![]() |
|
Functions | |
def | plot_result_GL (gl_file) |
Plot the GL data. More... | |
def | predict_model (file_name, num_nodes, num_layer) |
Train and evaluate a neural network model for angle of repose prediction. More... | |
def | random_forest (file_name) |
Train and evaluate a random forest model for angle of repose prediction. More... | |
def | plot_4d (file_name) |
Plot a 3D scatter plot of the training data. More... | |
def | plot_relationship (file_name, save) |
Plot the relationship between input parameters and the angle of repose. More... | |
def | get_correlation (file_name) |
def | write_calibration_script (str var, str material) |
Generate a calibration script for simulation. More... | |
Variables | |
dictionary | params |
string | file_name_eskal = "Eskal150NN.csv" |
string | file_name_sand = "SandNN.csv" |
string | file_name = "SandNN.csv" |
def | res = predict_model(file_name, j, i) |
string | out = str(i) + ',' + str(j) + ',' + str(res) + "\n" |
def Particles2023AnalysisHung.get_correlation | ( | file_name | ) |
@brief Calculate the correlation between input parameters and the angle of repose. This function calculates the correlation matrix between input parameters and the angle of repose. @param[in] file_name Path to the input data file. @return The correlation matrix.
def Particles2023AnalysisHung.plot_4d | ( | file_name | ) |
Plot a 3D scatter plot of the training data.
This function creates a 3D scatter plot for the first three dimensions of the data, using angle of repose for color coding.
[in] | file_name | Path to the input data file. |
def Particles2023AnalysisHung.plot_relationship | ( | file_name, | |
save | |||
) |
Plot the relationship between input parameters and the angle of repose.
This function creates scatter plots to visualize the relationship between each input parameter and the angle of repose.
[in] | file_name | Path to the input data file. |
[in] | save | Path to save the generated plot. |
def Particles2023AnalysisHung.plot_result_GL | ( | gl_file | ) |
Plot the GL data.
This function reads the data from a given file and plots the data.
[in] | gl_file | Path to the GL data file. |
def Particles2023AnalysisHung.predict_model | ( | file_name, | |
num_nodes, | |||
num_layer | |||
) |
Train and evaluate a neural network model for angle of repose prediction.
This function trains a neural network model using the given data and evaluates its performance.
[in] | file_name | Path to the input data file. |
[in] | num_nodes | Number of nodes in the hidden layers of the neural network. |
[in] | num_layer | Number of hidden layers in the neural network. |
References Eigen::internal.print(), Eigen.Sequential, and compute_granudrum_aor.str.
def Particles2023AnalysisHung.random_forest | ( | file_name | ) |
Train and evaluate a random forest model for angle of repose prediction.
This function trains a random forest model using the given data and evaluates its performance.
[in] | file_name | Path to the input data file. |
References abs(), format(), and Eigen::internal.print().
def Particles2023AnalysisHung.write_calibration_script | ( | str | var, |
str | material | ||
) |
Generate a calibration script for simulation.
This function generates a calibration script for simulation based on the provided parameters.
[in] | var | String containing the parameters for the simulation. |
[in] | material | The material type for the simulation. |
References format().
string Particles2023AnalysisHung.file_name = "SandNN.csv" |
Referenced by create_fluid_and_solid_surface_mesh_from_fluid_xda_mesh(), InterfaceProblem< ELEMENT, TIMESTEPPER >.doc_solution(), oomph::LineVisualiser.LineVisualiser(), oomph::StreamfunctionProblem.my_output(), oomph::IterativeLinearSolver.open_convergence_history_file_stream(), PolarNSProblem< ELEMENT >.output_streamfunction(), PoissonProblem< ELEMENT >.read_custom_distribution_from_file(), PoissonProblem< ELEMENT >.save_custom_distribution_to_file(), oomph::LineVisualiser.setup_from_file(), inflowFromPeriodic.writeXBallsScript(), and ChuteWithPeriodicInflow.writeXBallsScript().
string Particles2023AnalysisHung.file_name_eskal = "Eskal150NN.csv" |
string Particles2023AnalysisHung.file_name_sand = "SandNN.csv" |
dictionary Particles2023AnalysisHung.params |
Referenced by oomph::BlackBoxFDNewtonSolver.black_box_fd_newton_solve(), Eigen::TensorEvaluator< const TensorBroadcastingOp< Broadcast, ArgType >, Device >.block(), Eigen::TensorEvaluator< const TensorBroadcastingOp< Broadcast, ArgType >, Device >.blockBroadcastingParams(), Eigen::TensorEvaluator< const TensorBroadcastingOp< Broadcast, ArgType >, Device >.BroadcastBlockAlongBcastDim(), oomph::SarahBL.buckled_ring_residual(), SarahBL.buckled_ring_residual(), oomph::SarahBL.exact_soln(), SarahBL.exact_soln(), oomph::SarahBL.full_exact_soln(), SarahBL.full_exact_soln(), oomph::BlackBoxFDNewtonSolver.line_search(), main(), Eigen::NoOpOutputKernel.operator()(), and GlobalFct.plot_it().
def Particles2023AnalysisHung.res = predict_model(file_name, j, i) |