Eigen::NoOpOutputKernel Struct Reference

#include <TensorContraction.h>

Public Member Functions

template<typename Index , typename Scalar >
EIGEN_ALWAYS_INLINE void operator() (const internal::blas_data_mapper< Scalar, Index, ColMajor > &output_mapper, const TensorContractionParams &params, Index i, Index j, Index num_rows, Index num_cols) const
 

Member Function Documentation

◆ operator()()

template<typename Index , typename Scalar >
EIGEN_ALWAYS_INLINE void Eigen::NoOpOutputKernel::operator() ( const internal::blas_data_mapper< Scalar, Index, ColMajor > &  output_mapper,
const TensorContractionParams params,
Index  i,
Index  j,
Index  num_rows,
Index  num_cols 
) const
inline

Tensor contraction evaluator calls this kernel after finishing each block of output matrix. Output blocks belong to the 2-dimensional output tensor.

TensorContractionParams contains contraction dimensions information required to map output 2-d space into the expected output tensor space (potentially higher dimensional).

Parameters
[in]output_mapperAccess to output tensor memory
[in]paramsTensor contraction parameters
[in]iIndex of a first row available through output_mapper
[in]jIndex of a first column available through output_mapper
[in]num_rowsNumber of available rows
[in]num_colsNumber of available columns
294  {
295  EIGEN_UNUSED_VARIABLE(output_mapper);
299  EIGEN_UNUSED_VARIABLE(num_rows);
300  EIGEN_UNUSED_VARIABLE(num_cols);
301  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:966
dictionary params
Definition: Particles2023AnalysisHung.py:35
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References EIGEN_UNUSED_VARIABLE, i, j, and Particles2023AnalysisHung::params.


The documentation for this struct was generated from the following file: