RefineableRotatingCylinderProblem< ELEMENT > Class Template Reference
+ Inheritance diagram for RefineableRotatingCylinderProblem< ELEMENT >:

Public Member Functions

 RefineableRotatingCylinderProblem (const double &length, const double &height)
 
void actions_after_newton_solve ()
 Update the problem specs after solve (empty) More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve: More...
 
void actions_before_adapt ()
 Strip off the interface before adaptation. More...
 
void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
void finish_problem_setup ()
 
void set_boundary_conditions ()
 
void solve ()
 
void create_volume_constraint_elements ()
 Create the volume constraint elements. More...
 
void delete_volume_constraint_elements ()
 
void create_free_surface_elements ()
 
void delete_free_surface_elements ()
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Public Attributes

double Re
 
double Ca
 
double ReInvFr
 
double Bo
 
double Omega
 
double Volume
 
double Angle
 
Vector< doubleG
 
RefineableCylinderAndInterfaceMesh< ELEMENT > * Bulk_mesh_pt
 
MeshSurface_mesh_pt
 
MeshPoint_mesh_pt
 
MeshVolume_constraint_mesh_pt
 The volume constraint mesh. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 

Private Attributes

double Length
 
double Height
 
ConstitutiveLawConstitutive_law_pt
 
DataTraded_pressure_data_pt
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Constructor & Destructor Documentation

◆ RefineableRotatingCylinderProblem()

template<class ELEMENT >
RefineableRotatingCylinderProblem< ELEMENT >::RefineableRotatingCylinderProblem ( const double length,
const double height 
)

Constructor: Pass flag to indicate if you want a constant source function or the tanh profile.

Constructor for adaptive Poisson problem in deformable fish-shaped domain. Pass bool to indicate if we want a constant source function or the one that produces a tanh step.

Set the initial value of the ReInvFr = Bo/Ca

Build a linear solver: Use HSL's MA42 frontal solver

Switch off full doc for frontal solver

911  : Length(length), Height(height),
912  Re(0.0), Ca(0.001),
913  ReInvFr(0.0),
914  Bo(0.0), Omega(1.0),
915  Volume(12.0),
916  Angle(1.57)
917 {
921 
922  G.resize(2);
923  G[0] = 0.0; G[1] = -1.0;
924 
926  ReInvFr = Bo/Ca;
927 
929  //linear_solver_pt() = new HSL_MA42;
930 
931  //Set the constituive law
933 
934 
936  //static_cast<HSL_MA42*>(linear_solver_pt())->disable_doc_stats();
937 
938  //Allocate the timestepper (no timedependence)
940 
941  // Build mesh
942  Bulk_mesh_pt=
944  Problem::time_stepper_pt());
945 
946  // Set error estimator
948  Bulk_mesh_pt->spatial_error_estimator_pt()=error_estimator_pt;
949 
950 
951  //Refine the problem a couple of times
952  bool update_all_solid_nodes=true;
953  Bulk_mesh_pt->refine_uniformly();
954  Bulk_mesh_pt->node_update(update_all_solid_nodes);
955  Bulk_mesh_pt->refine_uniformly();
956  Bulk_mesh_pt->node_update(update_all_solid_nodes);
957  //Bulk_mesh_pt->refine_uniformly();
958  //refine_uniformly();
959  //refine_uniformly();
960 
961  // Loop over all elements and unset macro element pointer
962  unsigned Nelement = Bulk_mesh_pt->nelement();
963  for(unsigned e=0;e<Nelement;e++)
964  {
965  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e))->
966  set_macro_elem_pt(0);
967  }
968 
969 
970  //The external pressure is a piece of global data
971  Traded_pressure_data_pt = new Data(1);
973 
974  // Complete the build of all elements so they are fully functional
975 
976  Surface_mesh_pt = new Mesh;
977  Point_mesh_pt = new Mesh;
979 
981 
982  this->add_sub_mesh(Bulk_mesh_pt);
986 
987  this->build_global_mesh();
988 
989  //Attach the boundary conditions to the mesh
990  oomph_info <<"Number of equations: " << assign_eqn_numbers() << std::endl;
991 
992 }
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Definition: adaptive_interface.cc:687
double Bo
Definition: adaptive_interface.cc:734
Vector< double > G
Definition: adaptive_interface.cc:742
double Ca
Definition: adaptive_interface.cc:734
double Height
Definition: adaptive_interface.cc:725
double Re
Definition: adaptive_interface.cc:734
Mesh * Volume_constraint_mesh_pt
The volume constraint mesh.
Definition: adaptive_interface.cc:777
void finish_problem_setup()
Definition: adaptive_interface.cc:1001
Mesh * Surface_mesh_pt
Definition: adaptive_interface.cc:771
ConstitutiveLaw * Constitutive_law_pt
Definition: adaptive_interface.cc:728
double Angle
Definition: adaptive_interface.cc:740
Data * Traded_pressure_data_pt
Definition: adaptive_interface.cc:730
double Volume
Definition: adaptive_interface.cc:738
double Omega
Definition: adaptive_interface.cc:736
double ReInvFr
Definition: adaptive_interface.cc:734
double Length
Definition: adaptive_interface.cc:725
RefineableCylinderAndInterfaceMesh< ELEMENT > * Bulk_mesh_pt
Definition: adaptive_interface.cc:768
Mesh * Point_mesh_pt
Definition: adaptive_interface.cc:774
Definition: nodes.h:86
Definition: constitutive_laws.h:699
Definition: mesh.h:67
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Definition: problem.cc:1545
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void add_global_data(Data *const &global_data_pt)
Definition: problem.h:1654
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: error_estimator.h:266
double Nu
Poisson's ratio.
Definition: TwenteMeshGluing.cpp:71
double height(const double &x)
Height of domain.
Definition: simple_spine_channel.cc:429
Vector< double > Wall_normal
Direction of the wall normal vector.
Definition: axi_static_cap.cc:59
Z2ErrorEstimator * error_estimator_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:190
OomphInfo oomph_info
Definition: oomph_definitions.cc:319

References oomph::Problem::add_global_data(), oomph::Problem::add_sub_mesh(), oomph::Problem::add_time_stepper_pt(), oomph::Problem::assign_eqn_numbers(), RefineableRotatingCylinderProblem< ELEMENT >::Bo, oomph::Problem::build_global_mesh(), RefineableRotatingCylinderProblem< ELEMENT >::Bulk_mesh_pt, RefineableRotatingCylinderProblem< ELEMENT >::Ca, RefineableRotatingCylinderProblem< ELEMENT >::Constitutive_law_pt, e(), MeshRefinement::error_estimator_pt, RefineableRotatingCylinderProblem< ELEMENT >::finish_problem_setup(), RefineableRotatingCylinderProblem< ELEMENT >::G, Global_Physical_Variables::height(), Global_Physical_Variables::Nu, oomph::oomph_info, RefineableRotatingCylinderProblem< ELEMENT >::Point_mesh_pt, RefineableRotatingCylinderProblem< ELEMENT >::ReInvFr, RefineableRotatingCylinderProblem< ELEMENT >::Surface_mesh_pt, RefineableRotatingCylinderProblem< ELEMENT >::Traded_pressure_data_pt, RefineableRotatingCylinderProblem< ELEMENT >::Volume_constraint_mesh_pt, and Global_Physical_Variables::Wall_normal.

Member Function Documentation

◆ actions_after_adapt()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

Actions that are to be performed after a mesh adaptation.

Reimplemented from oomph::Problem.

void rebuild_global_mesh()
Definition: problem.cc:1533

◆ actions_after_newton_solve()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem specs after solve (empty)

Reimplemented from oomph::Problem.

749 {}

◆ actions_before_adapt()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::actions_before_adapt ( )
inlinevirtual

Strip off the interface before adaptation.

Reimplemented from oomph::Problem.

756  {
759  }
void delete_volume_constraint_elements()
Definition: adaptive_interface.cc:822
void delete_free_surface_elements()
Definition: adaptive_interface.cc:883

◆ actions_before_newton_solve()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve:

Reimplemented from oomph::Problem.

void set_boundary_conditions()
Definition: adaptive_interface.cc:1137

◆ create_free_surface_elements()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::create_free_surface_elements ( )
inline
833  {
834  //Find number of elements adjacent to upper boundary
835  unsigned n_boundary_element = Bulk_mesh_pt->nboundary_element(2);
836  //The boundary elements do no necessarily come in order, so we will
837  //need to detect the element adjacent to boundary 1.
838  //The index of that element in our array will be stored in this variable
839  //(initialised to a negative and therefore invalid number)
840  int final_element_index=-1;
841  //Loop over the elements adjacent to the boundary
842  for(unsigned e=0;e<n_boundary_element;e++)
843  {
844  //Create the free surface element (on face 2)
845  FiniteElement *free_surface_element_pt
847  (Bulk_mesh_pt->boundary_element_pt(2,e),
848  Bulk_mesh_pt->face_index_at_boundary(2,e));
849  //Push it back onto the stack
850  Surface_mesh_pt->add_element_pt(free_surface_element_pt);
851 
852  //Check whether the element is on the boundary 1
853  unsigned n_node = free_surface_element_pt->nnode();
854  //Only need to check the end nodes
855  if((free_surface_element_pt->node_pt(0)->is_on_boundary(1)) ||
856  (free_surface_element_pt->node_pt(n_node-1)->is_on_boundary(1)))
857  {
858  final_element_index=e;
859  }
860  }
861 
862  unsigned Nfree = Surface_mesh_pt->nelement();
863  oomph_info << Nfree << " free surface elements assigned" << std::endl;
864 
865  if(final_element_index == -1)
866  {
867  throw OomphLibError("No Surface Element adjacent to boundary 1\n",
870  }
871 
872  //Make the edge point
873  FiniteElement* point_element_pt=
875  (Surface_mesh_pt->element_pt(final_element_index))
876  ->make_bounding_element(1);
877 
878  //Add it to the stack
879  Point_mesh_pt->add_element_pt(point_element_pt);
880  }
Specialise the elastic update template class to concrete 1D case.
Definition: specific_node_update_interface_elements.h:1220
Definition: elements.h:1313
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
virtual bool is_on_boundary() const
Definition: nodes.h:1373
Definition: oomph_definitions.h:222
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86

References oomph::Mesh::add_element_pt(), oomph::Mesh::boundary_element_pt(), e(), oomph::Mesh::element_pt(), oomph::Mesh::face_index_at_boundary(), oomph::Node::is_on_boundary(), oomph::Mesh::nboundary_element(), oomph::Mesh::nelement(), oomph::FiniteElement::nnode(), oomph::FiniteElement::node_pt(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, and oomph::oomph_info.

◆ create_volume_constraint_elements()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::create_volume_constraint_elements ( )
inline

Create the volume constraint elements.

785  {
786  //The single volume constraint element
787  VolumeConstraintElement* vol_constraint_element =
789  Volume_constraint_mesh_pt->add_element_pt(vol_constraint_element);
790 
791  //Loop over all boundaries (or just 1 and 2 why?)
792  for(unsigned b=0;b<4;b++)
793  {
794  // How many bulk fluid elements are adjacent to boundary b?
795  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
796 
797  // Loop over the bulk fluid elements adjacent to boundary b?
798  for(unsigned e=0;e<n_element;e++)
799  {
800  // Get pointer to the bulk fluid element that is
801  // adjacent to boundary b
802  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
803  Bulk_mesh_pt->boundary_element_pt(b,e));
804 
805  //Find the index of the face of element e along boundary b
806  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
807 
808  // Create new element
811  bulk_elem_pt,face_index);
812 
813  //Set the "master" volume control element
814  el_pt->set_volume_constraint_element(vol_constraint_element);
815 
816  // Add it to the mesh
818  }
819  }
820  }
Scalar * b
Definition: benchVecAdd.cpp:17
Definition: constrained_volume_elements.h:372
void set_volume_constraint_element(VolumeConstraintElement *const &vol_constraint_el_pt, const bool &check_nodal_data=true)
Definition: constrained_volume_elements.h:261
Definition: constrained_volume_elements.h:66

References oomph::Mesh::add_element_pt(), b, oomph::Mesh::boundary_element_pt(), e(), oomph::Mesh::face_index_at_boundary(), oomph::Mesh::nboundary_element(), oomph::VolumeConstraintBoundingElement::set_volume_constraint_element(), and Global_Physical_Variables::Volume.

◆ delete_free_surface_elements()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::delete_free_surface_elements ( )
inline
884  {
885  //Find the number of traction elements
886  unsigned Nfree_surface = Surface_mesh_pt->nelement();
887 
888  //The traction elements are ALWAYS? stored at the end
889  //So delete and remove them, add one to get rid of the constraint
890  for(unsigned e=0;e<Nfree_surface;e++)
891  {
892  delete Surface_mesh_pt->element_pt(e);
893  }
895 
896  delete Point_mesh_pt->element_pt(0);
898  }
void flush_element_and_node_storage()
Definition: mesh.h:407

References e(), oomph::Mesh::element_pt(), oomph::Mesh::flush_element_and_node_storage(), and oomph::Mesh::nelement().

◆ delete_volume_constraint_elements()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::delete_volume_constraint_elements ( )
inline
823  {
824  unsigned n_element = Volume_constraint_mesh_pt->nelement();
825  for(unsigned e=0;e<n_element;e++)
826  {
828  }
830  }

References e(), oomph::Mesh::element_pt(), oomph::Mesh::flush_element_and_node_storage(), and oomph::Mesh::nelement().

◆ finish_problem_setup()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::finish_problem_setup

Complete problem setup: Setup element-specific things (source fct pointers etc.)

Complete build of Poisson problem: Loop over elements and setup pointers to source function

1002 {
1003  //Now sort out the free surface
1005  //Create the volume constraint elements
1007 
1008  // Set the boundary conditions for this problem: All nodes are
1009  // free by default -- just pin the ones that have Dirichlet conditions
1010  // here.
1011 
1012  //Pin bottom and cylinder
1013  unsigned num_bound = Bulk_mesh_pt->nboundary();
1014  for(unsigned ibound=0;ibound<num_bound;ibound+=4)
1015  {
1016  unsigned num_nod= Bulk_mesh_pt->nboundary_node(ibound);
1017  for (unsigned inod=0;inod<num_nod;inod++)
1018  {
1019  Bulk_mesh_pt->boundary_node_pt(ibound,inod)->pin(0);
1020  Bulk_mesh_pt->boundary_node_pt(ibound,inod)->pin(1);
1021  }
1022  }
1023 
1024  //Pin u and v on LHS
1025  {
1026  unsigned num_nod= Bulk_mesh_pt->nboundary_node(3);
1027  for (unsigned inod=0;inod<num_nod;inod++)
1028  {
1029  Bulk_mesh_pt->boundary_node_pt(3,inod)->pin(0);
1030  //Bulk_mesh_pt->boundary_node_pt(3,inod)->pin(1);
1031  }
1032  }
1033 
1034  //Pin u and v on RHS
1035  {
1036  unsigned num_nod= Bulk_mesh_pt->nboundary_node(1);
1037  for (unsigned inod=0;inod<num_nod;inod++)
1038  {
1039  Bulk_mesh_pt->boundary_node_pt(1,inod)->pin(0);
1040  Bulk_mesh_pt->boundary_node_pt(1,inod)->pin(1);
1041  }
1042  }
1043 
1044 
1045  dynamic_cast<FluidInterfaceBoundingElement*>
1046  (Point_mesh_pt->element_pt(0))->set_contact_angle(&Angle);
1047 
1048  dynamic_cast<FluidInterfaceBoundingElement*>
1049  (Point_mesh_pt->element_pt(0))->ca_pt() = &Ca;
1050 
1051 
1052  dynamic_cast<FluidInterfaceBoundingElement*>
1053  (Point_mesh_pt->element_pt(0))->
1054  wall_unit_normal_fct_pt() = &Global_Physical_Variables::wall_unit_normal_fct;
1055 
1056  //Pin one pressure
1057  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(0))->fix_pressure(0,0.0);
1058 
1059  //Loop over the lower boundary and pin nodal positions in both directions
1060  unsigned num_nod= Bulk_mesh_pt->nboundary_node(0);
1061  for (unsigned inod=0;inod<num_nod;inod++)
1062  {
1063  Bulk_mesh_pt->boundary_node_pt(0,inod)->pin_position(0);
1064  Bulk_mesh_pt->boundary_node_pt(0,inod)->pin_position(1);
1065  }
1066 
1067  //Loop over the RHS side and pin in x and y
1068  num_nod= Bulk_mesh_pt->nboundary_node(1);
1069  for (unsigned inod=0;inod<num_nod;inod++)
1070  {
1071  Bulk_mesh_pt->boundary_node_pt(1,inod)->pin_position(0);
1072  //Bulk_mesh_pt->boundary_node_pt(1,inod)->pin_position(1);
1073  }
1074 
1075 
1076  //Loop over the LHS side and pin in x
1077  num_nod= Bulk_mesh_pt->nboundary_node(3);
1078  for (unsigned inod=0;inod<num_nod;inod++)
1079  {
1080  Bulk_mesh_pt->boundary_node_pt(3,inod)->pin_position(0);
1081  //Bulk_mesh_pt->boundary_node_pt(3,inod)->pin_position(1);
1082  }
1083 
1084  //Loop over the cylinder and pin nodal positions in both directions
1085  num_nod= Bulk_mesh_pt->nboundary_node(4);
1086  for (unsigned inod=0;inod<num_nod;inod++)
1087  {
1088  Bulk_mesh_pt->boundary_node_pt(4,inod)->pin_position(0);
1089  Bulk_mesh_pt->boundary_node_pt(4,inod)->pin_position(1);
1090  }
1091 
1092 
1093  //Find number of elements in mesh
1094  unsigned Nfluid = Bulk_mesh_pt->nelement();
1095  //Find the number of free surface elements
1096  unsigned Nfree = Surface_mesh_pt->nelement();
1097 
1098  // Loop over the elements to set up element-specific
1099  // things that cannot be handled by constructor
1100  for(unsigned i=0;i<Nfluid;i++)
1101  {
1102  // Upcast from FiniteElement to the present element
1103  ELEMENT *temp_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(i));
1104 
1105  //Set the source function pointer
1106  temp_pt->re_pt() = &Re;
1107  temp_pt->re_invfr_pt() = &ReInvFr;
1108  temp_pt->g_pt() = &G;
1109 
1110  //Assign the mesh deformation constitutive law
1111  temp_pt->constitutive_law_pt() = Constitutive_law_pt;
1112 
1113  }
1114 
1115 
1116  // Pin the redundant solid pressures (if any)
1118  Bulk_mesh_pt->element_pt());
1119 
1120  //Loop over the free surface elements
1121  for(unsigned i=0;i<Nfree;i++)
1122  {
1123  // Upcast from FiniteElement to the present element
1127  //Set the Capillary number
1128  temp_pt->ca_pt() = &Ca;
1129 
1130  //Pass the Data item that contains the external pressure
1131  temp_pt->set_external_pressure_data(this->global_data_pt(0));
1132  }
1133 
1134 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
void create_volume_constraint_elements()
Create the volume constraint elements.
Definition: adaptive_interface.cc:784
void create_free_surface_elements()
Definition: adaptive_interface.cc:832
Definition: interface_elements.h:54
double *& ca_pt()
Pointer to the Capillary number.
Definition: interface_elements.h:492
void set_external_pressure_data(Data *external_pressure_data_pt)
Definition: interface_elements.h:539
Definition: solid_elements.h:58
Data *& global_data_pt(const unsigned &i)
Return a pointer to the the i-th global data object.
Definition: problem.h:1647
void wall_unit_normal_fct(const Vector< double > &x, Vector< double > &normal)
Function that specifies the wall unit normal.
Definition: axi_static_cap.cc:62

References Global_Physical_Variables::Angle, Global_Physical_Variables::Ca, oomph::FluidInterfaceElement::ca_pt(), Constitutive::Constitutive_law_pt, G, i, GlobalPhysicalVariables::Re, GlobalPhysicalVariables::ReInvFr, oomph::FluidInterfaceElement::set_external_pressure_data(), and Global_Physical_Variables::wall_unit_normal_fct().

Referenced by RefineableRotatingCylinderProblem< ELEMENT >::RefineableRotatingCylinderProblem().

◆ set_boundary_conditions()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::set_boundary_conditions
1138 {
1139  //Only bother to set non-zero velocity on the cylinder
1140  unsigned Nnode = Bulk_mesh_pt->nboundary_node(4);
1141  for(unsigned n=0;n<Nnode;n++)
1142  {
1143  //Get x and y
1144  double x = Bulk_mesh_pt->boundary_node_pt(4,n)->x(0);
1145  double y = Bulk_mesh_pt->boundary_node_pt(4,n)->x(1);
1146 
1147  //Now find the vector distance to the centre
1148  double len_x = x - Bulk_mesh_pt->domain_pt()->centre_x;
1149  double len_y = y - Bulk_mesh_pt->domain_pt()->centre_y;
1150 
1151  //Calculate the angle and radius
1152  double r = sqrt(len_x*len_x + len_y*len_y);
1153  double theta = atan2(len_y,len_x);
1154 
1155  //Now set the velocities
1156  Bulk_mesh_pt->boundary_node_pt(4,n)->set_value(0,-Omega*r*sin(theta));
1157  Bulk_mesh_pt->boundary_node_pt(4,n)->set_value(1, Omega*r*cos(theta));
1158  }
1159 }
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar atan2(const AnnoyingScalar &y, const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:139
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Scalar * y
Definition: level1_cplx_impl.h:128
double theta
Definition: two_d_biharmonic.cc:236
r
Definition: UniformPSDSelfTest.py:20
list x
Definition: plotDoE.py:28

References atan2(), cos(), n, oomph::SarahBL::Omega, UniformPSDSelfTest::r, sin(), sqrt(), BiharmonicTestFunctions2::theta, plotDoE::x, and y.

◆ solve()

template<class ELEMENT >
void RefineableRotatingCylinderProblem< ELEMENT >::solve
1163 {
1164  Newton_solver_tolerance = 1.0e-8;
1165  //Document the solution
1166  std::ofstream filenamee("input.dat");
1167  Bulk_mesh_pt->output(filenamee,5);
1168  Surface_mesh_pt->output(filenamee,5);
1169  //Point_mesh_pt->output(filenamee,5);
1170  filenamee.close();
1171 
1172  //Solve the initial value problem
1173  newton_solve();
1174 
1175  std::ofstream filename("first.dat");
1176  Bulk_mesh_pt->output(filename,5);
1178  //Point_mesh_pt->output(filename,5);
1179  filename.close();
1180 
1181  //Initialise the value of the arc-length
1182  double ds=0.001;
1183 
1184  std::ofstream trace("trace.dat");
1185 
1186  trace << Ca << " " << ReInvFr << " "
1187  << Bulk_mesh_pt->boundary_node_pt(2,0)->x(1) << std::endl;
1188 
1189 // bool flag=true, fflag=true;
1190 
1191  for(unsigned i=0;i<2;i++)
1192  {
1193  if(i<5)
1194  {
1195  //Decrease the contact angle
1196  Angle -= 0.1;
1197  newton_solve(2);
1198  //newton_solve();
1199  }
1200  else
1201  {
1202  //do an arc-length continuation step in Ca
1203  ds = arc_length_step_solve(&Ca,ds);
1204  }
1205 
1206  // if(flag)
1207 // {
1208 // //Do an arc-length continuation step in ReInvFr
1209 // ds = arc_length_step_solve(&ReInvFr,ds);
1210 // }
1211 // else
1212 // {
1213 // //Reset arc-length parameters
1214 // if(fflag) {reset_arc_length_parameters(); fflag=false;}
1215 // ds = 0.001;
1216 // //Now do it in Ca
1217 // ds = arc_length_step_solve(&Ca,ds);
1218 // }
1219 
1220 // if(Bulk_mesh_pt->boundary_node_pt(2,0)->x(1) < 4.0)
1221 // {flag=false;}
1222 
1223  trace << Ca << " " << ReInvFr << " " << Angle << " "
1224  << Bulk_mesh_pt->boundary_node_pt(2,0)->x(1) << std::endl;
1225 
1226  char file[100];
1227  sprintf(file,"step%i.dat",i);
1228  filename.open(file);
1229  Bulk_mesh_pt->output(filename,5);
1231  //Point_mesh_pt->output(filename,5);
1232  filename.close();
1233 
1234  //Now reset the values of the lagrange multipliers and the xi's
1235  //An updated lagrangian approach
1236 
1237  //Now loop over all the nodes and set their Lagrangian coordinates
1238  unsigned Nnode = Bulk_mesh_pt->nnode();
1239  for(unsigned n=0;n<Nnode;n++)
1240  {
1241  //Cast node to an elastic node
1242  SolidNode* temp_pt = static_cast<SolidNode*>(Bulk_mesh_pt->node_pt(n));
1243  for(unsigned j=0;j<2;j++) {temp_pt->xi(j) = temp_pt->x(j);}
1244  }
1245 
1246  //Find the number of free surface elements
1247  unsigned Nfree = Surface_mesh_pt->nelement();
1248  //Loop over the free surface elements
1249  for(unsigned n=0;n<Nfree;n++)
1250  {
1251  // Upcast from FiniteElement to the present element
1255  unsigned Nnode = temp_pt->nnode();
1256  //Reset the lagrange multipliers
1257  for(unsigned j=0;j<Nnode;j++) {temp_pt->lagrange(j) = 0.0;}
1258  }
1259  }
1260 
1261  //Document the solution
1262  //filename.open("output.dat");
1263  //Bulk_mesh_pt->output(filename,5);
1264  //filename.close();
1265  trace.close();
1266 }
double & lagrange(const unsigned &n)
Return the lagrange multiplier at local node n.
Definition: specific_node_update_interface_elements.h:830
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
double Newton_solver_tolerance
Definition: problem.h:596
void newton_solve()
Use Newton method to solve the problem.
Definition: problem.cc:8783
double arc_length_step_solve(double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
Definition: problem.cc:10294
Definition: nodes.h:1686
double & xi(const unsigned &i)
Reference to i-th Lagrangian position.
Definition: nodes.h:1883
string filename
Definition: MergeRestartFiles.py:39
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References Global_Physical_Variables::Angle, Global_Physical_Variables::Ca, MergeRestartFiles::filename, i, j, oomph::ElasticUpdateFluidInterfaceElement< EQUATION_CLASS, DERIVATIVE_CLASS, ELEMENT >::lagrange(), n, oomph::FiniteElement::nnode(), GlobalPhysicalVariables::ReInvFr, oomph::Node::x(), and oomph::SolidNode::xi().

Member Data Documentation

◆ Angle

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Angle

◆ Bo

◆ Bulk_mesh_pt

◆ Ca

◆ Constitutive_law_pt

◆ G

◆ Height

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Height
private

◆ Length

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Length
private

◆ Omega

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Omega

◆ Point_mesh_pt

◆ Re

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Re

◆ ReInvFr

◆ Surface_mesh_pt

◆ Traded_pressure_data_pt

template<class ELEMENT >
Data* RefineableRotatingCylinderProblem< ELEMENT >::Traded_pressure_data_pt
private

◆ Volume

template<class ELEMENT >
double RefineableRotatingCylinderProblem< ELEMENT >::Volume

◆ Volume_constraint_mesh_pt

template<class ELEMENT >
Mesh* RefineableRotatingCylinderProblem< ELEMENT >::Volume_constraint_mesh_pt

The documentation for this class was generated from the following file: