RotatingCylinderProblem< ELEMENT, TIMESTEPPER > Class Template Reference
+ Inheritance diagram for RotatingCylinderProblem< ELEMENT, TIMESTEPPER >:

Public Member Functions

 RotatingCylinderProblem (const unsigned &n_r, const unsigned &n_z, const double &l_r, const double &l_z)
 Constructor for refineable rotating cylinder problem. More...
 
 ~RotatingCylinderProblem ()
 Destructor (empty) More...
 
void set_initial_condition ()
 Set initial conditions. More...
 
void set_boundary_conditions ()
 Set boundary conditions. More...
 
void doc_solution (DocInfo &doc_info)
 Document the solution. More...
 
void unsteady_run (const double &t_max, const double &dt, const string dir_name)
 Do unsteady run up to maximum time t_max with given timestep dt. More...
 
RefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 Access function for the specific mesh. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Member Functions

void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 No actions required after solve step. More...
 
void actions_after_adapt ()
 
void fix_pressure (const unsigned &e, const unsigned &pdof, const double &pvalue)
 Fix pressure in element e at pressure dof pdof and set to pvalue. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT, class TIMESTEPPER>
class RotatingCylinderProblem< ELEMENT, TIMESTEPPER >

/////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////// Refineable rotating cylinder problem in a rectangular axisymmetric domain

Constructor & Destructor Documentation

◆ RotatingCylinderProblem()

template<class ELEMENT , class TIMESTEPPER >
RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::RotatingCylinderProblem ( const unsigned n_r,
const unsigned n_z,
const double l_r,
const double l_z 
)

Constructor for refineable rotating cylinder problem.

Constructor: Pass the number of elements and the lengths of the domain in the radial (r) and axial (z) directions

151 {
152 
153  // Allocate the timestepper (this constructs the time object as well)
154  add_time_stepper_pt(new TIMESTEPPER);
155 
156  // Build and assign mesh
157  Problem::mesh_pt() = new RefineableRectangularQuadMesh<ELEMENT>
158  (n_r,n_z,l_r,l_z,time_stepper_pt());
159 
160  // Create and set the error estimator for spatial adaptivity
161  mesh_pt()->spatial_error_estimator_pt() = new Z2ErrorEstimator;
162 
163  // Set the maximum refinement level for the mesh to 4
164  mesh_pt()->max_refinement_level() = 4;
165 
166  // Override the maximum and minimum permitted errors
167  mesh_pt()->max_permitted_error() = 1.0e-2;
168  mesh_pt()->min_permitted_error() = 1.0e-3;
169 
170  // --------------------------------------------
171  // Set the boundary conditions for this problem
172  // --------------------------------------------
173 
174  // All nodes are free by default -- just pin the ones that have
175  // Dirichlet conditions here
176 
177  // Determine number of mesh boundaries
178  const unsigned n_boundary = mesh_pt()->nboundary();
179 
180  // Loop over mesh boundaries
181  for(unsigned b=0;b<n_boundary;b++)
182  {
183  // Determine number of nodes on boundary b
184  const unsigned n_node = mesh_pt()->nboundary_node(b);
185 
186  // Loop over nodes on boundary b
187  for(unsigned n=0;n<n_node;n++)
188  {
189  // Pin values for radial velocity on all boundaries
190  mesh_pt()->boundary_node_pt(b,n)->pin(0);
191 
192  // Pin values for axial velocity on all SOLID boundaries (b = 0,1,2)
193  if(b!=3) { mesh_pt()->boundary_node_pt(b,n)->pin(1); }
194 
195  // Pin values for azimuthal velocity on all boundaries
196  mesh_pt()->boundary_node_pt(b,n)->pin(2);
197 
198  } // End of loop over nodes on boundary b
199  } // End of loop over mesh boundaries
200 
201  // ----------------------------------------------------------------
202  // Complete the problem setup to make the elements fully functional
203  // ----------------------------------------------------------------
204 
205  // Determine number of elements in mesh
206  const unsigned n_element = mesh_pt()->nelement();
207 
208  // Loop over the elements
209  for(unsigned e=0;e<n_element;e++)
210  {
211  // Upcast from GeneralisedElement to the present element
212  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
213 
214  // Set the Reynolds number
215  el_pt->re_pt() = &Global_Physical_Variables::Re;
216 
217  // Set the Womersley number
218  el_pt->re_st_pt() = &Global_Physical_Variables::ReSt;
219 
220  // The mesh remains fixed
221  el_pt->disable_ALE();
222 
223  } // End of loop over elements
224 
225  // Pin redundant pressure dofs
226  RefineableAxisymmetricNavierStokesEquations::
227  pin_redundant_nodal_pressures(mesh_pt()->element_pt());
228 
229  // Now set the pressure in first element at 'node' 0 to 0.0
230  fix_pressure(0,0,0.0);
231 
232  // Set up equation numbering scheme
233  cout << "Number of equations: " << assign_eqn_numbers() << std::endl;
234 
235 } // End of constructor
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Scalar * b
Definition: benchVecAdd.cpp:17
void fix_pressure(const unsigned &e, const unsigned &pdof, const double &pvalue)
Fix pressure in element e at pressure dof pdof and set to pvalue.
Definition: axisym_navier_stokes/spin_up/spin_up.cc:131
RefineableRectangularQuadMesh< ELEMENT > * mesh_pt()
Access function for the specific mesh.
Definition: axisym_navier_stokes/spin_up/spin_up.cc:98
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Definition: problem.cc:1545
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
TimeStepper *& time_stepper_pt()
Definition: problem.h:1524
Definition: rectangular_quadmesh.template.h:326
Definition: error_estimator.h:266
double ReSt
Womersley number.
Definition: rayleigh_instability.cc:56
double Re
Reynolds number.
Definition: fibre.cc:55

References b, e(), n, Global_Physical_Variables::Re, and Global_Physical_Variables::ReSt.

◆ ~RotatingCylinderProblem()

template<class ELEMENT , class TIMESTEPPER >
RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::~RotatingCylinderProblem ( )
inline

Destructor (empty)

82 {}

Member Function Documentation

◆ actions_after_adapt()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::actions_after_adapt ( )
inlineprivatevirtual

After adaptation: Pin pressure again (the previously pinned value might have disappeared) and pin redudant pressure dofs

Reimplemented from oomph::Problem.

116  {
117  // Unpin all pressure dofs
118  RefineableAxisymmetricNavierStokesEquations::
119  unpin_all_pressure_dofs(mesh_pt()->element_pt());
120 
121  // Pin redudant pressure dofs
122  RefineableAxisymmetricNavierStokesEquations::
123  pin_redundant_nodal_pressures(mesh_pt()->element_pt());
124 
125  // Now set the pressure in first element at 'node' 0 to 0.0
126  fix_pressure(0,0,0.0);
127 
128  } // End of actions_after_adapt

◆ actions_after_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::actions_after_newton_solve ( )
inlineprivatevirtual

No actions required after solve step.

Reimplemented from oomph::Problem.

111 {}

◆ actions_before_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::actions_before_newton_solve ( )
inlineprivatevirtual

Update the problem specs before solve. Reset velocity boundary conditions just to be on the safe side...

Reimplemented from oomph::Problem.

void set_boundary_conditions()
Set boundary conditions.
Definition: axisym_navier_stokes/spin_up/spin_up.cc:274

◆ doc_solution()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::doc_solution ( DocInfo doc_info)

Document the solution.

321 {
322 
323  // Output the time
324  cout << "Time is now " << time_pt()->time() << std::endl;
325 
326  ofstream some_file;
327  char filename[100];
328 
329  // Set number of plot points (in each coordinate direction)
330  const unsigned npts = 5;
331 
332  // Open solution output file
333  sprintf(filename,"%s/soln%i.dat",
334  doc_info.directory().c_str(),doc_info.number());
335  some_file.open(filename);
336 
337  // Output solution to file
338  mesh_pt()->output(some_file,npts);
339 
340  // Close solution output file
341  some_file.close();
342 
343 } // End of doc_solution
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
Time *& time_pt()
Return a pointer to the global time object.
Definition: problem.h:1504
double & time()
Return the current value of the continuous time.
Definition: timesteppers.h:123
string filename
Definition: MergeRestartFiles.py:39

References oomph::DocInfo::directory(), MergeRestartFiles::filename, and oomph::DocInfo::number().

◆ fix_pressure()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::fix_pressure ( const unsigned e,
const unsigned pdof,
const double pvalue 
)
inlineprivate

Fix pressure in element e at pressure dof pdof and set to pvalue.

134  {
135  // Cast to actual element and fix pressure
136  dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e))->
137  fix_pressure(pdof,pvalue);
138  }

References e().

◆ mesh_pt()

template<class ELEMENT , class TIMESTEPPER >
RefineableRectangularQuadMesh<ELEMENT>* RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::mesh_pt ( )
inline

Access function for the specific mesh.

99  {
100  return dynamic_cast<RefineableRectangularQuadMesh<ELEMENT>*>
101  (Problem::mesh_pt());
102  }

◆ set_boundary_conditions()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::set_boundary_conditions

Set boundary conditions.

Set boundary conditions: Set both velocity components to zero on the bottom (solid) wall and the horizontal component only to zero on the side (periodic) boundaries

275 {
276  // Determine number of mesh boundaries
277  const unsigned n_boundary = mesh_pt()->nboundary();
278 
279  // Loop over mesh boundaries
280  for(unsigned b=0;b<n_boundary;b++)
281  {
282  // Determine number of nodes on boundary b
283  const unsigned n_node = mesh_pt()->nboundary_node(b);
284 
285  // Loop over nodes on boundary b
286  for(unsigned n=0;n<n_node;n++)
287  {
288  // For the solid boundaries (boundaries 0,1,2)
289  if(b<3)
290  {
291  // Get the radial component of position
292  const double r_pos = mesh_pt()->boundary_node_pt(b,n)->x(0);
293 
294  // Set all velocity components to no flow along boundary
295  mesh_pt()->boundary_node_pt(b,n)->set_value(0,0,0.0); // Radial
296  mesh_pt()->boundary_node_pt(b,n)->set_value(0,1,0.0); // Axial
297  mesh_pt()->boundary_node_pt(b,n)->set_value(0,2,r_pos); // Azimuthal
298  }
299 
300  // For the symmetry boundary (boundary 3)
301  if(b==3)
302  {
303  // Set only the radial (i=0) and azimuthal (i=2) velocity components
304  // to no flow along boundary (axial component is unconstrained)
305  mesh_pt()->boundary_node_pt(b,n)->set_value(0,0,0.0);
306  mesh_pt()->boundary_node_pt(b,n)->set_value(0,2,0.0);
307  }
308  } // End of loop over nodes on boundary b
309  } // End of loop over mesh boundaries
310 
311 } // End of set_boundary_conditions

References b, and n.

◆ set_initial_condition()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::set_initial_condition
virtual

Set initial conditions.

Set initial conditions: Set all nodal velocities to zero and initialise the previous velocities to correspond to an impulsive start

Reimplemented from oomph::Problem.

245 {
246  // Determine number of nodes in mesh
247  const unsigned n_node = mesh_pt()->nnode();
248 
249  // Loop over all nodes in mesh
250  for(unsigned n=0;n<n_node;n++)
251  {
252  // Loop over the three velocity components
253  for(unsigned i=0;i<3;i++)
254  {
255  // Set velocity component i of node n to zero
256  mesh_pt()->node_pt(n)->set_value(i,0.0);
257  }
258  }
259 
260  // Initialise the previous velocity values for timestepping
261  // corresponding to an impulsive start
263 
264 } // End of set_initial_condition
int i
Definition: BiCGSTAB_step_by_step.cpp:9
void assign_initial_values_impulsive()
Definition: problem.cc:11499

References i, and n.

◆ unsteady_run()

template<class ELEMENT , class TIMESTEPPER >
void RotatingCylinderProblem< ELEMENT, TIMESTEPPER >::unsteady_run ( const double t_max,
const double dt,
const string  dir_name 
)

Do unsteady run up to maximum time t_max with given timestep dt.

Perform run up to specified time t_max with given timestep dt.

353 {
354 
355  // Initialise DocInfo object
356  DocInfo doc_info;
357 
358  // Set output directory
359  doc_info.set_directory(dir_name);
360 
361  // Initialise counter for solutions
362  doc_info.number()=0;
363 
364  // Initialise timestep
365  initialise_dt(dt);
366 
367  // Set initial condition
369 
370  // Maximum number of spatial adaptations per timestep
371  unsigned max_adapt = 4;
372 
373  // Call refine_uniformly twice
374  for(unsigned i=0;i<2;i++) { refine_uniformly(); }
375 
376  // Determine number of timesteps
377  const unsigned n_timestep = unsigned(t_max/dt);
378 
379  // Doc initial solution
380  doc_solution(doc_info);
381 
382  // Increment counter for solutions
383  doc_info.number()++;
384 
385  // Are we on the first timestep? At this point, yes!
386  bool first_timestep = true;
387 
388  // Specify normalising factor explicitly
389  Z2ErrorEstimator* error_pt = dynamic_cast<Z2ErrorEstimator*>
390  (mesh_pt()->spatial_error_estimator_pt());
391  error_pt->reference_flux_norm() = 0.01;
392 
393  // Timestepping loop
394  for(unsigned t=1;t<=n_timestep;t++)
395  {
396  // Output current timestep to screen
397  cout << "\nTimestep " << t << " of " << n_timestep << std::endl;
398 
399  // Take fixed timestep with spatial adaptivity
400  unsteady_newton_solve(dt,max_adapt,first_timestep);
401 
402  // No longer on first timestep, so set first_timestep flag to false
403  first_timestep = false;
404 
405  // Reset maximum number of adaptations for all future timesteps
406  max_adapt = 1;
407 
408  // Doc solution
409  doc_solution(doc_info);
410 
411  // Increment counter for solutions
412  doc_info.number()++;
413 
414  } // End of timestepping loop
415 
416 } // End of unsteady_run
void doc_solution(DocInfo &doc_info)
Document the solution.
Definition: axisym_navier_stokes/spin_up/spin_up.cc:320
void set_initial_condition()
Set initial conditions.
Definition: axisym_navier_stokes/spin_up/spin_up.cc:244
Definition: oomph_utilities.h:499
void set_directory(const std::string &directory)
Definition: oomph_utilities.cc:298
void initialise_dt(const double &dt)
Definition: problem.cc:13231
void unsteady_newton_solve(const double &dt)
Definition: problem.cc:10953
void refine_uniformly()
Definition: problem.h:2640
double & reference_flux_norm()
Access function for prescribed reference flux norm.
Definition: error_estimator.h:355
t
Definition: plotPSD.py:36

References i, oomph::DocInfo::number(), oomph::Z2ErrorEstimator::reference_flux_norm(), oomph::DocInfo::set_directory(), and plotPSD::t.


The documentation for this class was generated from the following file: