSplit {
  X , Y , Z , XY ,
  XZ , YZ , XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeAllForces ()
 Computes all the forces acting on the particles using the BaseInteractable::setForce() and BaseInteractable::setTorque() More...
 
virtual void computeInternalForce (BaseParticle *, BaseParticle *)
 Computes the forces between two particles (internal in the sense that the sum over all these forces is zero i.e. fully modelled forces) More...
 
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
virtual void computeForcesDueToWalls (BaseParticle *, BaseWall *)
 Computes the forces on the particles due to the walls (normals are outward normals) More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
virtual void actionsAfterTimeStep ()
 A virtual function which allows to define operations to be executed after time step. More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual void printTime () const
 Displays the current simulation time and the maximum simulation duration. More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void disableSoftStop ()
 This prevents the initialisation of the soft stop feature. More...
 
void discontinueSolve ()
 This discontinues the solve loop after the current time step is finished. More...
 

Constructor & Destructor Documentation

◆ RotatingDrum() [1/2]

RotatingDrum::RotatingDrum ( )
inline
21  {
22  radiusS1 = 0.0015; // 3mm diameter
24  }
double radiusS1
Definition: testDrum.cpp:472
double fractionalPolydispersity
Definition: testDrum.cpp:490

References fractionalPolydispersity, and radiusS1.

◆ RotatingDrum() [2/2]

RotatingDrum::RotatingDrum ( )
inline
21  {
22  radiusS1 = 0.0015; // 3mm diameter
24  }

References fractionalPolydispersity, and radiusS1.

Member Function Documentation

◆ actionsBeforeTimeStep() [1/3]

void RotatingDrum::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

342  {
343 
344  if (step==2)
345  {
346  if (getTime() > checkTime)
347  {
348  logger(INFO, "Current KE %", getKineticEnergy());
349  if (getKineticEnergy() < (10.0))
350  {
351  step = 3;
352  double drumStartTime = getTime();
353  logger(INFO, "\n \n \n Start the drum rotation\n"
354  "--------------------------\n\n\n");
355  // rotate the drum
357  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
359  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
361  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
362 
363  /*
364  for (int i = 0; i < particleHandler.getNumberOfObjects();i++)
365  {
366  BaseParticle* P0 = particleHandler.getObject(i);
367  if (P0->getIndSpecies() == 1)
368  {
369  P0->setSpecies(speciesS1);
370  P0->setForce(Vec3D(0,0,0));
371  P0->setTorque(Vec3D(0,0,0));
372  }
373  else
374  {
375  P0->setSpecies(speciesS2);
376  P0->setForce(Vec3D(0,0,0));
377  P0->setTorque(Vec3D(0,0,0));
378  }
379  }
380  */
381  }
382  else
383  {
384  checkTime = getTime() + 1.0;
385  }
386  }
387  }
388  }
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ INFO
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:621
void setAngularVelocity(const Vec3D &angularVelocity)
set the angular velocity of the BaseInteractble.
Definition: BaseInteractable.cc:338
Mdouble getTime() const
Returns the current simulation time.
Definition: DPMBase.cc:799
Mdouble getKineticEnergy() const
Returns the global kinetic energy stored in the system.
Definition: DPMBase.cc:1535
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1453
double checkTime
Definition: testDrum.cpp:505
double revolutionsPerSecond
Definition: testDrum.cpp:489
int step
Definition: testDrum.cpp:504
Definition: Kernel/Math/Vector.h:30
const Mdouble pi
Definition: ExtendedMath.h:23

References checkTime, DPMBase::getKineticEnergy(), BaseHandler< T >::getObject(), DPMBase::getTime(), INFO, logger, constants::pi, revolutionsPerSecond, BaseInteractable::setAngularVelocity(), step, and DPMBase::wallHandler.

◆ actionsBeforeTimeStep() [2/3]

void RotatingDrum::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

313  {
314 
315  if (step==2)
316  {
317  if (getTime() > checkTime)
318  {
319  logger(INFO, "Current KE %", getKineticEnergy());
320  if (getKineticEnergy() < (10.0))
321  {
322  step = 3;
323  double drumStartTime = getTime();
324  logger(INFO, "\n \n \n "
325  "Start the drum rotation\n"
326  "--------------------------"
327  "\n\n\n");
328  // rotate the drum
330  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
332  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
334  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
335 
336  /*
337  for (int i = 0; i < particleHandler.getNumberOfObjects();i++)
338  {
339  BaseParticle* P0 = particleHandler.getObject(i);
340  if (P0->getIndSpecies() == 1)
341  {
342  P0->setSpecies(speciesS1);
343  P0->setForce(Vec3D(0,0,0));
344  P0->setTorque(Vec3D(0,0,0));
345  }
346  else
347  {
348  P0->setSpecies(speciesS2);
349  P0->setForce(Vec3D(0,0,0));
350  P0->setTorque(Vec3D(0,0,0));
351  }
352  }
353  */
354  }
355  else
356  {
357  checkTime = getTime() + 1.0;
358  }
359  }
360  }
361  }

References checkTime, DPMBase::getKineticEnergy(), BaseHandler< T >::getObject(), DPMBase::getTime(), INFO, logger, constants::pi, revolutionsPerSecond, BaseInteractable::setAngularVelocity(), step, and DPMBase::wallHandler.

◆ actionsBeforeTimeStep() [3/3]

void RotatingDrum::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

281  {
282 
283  if (step==2)
284  {
285  if (getTime() > checkTime)
286  {
287  logger(INFO, "Current KE %", getKineticEnergy());
288  if (getKineticEnergy() < (10.0))
289  {
290  step = 3;
291  double drumStartTime = getTime();
292  logger(INFO, "\n \n \n"
293  "Start the drum rotation"
294  "--------------------------"
295  "\n\n\n");
296  // rotate the drum
298  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
300  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
302  Vec3D(0.0, revolutionsPerSecond * constants::pi * 2.0, 0.0));
303 
304 
305  }
306  else
307  {
308  checkTime = getTime() + 0.1;
309  }
310  }
311  }
312  }

References checkTime, DPMBase::getKineticEnergy(), BaseHandler< T >::getObject(), DPMBase::getTime(), INFO, logger, constants::pi, revolutionsPerSecond, BaseInteractable::setAngularVelocity(), step, and DPMBase::wallHandler.

◆ getDrumRadius() [1/3]

double RotatingDrum::getDrumRadius ( )
inline
457  {
458  return drumRadius;
459  }
double drumRadius
Definition: testDrum.cpp:488

References drumRadius.

◆ getDrumRadius() [2/3]

double RotatingDrum::getDrumRadius ( )
inline
430  {
431  return drumRadius;
432  }

References drumRadius.

◆ getDrumRadius() [3/3]

double RotatingDrum::getDrumRadius ( )
inline
381  {
382  return drumRadius;
383  }

References drumRadius.

◆ setCOR() [1/3]

void RotatingDrum::setCOR ( double  drumCOR,
double  COR1,
double  COR2 
)
inline
428  {
429  CORDrum = drumCOR;
430  CORS1 = COR1;
431  CORS2 = COR2;
432  }
double CORS1
Definition: testDrum.cpp:476
double CORS2
Definition: testDrum.cpp:476
double CORDrum
Definition: testDrum.cpp:476

References CORDrum, CORS1, and CORS2.

◆ setCOR() [2/3]

void RotatingDrum::setCOR ( double  drumCOR,
double  COR1,
double  COR2 
)
inline
401  {
402  CORDrum = drumCOR;
403  CORS1 = COR1;
404  CORS2 = COR2;
405  }

References CORDrum, CORS1, and CORS2.

◆ setCOR() [3/3]

void RotatingDrum::setCOR ( double  drumCOR,
double  COR1,
double  COR2 
)
inline
352  {
353  CORDrum = drumCOR;
354  CORS1 = COR1;
355  CORS2 = COR2;
356  }

References CORDrum, CORS1, and CORS2.

◆ setDrumFillFraction() [1/3]

void RotatingDrum::setDrumFillFraction ( double  dff)
inline
412  {
413  drumFillFraction = dff;
414  }
double drumFillFraction
Definition: testDrum.cpp:480

References drumFillFraction.

◆ setDrumFillFraction() [2/3]

void RotatingDrum::setDrumFillFraction ( double  dff)
inline
385  {
386  drumFillFraction = dff;
387  }

References drumFillFraction.

◆ setDrumFillFraction() [3/3]

void RotatingDrum::setDrumFillFraction ( double  dff)
inline
336  {
337  drumFillFraction = dff;
338  }

References drumFillFraction.

◆ setDrumRadius() [1/3]

void RotatingDrum::setDrumRadius ( double  radius)
inline
391  {
392  drumRadius = radius;
393  }
radius
Definition: UniformPSDSelfTest.py:15

References drumRadius, and UniformPSDSelfTest::radius.

◆ setDrumRadius() [2/3]

void RotatingDrum::setDrumRadius ( double  radius)
inline
364  {
365  drumRadius = radius;
366  }

References drumRadius, and UniformPSDSelfTest::radius.

◆ setDrumRadius() [3/3]

void RotatingDrum::setDrumRadius ( double  radius)
inline
315  {
316  drumRadius = radius;
317  }

References drumRadius, and UniformPSDSelfTest::radius.

◆ setFractionalPolydispersity() [1/3]

void RotatingDrum::setFractionalPolydispersity ( double  fpd)
inline
407  {
409  }

References fractionalPolydispersity.

◆ setFractionalPolydispersity() [2/3]

void RotatingDrum::setFractionalPolydispersity ( double  fpd)
inline
380  {
382  }

References fractionalPolydispersity.

◆ setFractionalPolydispersity() [3/3]

void RotatingDrum::setFractionalPolydispersity ( double  fpd)
inline
331  {
333  }

References fractionalPolydispersity.

◆ setFrictionCoeff() [1/3]

void RotatingDrum::setFrictionCoeff ( double  pwf,
double  ppf 
)
inline
422  {
423  particleWallFriction = pwf;
425  }
double particleWallFriction
Definition: testDrum.cpp:483
double particleParticleFriction
Definition: testDrum.cpp:483

References particleParticleFriction, and particleWallFriction.

◆ setFrictionCoeff() [2/3]

void RotatingDrum::setFrictionCoeff ( double  pwf,
double  ppf 
)
inline
395  {
396  particleWallFriction = pwf;
398  }

References particleParticleFriction, and particleWallFriction.

◆ setFrictionCoeff() [3/3]

void RotatingDrum::setFrictionCoeff ( double  pwf,
double  ppf 
)
inline
346  {
347  particleWallFriction = pwf;
349  }

References particleParticleFriction, and particleWallFriction.

◆ setRevolutionSpeed() [1/3]

void RotatingDrum::setRevolutionSpeed ( double  rpm)
inline
396  {
397  revolutionsPerSecond = rpm/60.0;// non-dimensionalised based on 3 mm particles and g=9.81
398  }

References revolutionsPerSecond.

◆ setRevolutionSpeed() [2/3]

void RotatingDrum::setRevolutionSpeed ( double  rpm)
inline
369  {
370  revolutionsPerSecond = rpm/60.0;// non-dimensionalised based on 3 mm particles and g=9.81
371  }

References revolutionsPerSecond.

◆ setRevolutionSpeed() [3/3]

void RotatingDrum::setRevolutionSpeed ( double  rpm)
inline
320  {
321  revolutionsPerSecond = rpm/60.0;
322  }

References revolutionsPerSecond.

◆ setRollingFriction() [1/3]

void RotatingDrum::setRollingFriction ( double  drum,
double  f1,
double  f2 
)
inline
443  {
444  rollingFrictionDrum = drum;
446  rollingFriction2 = f2;
447  }
double rollingFriction2
Definition: testDrum.cpp:498
double rollingFriction1
Definition: testDrum.cpp:497
double rollingFrictionDrum
Definition: testDrum.cpp:496
double f2(const Vector< double > &coord)
f2 function, in front of the C2 unknown
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:233
double f1(const Vector< double > &coord)
f1 function, in front of the C1 unknown
Definition: poisson/poisson_with_singularity/two_d_poisson.cc:147

References Global_parameters::f1(), Global_parameters::f2(), rollingFriction1, rollingFriction2, and rollingFrictionDrum.

◆ setRollingFriction() [2/3]

void RotatingDrum::setRollingFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setRollingFriction() [3/3]

void RotatingDrum::setRollingFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setSizeAndDensityRatio() [1/3]

void RotatingDrum::setSizeAndDensityRatio ( double  sr,
double  dr 
)
inline
401  {
402  sizeRatio = sr;
403  densityRatio = dr;
404  }
double densityRatio
Definition: testDrum.cpp:479
double sizeRatio
Definition: testDrum.cpp:478

References densityRatio, and sizeRatio.

◆ setSizeAndDensityRatio() [2/3]

void RotatingDrum::setSizeAndDensityRatio ( double  sr,
double  dr 
)
inline
374  {
375  sizeRatio = sr;
376  densityRatio = dr;
377  }

References densityRatio, and sizeRatio.

◆ setSizeAndDensityRatio() [3/3]

void RotatingDrum::setSizeAndDensityRatio ( double  sr,
double  dr 
)
inline
325  {
326  sizeRatio = sr;
327  densityRatio = dr;
328  }

References densityRatio, and sizeRatio.

◆ setSlidingFriction() [1/3]

void RotatingDrum::setSlidingFriction ( double  drum,
double  f1,
double  f2 
)
inline
436  {
437  slidingFrictionDrum = drum;
439  slidingFriction2 = f2;
440  }
double slidingFrictionDrum
Definition: testDrum.cpp:492
double slidingFriction1
Definition: testDrum.cpp:493
double slidingFriction2
Definition: testDrum.cpp:494

References Global_parameters::f1(), Global_parameters::f2(), slidingFriction1, slidingFriction2, and slidingFrictionDrum.

◆ setSlidingFriction() [2/3]

void RotatingDrum::setSlidingFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setSlidingFriction() [3/3]

void RotatingDrum::setSlidingFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setSpeciesVolumeFraction() [1/3]

void RotatingDrum::setSpeciesVolumeFraction ( double  vf)
inline
417  {
418  volumeFraction = vf;
419  }
double volumeFraction
Definition: testDrum.cpp:481

References volumeFraction.

◆ setSpeciesVolumeFraction() [2/3]

void RotatingDrum::setSpeciesVolumeFraction ( double  vf)
inline
390  {
391  volumeFraction = vf;
392  }

References volumeFraction.

◆ setSpeciesVolumeFraction() [3/3]

void RotatingDrum::setSpeciesVolumeFraction ( double  vf)
inline
341  {
342  volumeFraction = vf;
343  }

References volumeFraction.

◆ setTorsionFriction() [1/3]

void RotatingDrum::setTorsionFriction ( double  drum,
double  f1,
double  f2 
)
inline
450  {
451  torsionFrictionDrum = drum;
453  torsionFriction2 = f2;
454  }
double torsionFriction2
Definition: testDrum.cpp:502
double torsionFrictionDrum
Definition: testDrum.cpp:500
double torsionFriction1
Definition: testDrum.cpp:501

References Global_parameters::f1(), Global_parameters::f2(), torsionFriction1, torsionFriction2, and torsionFrictionDrum.

◆ setTorsionFriction() [2/3]

void RotatingDrum::setTorsionFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setTorsionFriction() [3/3]

void RotatingDrum::setTorsionFriction ( double  drum,
double  f1,
double  f2 
)
inline

◆ setupInitialConditions() [1/3]

void RotatingDrum::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

26  {
27 
29 
30  rhoS1 = 2500.0;
32 
33  massS1 = 4 / 3 * constants::pi * pow(radiusS1, 3.0) * rhoS1;
34  massS2 = 4 / 3 * constants::pi * pow(radiusS2, 3.0) * rhoS2;
35 
36  double fillVolume = drumFillFraction*constants::pi*pow(drumRadius,2.0)*(std::abs(getYMax()-getYMin()));
37 
38  numS1 = volumeFraction*fillVolume/(4./3. * constants::pi*pow(radiusS1,3.0));
39  numS2 = (1. - volumeFraction)*fillVolume/(4./3. * constants::pi*pow(radiusS2,3.0));
40  //std::cout << "fillVolume" << fillVolume << "total particle volume" << numS1*4 / 3 * constants::pi * pow(radiusS1, 3.0) + numS2*4 / 3 * constants::pi * pow(radiusS2, 3.0) << std::endl;
41 
44 
45  //std::cout << " mass " << massS1 << " " << massS2 << std::endl;
46 
47  tc = 1 / 800.0;
48  //original value
49  //tc = 0.005;
50 
52 
56 
57  double RPSInitial = 0.0;
58 
59  speciesDrum->setDensity(rhoS1);
60  speciesDrum->setCollisionTimeAndRestitutionCoefficient(tc, CORDrum, massS1);
61 
62  speciesDrum->setSlidingDissipation(speciesDrum->getDissipation()*2./7.);
63  speciesDrum->setSlidingStiffness(speciesDrum->getStiffness()*2./7.);
64  speciesDrum->setSlidingFrictionCoefficient(slidingFrictionDrum);
65 
66  speciesDrum->setRollingStiffness(speciesDrum->getStiffness()*2.0/7.0);
67  speciesDrum->setRollingFrictionCoefficient(rollingFrictionDrum);
68  speciesDrum->setRollingDissipation(speciesDrum->getDissipation()*2./7.);
69 
70  speciesDrum->setTorsionStiffness(speciesDrum->getStiffness()*2.0/7.0);
71  speciesDrum->setTorsionFrictionCoefficient(torsionFrictionDrum);
72  speciesDrum->setTorsionDissipation(speciesDrum->getDissipation()*2./7.);
73  //
74 
75  //
76  speciesS1->setDensity(rhoS1);
77  speciesS1->setCollisionTimeAndRestitutionCoefficient(tc, CORS1, massS1);
78 
79  speciesS1->setSlidingDissipation(speciesS1->getDissipation()*2./7.);
80  speciesS1->setSlidingStiffness(speciesS1->getStiffness()*2./7.);
81  speciesS1->setSlidingFrictionCoefficient(slidingFriction1);
82 
83  speciesS1->setRollingStiffness(speciesS1->getStiffness()*2.0/7.0);
84  speciesS1->setRollingFrictionCoefficient(rollingFriction1);
85  speciesS1->setRollingDissipation(speciesS1->getDissipation()*2./7.);
86 
87  speciesS1->setTorsionStiffness(speciesS1->getStiffness()*2.0/7.0);
88  speciesS1->setTorsionFrictionCoefficient(torsionFriction1);
89  speciesS1->setTorsionDissipation(speciesS1->getDissipation()*2./7.);
90  //
91 
92  speciesS2->setDensity(rhoS2);
93  speciesS2->setCollisionTimeAndRestitutionCoefficient(tc, CORS2, massS2);
94 
95  speciesS2->setSlidingDissipation(speciesS2->getDissipation()*2./7.);
96  speciesS2->setSlidingStiffness(speciesS2->getStiffness()*2./7.);
97  speciesS2->setSlidingFrictionCoefficient(slidingFriction2);
98 
99  speciesS2->setRollingStiffness(speciesS2->getStiffness()*2.0/7.0);
100  speciesS2->setRollingFrictionCoefficient(rollingFriction2);
101  speciesS2->setRollingDissipation(speciesS2->getDissipation()*2./7.);
102 
103  speciesS2->setTorsionStiffness(speciesS2->getStiffness()*2.0/7.0);
104  speciesS2->setTorsionFrictionCoefficient(torsionFriction2);
105  speciesS2->setTorsionDissipation(speciesS2->getDissipation()*2./7.);
106 
107  auto speciesDrumAndS1 = speciesHandler.getMixedObject(speciesDrum,speciesS1);
108 
109  speciesDrumAndS1->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORDrum) / 2) , massS1, massS1);
110 
111  speciesDrumAndS1->setSlidingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
112  speciesDrumAndS1->setSlidingFrictionCoefficient( ((slidingFrictionDrum + slidingFriction1)/2));
113  speciesDrumAndS1->setSlidingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
114 
115  speciesDrumAndS1->setRollingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
116  speciesDrumAndS1->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction1)/2));
117  speciesDrumAndS1->setRollingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
118 
119  speciesDrumAndS1->setTorsionStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
120  speciesDrumAndS1->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction1)/2));
121  speciesDrumAndS1->setTorsionDissipation(speciesDrumAndS1->getDissipation()*2./7.);
122  //
123  auto speciesDrumAndS2 = speciesHandler.getMixedObject(speciesDrum,speciesS2);
124 
125  speciesDrumAndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORDrum + CORS2) / 2), massS1, massS2);
126 
127  speciesDrumAndS2->setSlidingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
128  speciesDrumAndS2->setSlidingFrictionCoefficient(((slidingFrictionDrum + slidingFriction2)/2));
129  speciesDrumAndS2->setSlidingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
130 
131  speciesDrumAndS2->setRollingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
132  speciesDrumAndS2->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction2)/2));
133  speciesDrumAndS2->setRollingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
134 
135  speciesDrumAndS2->setTorsionStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
136  speciesDrumAndS2->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction2)/2));
137  speciesDrumAndS2->setTorsionDissipation(speciesDrumAndS2->getDissipation()*2./7.);
138  //
139  auto speciesS1AndS2 = speciesHandler.getMixedObject(speciesS1,speciesS2);
140 
141  speciesS1AndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORS2) / 2), massS1, massS2);
142 
143  speciesS1AndS2->setSlidingDissipation(speciesS1AndS2->getDissipation()*2./7.);
144  speciesS1AndS2->setSlidingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
145  speciesS1AndS2->setSlidingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
146 
147  speciesS1AndS2->setRollingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
148  speciesS1AndS2->setRollingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
149  speciesS1AndS2->setRollingDissipation(speciesS1AndS2->getDissipation()*2./7.);
150 
151  speciesS1AndS2->setTorsionStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
152  speciesS1AndS2->setTorsionFrictionCoefficient(((torsionFriction1 + torsionFriction2)/2));
153  speciesS1AndS2->setTorsionDissipation(speciesS1AndS2->getDissipation()*2./7.);
154 
155  Vec3D drumCenter = {0.5*(getXMin() + getXMax()),
156  0.5*(getYMin() + getYMax()),
157  0.5*(getZMin() + getZMax())};
158 
159  wallHandler.clear();
160 
162  drumWall -> setSpecies(speciesDrum);
163  drumWall -> setPosition(drumCenter);
164  drumWall -> setOrientation(Vec3D(0.0,1.0,0.0));
165  drumWall -> addObject(Vec3D(1,0,0), Vec3D(drumRadius,0.0,0.0));
166  drumWall -> setAngularVelocity(Vec3D(0.0,RPSInitial * 2.0 * constants::pi,0.0));
167 
168  drumWall->setPrescribedPosition([this] (double time)
169  {
170  double t = time - 0;
171  if (t > 0.0)
172  {
173  //return drumCenter + Vec3D(0.0,0.0,vibrationAmp * std::sin(t * 2.0 * vibrationFreq * constants::pi));
174  return Vec3D (0.5*(getXMin() + getXMax()),
175  0.5*(getYMin() + getYMax()),
177  );
178  }
179  else
180  {
181  //return drumCenter;
182  return Vec3D (0.5*(getXMin() + getXMax()),
183  0.5*(getYMin() + getYMax()),
184  0.5*(getZMin() + getZMax()));
185  }
186  });
187 
188  InfiniteWall w0;
189  w0.setSpecies(speciesDrum);
190 
191  w0.set(Vec3D(0.,-1.,0.),Vec3D(drumCenter.X,getYMin(),drumCenter.Z));
193  w0.set(Vec3D(0.,1.,0.),Vec3D(drumCenter.X,getYMax(),drumCenter.Z));
195 
196 
198  double radius = 0.0;
199  int numS1Inserted=0;
200  int numS2Inserted=0;
201  Vec3D pos;
202  double r, theta, y;
203  int failCounter = 0;
204 
205  Mdouble minVal = 10000;
206  Mdouble maxVal = -1000;
207  int nRebuild = 0;
208 
209  while( (numS1Inserted < numS1) || (numS2Inserted < numS2) )
210  {
212 
213  if( grn > numS2ToBeInserted)
214  {
216  P0.setSpecies(speciesS1);
217  P0.setRadius(radius);
218 
219  failCounter = 0;
220  do
221  {
225 
226  pos.X = drumRadius + r*cos(theta);
227  pos.Y = y;
228  pos.Z = drumRadius + r*sin(theta);
229 
230  P0.setPosition(pos);
231  P0.setVelocity(Vec3D(0.0,0.0,0.0));
232 
233  failCounter++;
234  if (failCounter==1000) break;
235 
236  } while (checkParticleForInteraction(P0));
237 
239  numS1Inserted++;
240  }
241  else
242  {
244  P0.setSpecies(speciesS2);
245  P0.setRadius(radius);
246 
247  failCounter = 0;
248  do
249  {
253 
254  pos.X = drumRadius + r*cos(theta);
255  pos.Y = y;
256  pos.Z = drumRadius + r*sin(theta);
257 
258  P0.setPosition(pos);
259  P0.setVelocity(Vec3D(0.0,0.0,0.0));
260 
261  failCounter++;
262  if (failCounter==1000) break;
263 
264  } while (checkParticleForInteraction(P0));
265 
266 
268  numS2Inserted++;
269  }
270  // For homogeneous mix
271  /*
272  failCounter = 0;
273  do
274  {
275  //r = random.getRandomNumber(drumCenter.X-10.0*radius,drumCenter.X+10.0*radius);
276  //theta = random.getRandomNumber(0,constants::pi*2.);
277  //y = random.getRandomNumber(getYMin()+2.0*radius,getYMax()-2.0*radius);
278 
279  r = random.getRandomNumber(2.0*radius,drumRadius-2.0*radius);
280  theta = random.getRandomNumber(0,constants::pi*2.);
281  y = random.getRandomNumber(getYMin()+2.0*radius,getYMax()-2.0*radius);
282 
283  pos.X = drumRadius + r*cos(theta);
284  pos.Y = y;
285  pos.Z = drumRadius + r*sin(theta);
286 
287  P0.setPosition(pos);
288  P0.setVelocity(Vec3D(0.0,0.0,0.0));
289 
290  failCounter++;
291  if (failCounter==1000) break;
292 
293  } while (checkParticleForInteraction(P0));
294  */
296 
297 
299  {
301  {
303  hGridRebuild();
304  nRebuild++;
305  }
306  }
307 
309  {
311  {
313  hGridRebuild();
314  nRebuild++;
315  }
316  }
317 
318  //if (particleHandler.getSize() % 100 == 0)
319  //{
320  //hGridRebuild();
321  //}
322 
323  }
324  logger(INFO, "nRebuild: %\n"
325  "Finished creating particles\n"
326  "Number of S1 particles inserted %\n"
327  "Number of S2 particles inserted %", nRebuild, numS1Inserted, numS2Inserted);
328 
329  //hGridRebuild();
330 
331  if ((numS1ToBeInserted == 0) && (numS2ToBeInserted == 0))
332  {
333  step = 2;
334  logger(INFO, "\n \n \n"
335  "Particles settling down\n"
336  "--------------------------"
337  "\n\n\n");
338  checkTime = getTime() + 5.0;
339  }
340  }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
Species< LinearViscoelasticNormalSpecies, FrictionSpecies > LinearViscoelasticFrictionSpecies
Definition: LinearViscoelasticFrictionSpecies.h:12
void addObject(CGHandler &cg, std::string coordinate)
Definition: MercuryCG.cpp:22
Use AxisymmetricIntersectionOfWalls to Screw Screw::read Screw::read Screw::read define axisymmetric ...
Definition: AxisymmetricIntersectionOfWalls.h:105
virtual void clear()
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: BaseHandler.h:536
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:360
Mdouble getMaxInteractionRadius() const
Returns the particle's interaction radius, which might be different from radius_ (e....
Definition: BaseParticle.h:345
void setSpecies(const ParticleSpecies *species)
Defines the species of the current wall.
Definition: BaseWall.cc:148
Mdouble getXMin() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin.
Definition: DPMBase.h:603
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:610
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1433
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:616
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1443
RNG random
This is a random generator, often used for setting up the initial conditions etc.....
Definition: DPMBase.h:1438
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:622
Mdouble getZMax() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax.
Definition: DPMBase.h:634
Mdouble getZMin() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin.
Definition: DPMBase.h:628
A infinite wall fills the half-space {point: (position_-point)*normal_<=0}.
Definition: InfiniteWall.h:27
void set(Vec3D normal, Vec3D point)
Defines a standard wall, given an outward normal vector s.t. normal*x=normal*point for all x of the w...
Definition: InfiniteWall.cc:97
bool checkParticleForInteraction(const BaseParticle &P) final
Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle.
Definition: MercuryBase.cc:573
void hGridRebuild()
This sets up the parameters required for the contact model.
Definition: MercuryBase.cc:183
BaseParticle * getSmallestParticleLocal() const
Gets a pointer to the smallest BaseParticle (by interactionRadius) in this ParticleHandler of the loc...
Definition: ParticleHandler.cc:496
BaseParticle * getLargestParticleLocal() const
Gets a pointer to the largest BaseParticle (by interactionRadius) in the ParticleHandler of the local...
Definition: ParticleHandler.cc:520
Mdouble getRandomNumber()
This is a random generating routine can be used for initial positions.
Definition: RNG.cc:123
int numS1
Definition: testDrum.cpp:485
double massS2
Definition: testDrum.cpp:474
double radiusS2
Definition: testDrum.cpp:472
int numS1ToBeInserted
Definition: testDrum.cpp:486
double massS1
Definition: testDrum.cpp:474
double rhoS1
Definition: testDrum.cpp:473
double tc
Definition: testDrum.cpp:476
double rhoS2
Definition: testDrum.cpp:473
int numS2ToBeInserted
Definition: testDrum.cpp:486
int numS2
Definition: testDrum.cpp:485
double vibrationFreq
Definition: testDrum.cpp:509
double vibrationAmp
Definition: testDrum.cpp:508
void clear() override
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: SpeciesHandler.h:32
std::enable_if<!std::is_pointer< typename U::MixedSpeciesType >::value, typename U::MixedSpeciesType * >::type getMixedObject(const U *S, const U *T)
Definition: SpeciesHandler.h:52
A spherical particle is the most simple particle used in MercuryDPM.
Definition: SphericalParticle.h:16
Mdouble Y
Definition: Kernel/Math/Vector.h:45
Mdouble Z
Definition: Kernel/Math/Vector.h:45
Mdouble X
the vector components
Definition: Kernel/Math/Vector.h:45
Scalar * y
Definition: level1_cplx_impl.h:128
double theta
Definition: two_d_biharmonic.cc:236
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
double P0
Definition: two_dim.cc:101
r
Definition: UniformPSDSelfTest.py:20
t
Definition: plotPSD.py:36

References abs(), addObject(), MercuryBase::checkParticleForInteraction(), checkTime, BaseHandler< T >::clear(), SpeciesHandler::clear(), BaseHandler< T >::copyAndAddObject(), CORDrum, CORS1, CORS2, cos(), densityRatio, drumFillFraction, drumRadius, fractionalPolydispersity, ParticleHandler::getLargestParticleLocal(), BaseParticle::getMaxInteractionRadius(), SpeciesHandler::getMixedObject(), RNG::getRandomNumber(), ParticleHandler::getSmallestParticleLocal(), DPMBase::getTime(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), MercuryBase::hGridRebuild(), INFO, logger, massS1, massS2, numS1, numS1ToBeInserted, numS2, numS2ToBeInserted, Problem_Parameter::P0, DPMBase::particleHandler, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, UniformPSDSelfTest::radius, radiusS1, radiusS2, DPMBase::random, rhoS1, rhoS2, rollingFriction1, rollingFriction2, rollingFrictionDrum, InfiniteWall::set(), BaseWall::setSpecies(), sin(), sizeRatio, slidingFriction1, slidingFriction2, slidingFrictionDrum, DPMBase::speciesHandler, step, plotPSD::t, tc, BiharmonicTestFunctions2::theta, torsionFriction1, torsionFriction2, torsionFrictionDrum, vibrationAmp, vibrationFreq, volumeFraction, DPMBase::wallHandler, Vec3D::X, y, Vec3D::Y, and Vec3D::Z.

◆ setupInitialConditions() [2/3]

void RotatingDrum::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

26  {
27 
29 
30  rhoS1 = 2500.0;
32 
33  massS1 = 4 / 3 * constants::pi * pow(radiusS1, 3.0) * rhoS1;
34  massS2 = 4 / 3 * constants::pi * pow(radiusS2, 3.0) * rhoS2;
35 
36  double fillVolume = drumFillFraction*constants::pi*pow(drumRadius,2.0)*(std::abs(getYMax()-getYMin()));
37 
38  numS1 = volumeFraction*fillVolume/(4./3. * constants::pi*pow(radiusS1,3.0));
39  numS2 = (1. - volumeFraction)*fillVolume/(4./3. * constants::pi*pow(radiusS2,3.0));
40  //std::cout << "fillVolume" << fillVolume << "total particle volume" << numS1*4 / 3 * constants::pi * pow(radiusS1, 3.0) + numS2*4 / 3 * constants::pi * pow(radiusS2, 3.0) << std::endl;
41 
44 
45  //std::cout << " mass " << massS1 << " " << massS2 << std::endl;
46 
47  tc = 1 / 800.0;
48  //original value
49  //tc = 0.005;
50 
52 
56 
57  double RPSInitial = 0.0;
58 
59  speciesDrum->setDensity(rhoS1);
60  speciesDrum->setCollisionTimeAndRestitutionCoefficient(tc, CORDrum, massS1);
61 
62  speciesDrum->setSlidingDissipation(speciesDrum->getDissipation()*2./7.);
63  speciesDrum->setSlidingStiffness(speciesDrum->getStiffness()*2./7.);
64  speciesDrum->setSlidingFrictionCoefficient(slidingFrictionDrum);
65 
66  speciesDrum->setRollingStiffness(speciesDrum->getStiffness()*2.0/7.0);
67  speciesDrum->setRollingFrictionCoefficient(rollingFrictionDrum);
68  speciesDrum->setRollingDissipation(speciesDrum->getDissipation()*2./7.);
69 
70  speciesDrum->setTorsionStiffness(speciesDrum->getStiffness()*2.0/7.0);
71  speciesDrum->setTorsionFrictionCoefficient(torsionFrictionDrum);
72  speciesDrum->setTorsionDissipation(speciesDrum->getDissipation()*2./7.);
73  //
74 
75  //
76  speciesS1->setDensity(rhoS1);
77  speciesS1->setCollisionTimeAndRestitutionCoefficient(tc, CORS1, massS1);
78 
79  speciesS1->setSlidingDissipation(speciesS1->getDissipation()*2./7.);
80  speciesS1->setSlidingStiffness(speciesS1->getStiffness()*2./7.);
81  speciesS1->setSlidingFrictionCoefficient(slidingFriction1);
82 
83  speciesS1->setRollingStiffness(speciesS1->getStiffness()*2.0/7.0);
84  speciesS1->setRollingFrictionCoefficient(rollingFriction1);
85  speciesS1->setRollingDissipation(speciesS1->getDissipation()*2./7.);
86 
87  speciesS1->setTorsionStiffness(speciesS1->getStiffness()*2.0/7.0);
88  speciesS1->setTorsionFrictionCoefficient(torsionFriction1);
89  speciesS1->setTorsionDissipation(speciesS1->getDissipation()*2./7.);
90  //
91 
92  speciesS2->setDensity(rhoS2);
93  speciesS2->setCollisionTimeAndRestitutionCoefficient(tc, CORS2, massS2);
94 
95  speciesS2->setSlidingDissipation(speciesS2->getDissipation()*2./7.);
96  speciesS2->setSlidingStiffness(speciesS2->getStiffness()*2./7.);
97  speciesS2->setSlidingFrictionCoefficient(slidingFriction2);
98 
99  speciesS2->setRollingStiffness(speciesS2->getStiffness()*2.0/7.0);
100  speciesS2->setRollingFrictionCoefficient(rollingFriction2);
101  speciesS2->setRollingDissipation(speciesS2->getDissipation()*2./7.);
102 
103  speciesS2->setTorsionStiffness(speciesS2->getStiffness()*2.0/7.0);
104  speciesS2->setTorsionFrictionCoefficient(torsionFriction2);
105  speciesS2->setTorsionDissipation(speciesS2->getDissipation()*2./7.);
106 
107  auto speciesDrumAndS1 = speciesHandler.getMixedObject(speciesDrum,speciesS1);
108 
109  speciesDrumAndS1->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORDrum) / 2) , massS1, massS1);
110 
111  speciesDrumAndS1->setSlidingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
112  speciesDrumAndS1->setSlidingFrictionCoefficient( ((slidingFrictionDrum + slidingFriction1)/2));
113  speciesDrumAndS1->setSlidingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
114 
115  speciesDrumAndS1->setRollingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
116  speciesDrumAndS1->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction1)/2));
117  speciesDrumAndS1->setRollingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
118 
119  speciesDrumAndS1->setTorsionStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
120  speciesDrumAndS1->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction1)/2));
121  speciesDrumAndS1->setTorsionDissipation(speciesDrumAndS1->getDissipation()*2./7.);
122  //
123  auto speciesDrumAndS2 = speciesHandler.getMixedObject(speciesDrum,speciesS2);
124 
125  speciesDrumAndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORDrum + CORS2) / 2), massS1, massS2);
126 
127  speciesDrumAndS2->setSlidingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
128  speciesDrumAndS2->setSlidingFrictionCoefficient(((slidingFrictionDrum + slidingFriction2)/2));
129  speciesDrumAndS2->setSlidingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
130 
131  speciesDrumAndS2->setRollingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
132  speciesDrumAndS2->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction2)/2));
133  speciesDrumAndS2->setRollingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
134 
135  speciesDrumAndS2->setTorsionStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
136  speciesDrumAndS2->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction2)/2));
137  speciesDrumAndS2->setTorsionDissipation(speciesDrumAndS2->getDissipation()*2./7.);
138  //
139  auto speciesS1AndS2 = speciesHandler.getMixedObject(speciesS1,speciesS2);
140 
141  speciesS1AndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORS2) / 2), massS1, massS2);
142 
143  speciesS1AndS2->setSlidingDissipation(speciesS1AndS2->getDissipation()*2./7.);
144  speciesS1AndS2->setSlidingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
145  speciesS1AndS2->setSlidingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
146 
147  speciesS1AndS2->setRollingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
148  speciesS1AndS2->setRollingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
149  speciesS1AndS2->setRollingDissipation(speciesS1AndS2->getDissipation()*2./7.);
150 
151  speciesS1AndS2->setTorsionStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
152  speciesS1AndS2->setTorsionFrictionCoefficient(((torsionFriction1 + torsionFriction2)/2));
153  speciesS1AndS2->setTorsionDissipation(speciesS1AndS2->getDissipation()*2./7.);
154 
155  Vec3D drumCenter = {0.5*(getXMin() + getXMax()),
156  0.5*(getYMin() + getYMax()),
157  0.5*(getZMin() + getZMax())};
158 
159  wallHandler.clear();
160 
162  drumWall -> setSpecies(speciesDrum);
163  drumWall -> setPosition(drumCenter);
164  drumWall -> setOrientation(Vec3D(0.0,1.0,0.0));
165  drumWall -> addObject(Vec3D(1,0,0), Vec3D(drumRadius,0.0,0.0));
166  drumWall -> setAngularVelocity(Vec3D(0.0,RPSInitial * 2.0 * constants::pi,0.0));
167 
168  drumWall->setPrescribedPosition([this] (double time)
169  {
170  double t = time - 0;
171  if (t > 0.0)
172  {
173  //return drumCenter + Vec3D(0.0,0.0,vibrationAmp * std::sin(t * 2.0 * vibrationFreq * constants::pi));
174  return Vec3D (0.5*(getXMin() + getXMax()),
175  0.5*(getYMin() + getYMax()),
177  );
178  }
179  else
180  {
181  //return drumCenter;
182  return Vec3D (0.5*(getXMin() + getXMax()),
183  0.5*(getYMin() + getYMax()),
184  0.5*(getZMin() + getZMax()));
185  }
186  });
187 
188  InfiniteWall w0;
189  w0.setSpecies(speciesDrum);
190 
191  w0.set(Vec3D(0.,-1.,0.),Vec3D(drumCenter.X,getYMin(),drumCenter.Z));
193  w0.set(Vec3D(0.,1.,0.),Vec3D(drumCenter.X,getYMax(),drumCenter.Z));
195 
196 
198  double radius = 0.0;
199  int numS1Inserted=0;
200  int numS2Inserted=0;
201  Vec3D pos;
202  double r, theta, y;
203  int failCounter = 0;
204 
205  while( (numS1Inserted < numS1) || (numS2Inserted < numS2) )
206  {
208 
209  if( grn > numS2ToBeInserted)
210  {
212  P0.setSpecies(speciesS1);
213  P0.setRadius(radius);
214 
215  failCounter = 0;
216  do
217  {
221 
222  pos.X = drumRadius + r*cos(theta);
223  pos.Y = y;
224  pos.Z = drumRadius + r*sin(theta);
225 
226  P0.setPosition(pos);
227  P0.setVelocity(Vec3D(0.0,0.0,0.0));
228 
229  failCounter++;
230  if (failCounter==1000) break;
231 
232  } while (checkParticleForInteraction(P0));
233 
235  numS1Inserted++;
236  }
237  else
238  {
240  P0.setSpecies(speciesS2);
241  P0.setRadius(radius);
242 
243  failCounter = 0;
244  do
245  {
249 
250  pos.X = drumRadius + r*cos(theta);
251  pos.Y = y;
252  pos.Z = drumRadius + r*sin(theta);
253 
254  P0.setPosition(pos);
255  P0.setVelocity(Vec3D(0.0,0.0,0.0));
256 
257  failCounter++;
258  if (failCounter==1000) break;
259 
260  } while (checkParticleForInteraction(P0));
261 
262 
264  numS2Inserted++;
265  }
266  // For homogeneous mix
267  /*
268  failCounter = 0;
269  do
270  {
271  //r = random.getRandomNumber(drumCenter.X-10.0*radius,drumCenter.X+10.0*radius);
272  //theta = random.getRandomNumber(0,constants::pi*2.);
273  //y = random.getRandomNumber(getYMin()+2.0*radius,getYMax()-2.0*radius);
274 
275  r = random.getRandomNumber(2.0*radius,drumRadius-2.0*radius);
276  theta = random.getRandomNumber(0,constants::pi*2.);
277  y = random.getRandomNumber(getYMin()+2.0*radius,getYMax()-2.0*radius);
278 
279  pos.X = drumRadius + r*cos(theta);
280  pos.Y = y;
281  pos.Z = drumRadius + r*sin(theta);
282 
283  P0.setPosition(pos);
284  P0.setVelocity(Vec3D(0.0,0.0,0.0));
285 
286  failCounter++;
287  if (failCounter==1000) break;
288 
289  } while (checkParticleForInteraction(P0));
290  */
292 
293  hGridRebuild();
294  }
295 
296  logger(INFO, "Finished creating particles\n"
297  "Number of S1 particles inserted %\n"
298  "Number of S2 particles inserted %", numS1Inserted, numS2Inserted);
299 
300  //hGridRebuild();
301 
302  if ((numS1ToBeInserted == 0) && (numS2ToBeInserted == 0))
303  {
304  step = 2;
305  logger(INFO, "\n \n \n"
306  "Particles settling down\n"
307  "--------------------------"
308  "\n\n\n");
309  checkTime = getTime() + 5.0;
310  }
311  }

References abs(), addObject(), MercuryBase::checkParticleForInteraction(), checkTime, BaseHandler< T >::clear(), SpeciesHandler::clear(), BaseHandler< T >::copyAndAddObject(), CORDrum, CORS1, CORS2, cos(), densityRatio, drumFillFraction, drumRadius, fractionalPolydispersity, SpeciesHandler::getMixedObject(), RNG::getRandomNumber(), DPMBase::getTime(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), MercuryBase::hGridRebuild(), INFO, logger, massS1, massS2, numS1, numS1ToBeInserted, numS2, numS2ToBeInserted, Problem_Parameter::P0, DPMBase::particleHandler, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, UniformPSDSelfTest::radius, radiusS1, radiusS2, DPMBase::random, rhoS1, rhoS2, rollingFriction1, rollingFriction2, rollingFrictionDrum, InfiniteWall::set(), BaseWall::setSpecies(), sin(), sizeRatio, slidingFriction1, slidingFriction2, slidingFrictionDrum, DPMBase::speciesHandler, step, plotPSD::t, tc, BiharmonicTestFunctions2::theta, torsionFriction1, torsionFriction2, torsionFrictionDrum, vibrationAmp, vibrationFreq, volumeFraction, DPMBase::wallHandler, Vec3D::X, y, Vec3D::Y, and Vec3D::Z.

◆ setupInitialConditions() [3/3]

void RotatingDrum::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

29  {
30  //The first step: set any properties which are always true for your system.
31  // (for instance, if gravity remains constant, set it here)
33  radiusS1 = 0.0015; // 3mm diameter
35 
36  rhoS1 = 2500.0;
38 
39  massS1 = 4 / 3 * constants::pi * pow(radiusS1, 3.0) * rhoS1;
40  massS2 = 4 / 3 * constants::pi * pow(radiusS2, 3.0) * rhoS2;
41 
42  double fillVolume = drumFillFraction*4*drumRadius*0.024;
43  //numS1 = volumeFraction*fillVolume/(4./3. * constants::pi*pow(radiusS1,3.0));
44  //numS2 = (1. - volumeFraction)*fillVolume/(4./3. * constants::pi*pow(radiusS2,3.0));
45  numS1 = 10; // for aquick test
46  numS2 = 10 ; // for a quick test
47 
50 
51  tc = 1 / 2000.0;
52  //Now, decide what Species you need for your system.
54 
58 
59  double RPSInitial = 0.0;
60 
61  speciesDrum->setDensity(rhoS1);
62  speciesDrum->setCollisionTimeAndRestitutionCoefficient(tc, CORDrum, massS1);
63 
64  speciesDrum->setSlidingDissipation(speciesDrum->getDissipation()*2./7.);
65  speciesDrum->setSlidingStiffness(speciesDrum->getStiffness()*2./7.);
66  speciesDrum->setSlidingFrictionCoefficient(slidingFrictionDrum);
67 
68  speciesDrum->setRollingStiffness(speciesDrum->getStiffness()*2.0/7.0);
69  speciesDrum->setRollingFrictionCoefficient(rollingFrictionDrum);
70  speciesDrum->setRollingDissipation(speciesDrum->getDissipation()*2./7.);
71 
72  speciesDrum->setTorsionStiffness(speciesDrum->getStiffness()*2.0/7.0);
73  speciesDrum->setTorsionFrictionCoefficient(torsionFrictionDrum);
74  speciesDrum->setTorsionDissipation(speciesDrum->getDissipation()*2./7.);
75  //
76 
77  //
78  speciesS1->setDensity(rhoS1);
79  speciesS1->setCollisionTimeAndRestitutionCoefficient(tc, CORS1, massS1);
80 
81  speciesS1->setSlidingDissipation(speciesS1->getDissipation()*2./7.);
82  speciesS1->setSlidingStiffness(speciesS1->getStiffness()*2./7.);
83  speciesS1->setSlidingFrictionCoefficient(slidingFriction1);
84 
85  speciesS1->setRollingStiffness(speciesS1->getStiffness()*2.0/7.0);
86  speciesS1->setRollingFrictionCoefficient(rollingFriction1);
87  speciesS1->setRollingDissipation(speciesS1->getDissipation()*2./7.);
88 
89  speciesS1->setTorsionStiffness(speciesS1->getStiffness()*2.0/7.0);
90  speciesS1->setTorsionFrictionCoefficient(torsionFriction1);
91  speciesS1->setTorsionDissipation(speciesS1->getDissipation()*2./7.);
92  //
93 
94  speciesS2->setDensity(rhoS2);
95  speciesS2->setCollisionTimeAndRestitutionCoefficient(tc, CORS2, massS2);
96 
97  speciesS2->setSlidingDissipation(speciesS2->getDissipation()*2./7.);
98  speciesS2->setSlidingStiffness(speciesS2->getStiffness()*2./7.);
99  speciesS2->setSlidingFrictionCoefficient(slidingFriction2);
100 
101  speciesS2->setRollingStiffness(speciesS2->getStiffness()*2.0/7.0);
102  speciesS2->setRollingFrictionCoefficient(rollingFriction2);
103  speciesS2->setRollingDissipation(speciesS2->getDissipation()*2./7.);
104 
105  speciesS2->setTorsionStiffness(speciesS2->getStiffness()*2.0/7.0);
106  speciesS2->setTorsionFrictionCoefficient(torsionFriction2);
107  speciesS2->setTorsionDissipation(speciesS2->getDissipation()*2./7.);
108 
109  auto speciesDrumAndS1 = speciesHandler.getMixedObject(speciesDrum,speciesS1);
110 
111  speciesDrumAndS1->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORDrum) / 2) , massS1, massS1);
112 
113  speciesDrumAndS1->setSlidingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
114  speciesDrumAndS1->setSlidingFrictionCoefficient( ((slidingFrictionDrum + slidingFriction1)/2));
115  speciesDrumAndS1->setSlidingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
116 
117  speciesDrumAndS1->setRollingStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
118  speciesDrumAndS1->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction1)/2));
119  speciesDrumAndS1->setRollingDissipation(speciesDrumAndS1->getDissipation()*2./7.);
120 
121  speciesDrumAndS1->setTorsionStiffness(speciesDrumAndS1->getStiffness()*2.0/7.0);
122  speciesDrumAndS1->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction1)/2));
123  speciesDrumAndS1->setTorsionDissipation(speciesDrumAndS1->getDissipation()*2./7.);
124  //
125  auto speciesDrumAndS2 = speciesHandler.getMixedObject(speciesDrum,speciesS2);
126 
127  speciesDrumAndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORDrum + CORS2) / 2), massS1, massS2);
128 
129  speciesDrumAndS2->setSlidingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
130  speciesDrumAndS2->setSlidingFrictionCoefficient(((slidingFrictionDrum + slidingFriction2)/2));
131  speciesDrumAndS2->setSlidingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
132 
133  speciesDrumAndS2->setRollingStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
134  speciesDrumAndS2->setRollingFrictionCoefficient(((rollingFrictionDrum + rollingFriction2)/2));
135  speciesDrumAndS2->setRollingDissipation(speciesDrumAndS2->getDissipation()*2./7.);
136 
137  speciesDrumAndS2->setTorsionStiffness(speciesDrumAndS2->getStiffness()*2.0/7.0);
138  speciesDrumAndS2->setTorsionFrictionCoefficient(((torsionFrictionDrum + torsionFriction2)/2));
139  speciesDrumAndS2->setTorsionDissipation(speciesDrumAndS2->getDissipation()*2./7.);
140  //
141  auto speciesS1AndS2 = speciesHandler.getMixedObject(speciesS1,speciesS2);
142 
143  speciesS1AndS2->setCollisionTimeAndRestitutionCoefficient(tc, ((CORS1 + CORS2) / 2), massS1, massS2);
144 
145  speciesS1AndS2->setSlidingDissipation(speciesS1AndS2->getDissipation()*2./7.);
146  speciesS1AndS2->setSlidingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
147  speciesS1AndS2->setSlidingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
148 
149  speciesS1AndS2->setRollingStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
150  speciesS1AndS2->setRollingFrictionCoefficient(((rollingFriction1 + rollingFriction2)/2));
151  speciesS1AndS2->setRollingDissipation(speciesS1AndS2->getDissipation()*2./7.);
152 
153  speciesS1AndS2->setTorsionStiffness(speciesS1AndS2->getStiffness()*2.0/7.0);
154  speciesS1AndS2->setTorsionFrictionCoefficient(((torsionFriction1 + torsionFriction2)/2));
155  speciesS1AndS2->setTorsionDissipation(speciesS1AndS2->getDissipation()*2./7.);
156 
157  //Add your walls below, and don't forget to set the species!
158  Vec3D drumCenter = {0.0 , 0.0 , 0.0};
159  wallHandler.clear();
160  IntersectionOfWalls drumWall1;
161  drumWall1.setAngularVelocity(Vec3D(0.0,RPSInitial*constants::pi*2.0 ,0.0));
162  drumWall1.setSpecies(speciesDrum);
163  drumWall1.addObject(Vec3D(1,0,0), Vec3D(drumRadius, 0.0 ,0.0));
164  wallHandler.copyAndAddObject(drumWall1);
165 
166  IntersectionOfWalls drumWall2;
167  drumWall2.addObject(Vec3D(-1,0,0), Vec3D(-drumRadius,0.0,0.0));
168  drumWall1.setAngularVelocity(Vec3D(0.0,RPSInitial*constants::pi*2.0 ,0.0));
169  drumWall1.setSpecies(speciesDrum);
170  wallHandler.copyAndAddObject(drumWall2);
171 
172 
173  IntersectionOfWalls drumWall3;
174  drumWall2.addObject(Vec3D(0,0,1), Vec3D(0.0,0.0,drumRadius));
175  drumWall1.setAngularVelocity(Vec3D(0.0,RPSInitial*constants::pi*2.0 ,0.0));
176  drumWall1.setSpecies(speciesDrum);
177  wallHandler.copyAndAddObject(drumWall3);
178 
179 
180  IntersectionOfWalls drumWall4;
181  drumWall4.addObject(Vec3D(0,0,-1), Vec3D(0.0,0.0,-drumRadius));
182  drumWall1.setAngularVelocity(Vec3D(0.0,RPSInitial*constants::pi*2.0 ,0.0));
183  drumWall1.setSpecies(speciesDrum);
184  wallHandler.copyAndAddObject(drumWall4);
185 
186 
187 
188  InfiniteWall w0;
189  w0.setSpecies(speciesDrum);
190  w0.set(Vec3D(0.,-1,0.),Vec3D(0,getYMin(),0));
192  w0.set(Vec3D(0.,1,0.),Vec3D(0,getYMax(),0));
194 
195  //Now, either add particles or Insertion/Deletion boundaries
196 
198  double radius = 0.0;
199  int numS1Inserted=0;
200  int numS2Inserted=0;
201  Vec3D pos;
202  double x, z, y;
203  int failCounter = 0;
204  while( (numS1Inserted < numS1) || (numS2Inserted < numS2) )
205  {
207 
208  if( grn > numS2ToBeInserted)
209  {
210  P0.setSpecies(speciesS1);
211  P0.setRadius(radiusS1);
212 
213  failCounter = 0;
214  do
215  {
219  pos.X = x;
220  pos.Y = y;
221  pos.Z = z;
222 
223  P0.setPosition(pos);
224  P0.setVelocity(Vec3D(0.0,0.0,0.0));
225 
226  failCounter++;
227  if (failCounter==1000) break;
228 
229  } while (checkParticleForInteraction(P0));
230 
232  numS1Inserted++;
233  }
234  else
235  {
236  P0.setSpecies(speciesS2);
237  P0.setRadius(radiusS2);
238 
239  failCounter = 0;
240  do
241  {
245  pos.X = x;
246  pos.Y = y;
247  pos.Z = z;
248 
249  P0.setPosition(pos);
250  P0.setVelocity(Vec3D(0.0,0.0,0.0));
251 
252  failCounter++;
253  if (failCounter==1000) break;
254 
255  } while (checkParticleForInteraction(P0));
256 
257 
259  numS2Inserted++;
260  }
262 
263  hGridRebuild();
264  }
265  logger(INFO, "Finished creating particles\n"
266  "Number of S1 particles inserted %\n"
267  "Number of S2 particles inserted %", numS1Inserted, numS2Inserted);
268 
269  //hGridRebuild();
270 
271  if ((numS1ToBeInserted == 0) && (numS2ToBeInserted == 0))
272  {
273  step = 2;
274  logger(INFO, "\n \n \n"
275  "Particles settling down"
276  "--------------------------"
277  "\n\n\n");
278  checkTime = getTime() + 1.0;
279  }
280  }
A IntersectionOfWalls is convex polygon defined as an intersection of InfiniteWall's.
Definition: IntersectionOfWalls.h:38
void addObject(Vec3D normal, Vec3D point)
Adds a wall to the set of infinite walls, given a normal vector pointing into the wall (i....
Definition: IntersectionOfWalls.cc:117
void setSpecies(const ParticleSpecies *species)
sets species of subwalls as well
Definition: IntersectionOfWalls.cc:51
list x
Definition: plotDoE.py:28

References IntersectionOfWalls::addObject(), MercuryBase::checkParticleForInteraction(), checkTime, BaseHandler< T >::clear(), SpeciesHandler::clear(), BaseHandler< T >::copyAndAddObject(), CORDrum, CORS1, CORS2, densityRatio, drumFillFraction, drumRadius, fractionalPolydispersity, SpeciesHandler::getMixedObject(), RNG::getRandomNumber(), DPMBase::getTime(), DPMBase::getYMax(), DPMBase::getYMin(), MercuryBase::hGridRebuild(), INFO, logger, massS1, massS2, numS1, numS1ToBeInserted, numS2, numS2ToBeInserted, Problem_Parameter::P0, DPMBase::particleHandler, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::radius, radiusS1, radiusS2, DPMBase::random, rhoS1, rhoS2, rollingFriction1, rollingFriction2, rollingFrictionDrum, InfiniteWall::set(), BaseInteractable::setAngularVelocity(), BaseWall::setSpecies(), IntersectionOfWalls::setSpecies(), sizeRatio, slidingFriction1, slidingFriction2, slidingFrictionDrum, DPMBase::speciesHandler, step, tc, torsionFriction1, torsionFriction2, torsionFrictionDrum, DPMBase::wallHandler, plotDoE::x, Vec3D::X, y, Vec3D::Y, and Vec3D::Z.

◆ setVibrationAmplitude() [1/3]

void RotatingDrum::setVibrationAmplitude ( double  A)
inline
466  {
467  vibrationAmp = A;
468  }
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47

References vibrationAmp.

◆ setVibrationAmplitude() [2/3]

void RotatingDrum::setVibrationAmplitude ( double  A)
inline
439  {
440  vibrationAmp = A;
441  }

References vibrationAmp.

◆ setVibrationAmplitude() [3/3]

void RotatingDrum::setVibrationAmplitude ( double  A)
inline
390  {
391  vibrationAmp = A;
392  }

References vibrationAmp.

◆ setVibrationFrequency() [1/3]

void RotatingDrum::setVibrationFrequency ( double  f)
inline
463  {
464  vibrationFreq = f;
465  }
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237

References f(), and vibrationFreq.

◆ setVibrationFrequency() [2/3]

void RotatingDrum::setVibrationFrequency ( double  f)
inline
436  {
437  vibrationFreq = f;
438  }

References f(), and vibrationFreq.

◆ setVibrationFrequency() [3/3]

void RotatingDrum::setVibrationFrequency ( double  f)
inline
387  {
388  vibrationFreq = f;
389  }

References f(), and vibrationFreq.

Member Data Documentation

◆ checkTime

double RotatingDrum::checkTime
private

◆ CORDrum

double RotatingDrum::CORDrum
private

Referenced by setCOR(), and setupInitialConditions().

◆ CORS1

double RotatingDrum::CORS1
private

Referenced by setCOR(), and setupInitialConditions().

◆ CORS2

double RotatingDrum::CORS2
private

Referenced by setCOR(), and setupInitialConditions().

◆ densityRatio

double RotatingDrum::densityRatio
private

◆ drumFillFraction

double RotatingDrum::drumFillFraction
private

◆ drumRadius

double RotatingDrum::drumRadius
private

◆ fractionalPolydispersity

double RotatingDrum::fractionalPolydispersity
private

◆ massS1

double RotatingDrum::massS1
private

Referenced by setupInitialConditions().

◆ massS2

double RotatingDrum::massS2
private

Referenced by setupInitialConditions().

◆ numS1

int RotatingDrum::numS1
private

Referenced by setupInitialConditions().

◆ numS1ToBeInserted

int RotatingDrum::numS1ToBeInserted
private

Referenced by setupInitialConditions().

◆ numS2

int RotatingDrum::numS2
private

Referenced by setupInitialConditions().

◆ numS2ToBeInserted

int RotatingDrum::numS2ToBeInserted
private

Referenced by setupInitialConditions().

◆ particleParticleFriction

double RotatingDrum::particleParticleFriction
private

Referenced by setFrictionCoeff().

◆ particleWallFriction

double RotatingDrum::particleWallFriction
private

Referenced by setFrictionCoeff().

◆ radiusS1

double RotatingDrum::radiusS1
private

◆ radiusS2

double RotatingDrum::radiusS2
private

Referenced by setupInitialConditions().

◆ revolutionsPerSecond

double RotatingDrum::revolutionsPerSecond
private

◆ rhoS1

double RotatingDrum::rhoS1
private

Referenced by setupInitialConditions().

◆ rhoS2

double RotatingDrum::rhoS2
private

Referenced by setupInitialConditions().

◆ rollingFriction1

double RotatingDrum::rollingFriction1
private

◆ rollingFriction2

double RotatingDrum::rollingFriction2
private

◆ rollingFrictionDrum

double RotatingDrum::rollingFrictionDrum
private

◆ sizeRatio

double RotatingDrum::sizeRatio
private

◆ slidingFriction1

double RotatingDrum::slidingFriction1
private

◆ slidingFriction2

double RotatingDrum::slidingFriction2
private

◆ slidingFrictionDrum

double RotatingDrum::slidingFrictionDrum
private

◆ step

int RotatingDrum::step
private

◆ tc

double RotatingDrum::tc
private

Referenced by setupInitialConditions().

◆ torsionFriction1

double RotatingDrum::torsionFriction1
private

◆ torsionFriction2

double RotatingDrum::torsionFriction2
private

◆ torsionFrictionDrum

double RotatingDrum::torsionFrictionDrum
private

◆ vibrationAmp

double RotatingDrum::vibrationAmp
private

◆ vibrationFreq

double RotatingDrum::vibrationFreq
private

◆ volumeFraction

double RotatingDrum::volumeFraction
private

The documentation for this class was generated from the following files: