![]() |
|
Functions | |
void | gll_nodes (const unsigned &Nnode, Vector< double > &x) |
Calculates the Gauss Lobatto Legendre abscissas for degree p = NNode-1. More... | |
void | gll_nodes (const unsigned &Nnode, Vector< double > &x, Vector< double > &w) |
void | gl_nodes (const unsigned &Nnode, Vector< double > &x) |
void | gl_nodes (const unsigned &Nnode, Vector< double > &x, Vector< double > &w) |
double | legendre (const unsigned &p, const double &x) |
void | legendre_vector (const unsigned &p, const double &x, Vector< double > &polys) |
double | dlegendre (const unsigned &p, const double &x) |
double | ddlegendre (const unsigned &p, const double &x) |
double | jacobi (const int &alpha, const int &beta, const unsigned &p, const double &x) |
Calculate the Jacobi polnomials. More... | |
void | jacobi (const int &alpha, const int &beta, const unsigned &p, const double &x, Vector< double > &polys) |
Calculate the Jacobi polnomials all in one goe. More... | |
Variables | |
const double | eps = 1.0e-15 |
Calculates second derivative of Legendre polynomial of degree p at x using three term recursive formula.
References i, p, and plotDoE::x.
Referenced by gll_nodes(), oomph::PRefineableQElement< 3, INITIAL_NNODE_1D >::oc_hang_helper(), oomph::OneDimensionalLegendreDShape< NNODE_1D >::OneDimensionalLegendreDShape(), oomph::OneDLegendreDShapeParam::OneDLegendreDShapeParam(), and oomph::PRefineableQElement< 2, INITIAL_NNODE_1D >::quad_hang_helper().
Calculates first derivative of Legendre polynomial of degree p at x using three term recursive formula. \( nP_{n+1}^{'} = (2n+1)xP_{n}^{'} - (n+1)P_{n-1}^{'} \)
References n, p, and plotDoE::x.
Referenced by gl_nodes(), gll_nodes(), oomph::PRefineableQElement< 3, INITIAL_NNODE_1D >::oc_hang_helper(), oomph::OneDimensionalLegendreDShape< NNODE_1D >::OneDimensionalLegendreDShape(), oomph::OneDimensionalLegendreShape< NNODE_1D >::OneDimensionalLegendreShape(), oomph::OneDimensionalModalDShape::OneDimensionalModalDShape(), oomph::OneDLegendreDShapeParam::OneDLegendreDShapeParam(), oomph::OneDLegendreShapeParam::OneDLegendreShapeParam(), and oomph::PRefineableQElement< 2, INITIAL_NNODE_1D >::quad_hang_helper().
References cos(), dlegendre(), eps, boost::multiprecision::fabs(), j, legendre(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, p, oomph::MathematicalConstants::Pi, sqrt(), and plotDoE::x.
Referenced by oomph::GaussLegendre< 1, NPTS_1D >::GaussLegendre(), oomph::GaussLegendre< 2, NPTS_1D >::GaussLegendre(), oomph::GaussLegendre< 3, NPTS_1D >::GaussLegendre(), and gl_nodes().
void oomph::Orthpoly::gl_nodes | ( | const unsigned & | Nnode, |
Vector< double > & | x, | ||
Vector< double > & | w | ||
) |
References dlegendre(), gl_nodes(), i, p, w, and plotDoE::x.
Calculates the Gauss Lobatto Legendre abscissas for degree p = NNode-1.
References cos(), ddlegendre(), dlegendre(), eps, boost::multiprecision::fabs(), j, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, p, oomph::MathematicalConstants::Pi, sqrt(), and plotDoE::x.
Referenced by oomph::OneDimensionalLegendreShape< NNODE_1D >::calculate_nodal_positions(), oomph::OneDLegendreShapeParam::calculate_nodal_positions(), oomph::GaussLobattoLegendre< 1, NPTS_1D >::GaussLobattoLegendre(), oomph::GaussLobattoLegendre< 2, NPTS_1D >::GaussLobattoLegendre(), oomph::GaussLobattoLegendre< 3, NPTS_1D >::GaussLobattoLegendre(), oomph::PRefineableQElement< 1, INITIAL_NNODE_1D >::get_node_at_local_coordinate(), oomph::PRefineableQElement< 2, INITIAL_NNODE_1D >::get_node_at_local_coordinate(), oomph::PRefineableQElement< 3, INITIAL_NNODE_1D >::get_node_at_local_coordinate(), gll_nodes(), oomph::PRefineableQElement< 3, INITIAL_NNODE_1D >::oc_hang_helper(), and oomph::PRefineableQElement< 2, INITIAL_NNODE_1D >::quad_hang_helper().
void oomph::Orthpoly::gll_nodes | ( | const unsigned & | Nnode, |
Vector< double > & | x, | ||
Vector< double > & | w | ||
) |
References gll_nodes(), i, legendre(), p, w, and plotDoE::x.
|
inline |
Calculate the Jacobi polnomials.
References alpha, beta, n, p, Problem_Parameter::P0, and plotDoE::x.
|
inline |
Calculate the Jacobi polnomials all in one goe.
References alpha, beta, n, p, Problem_Parameter::P0, and plotDoE::x.
Calculates Legendre polynomial of degree p at x using the three term recurrence relation \( (n+1) P_{n+1} = (2n+1)xP_{n} - nP_{n-1} \)
References n, p, and plotDoE::x.
Referenced by gl_nodes(), gll_nodes(), oomph::OneDimensionalLegendreDShape< NNODE_1D >::OneDimensionalLegendreDShape(), oomph::OneDimensionalLegendreShape< NNODE_1D >::OneDimensionalLegendreShape(), oomph::OneDimensionalModalDShape::OneDimensionalModalDShape(), oomph::OneDimensionalModalShape::OneDimensionalModalShape(), oomph::OneDLegendreDShapeParam::OneDLegendreDShapeParam(), and oomph::OneDLegendreShapeParam::OneDLegendreShapeParam().
|
inline |
Calculates Legendre polynomial of degree p at x using three term recursive formula. Returns all polynomials up to order p in the vector
References n, p, and plotDoE::x.
const double oomph::Orthpoly::eps = 1.0e-15 |
Referenced by gl_nodes(), gll_nodes(), oomph::OneDimensionalLegendreDShape< NNODE_1D >::OneDimensionalLegendreDShape(), oomph::OneDimensionalLegendreShape< NNODE_1D >::OneDimensionalLegendreShape(), oomph::OneDLegendreDShapeParam::OneDLegendreDShapeParam(), and oomph::OneDLegendreShapeParam::OneDLegendreShapeParam().