oomph::NonLinearElasticitySmoothMesh< ELEMENT > Class Template Reference

#include <mesh_smooth.h>

+ Inheritance diagram for oomph::NonLinearElasticitySmoothMesh< ELEMENT >:

Public Member Functions

void operator() (SolidMesh *orig_mesh_pt, SolidMesh *copy_of_mesh_pt, const Vector< unsigned > &controlled_boundary_id, const unsigned &max_steps=100000000)
 
void operator() (SolidMesh *orig_mesh_pt, SolidMesh *copy_of_mesh_pt, const Vector< unsigned > &controlled_boundary_id, DocInfo doc_info, const unsigned &max_steps=100000000)
 
 ~NonLinearElasticitySmoothMesh ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 
void backup ()
 
void reset ()
 
void doc_solution (DocInfo &doc_info)
 Doc the solution. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Attributes

Vector< Vector< double > > Orig_node_pos
 Original nodal positions. More...
 
Vector< Vector< double > > Backup_node_pos
 Backup nodal positions. More...
 
SolidMeshOrig_mesh_pt
 Bulk original mesh. More...
 
SolidMeshDummy_mesh_pt
 Copy of mesh to work on. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_after_newton_solve ()
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class oomph::NonLinearElasticitySmoothMesh< ELEMENT >

/////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// Auxiliary Problem to smooth a SolidMesh by adjusting the internal nodal positions via the solution of a nonlinear solid mechanics problem. The mesh will typically have been created with an unstructured mesh generator that uses a low-order (simplex) representation of the element geometry; some of the nodes, typically non-vertex nodes on the domain's curvilinear boundaries, were then moved to their new position to provide a more accurate representation of the geometry. This class should be used to deal with elements that may have become inverted during the node motion.
Important assumption:

  • It is important that the Lagrangian coordinates of all nodes still indicate their original position, i.e. their position before (some of) them were moved to their new position. This is because we apply the boundary displacements in small increments.

Template argument specifies type of element. It must be a pure solid mechanics element! This shouldn't cause any problems since mesh smoothing operations tend to be performed off-line so the mesh may as well be built with pure solid elements even if it is ultimately to be used with other element types. (This restriction could easily be avoided but would require double templating and would generally be messy...)

Constructor & Destructor Documentation

◆ ~NonLinearElasticitySmoothMesh()

template<class ELEMENT >
oomph::NonLinearElasticitySmoothMesh< ELEMENT >::~NonLinearElasticitySmoothMesh ( )
inline

Destructor (empty)

390 {}

Member Function Documentation

◆ actions_before_newton_solve()

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update nodal positions in main mesh – also moves the nodes of the FaceElements that impose the new position

Reimplemented from oomph::Problem.

396  {
397  oomph_info << "Solving nonlinear smoothing problem for scale "
399  unsigned nnod = Orig_mesh_pt->nnode();
400  for (unsigned j = 0; j < nnod; j++)
401  {
402  SolidNode* nod_pt = dynamic_cast<SolidNode*>(Orig_mesh_pt->node_pt(j));
403  unsigned dim = nod_pt->ndim();
404  for (unsigned i = 0; i < dim; i++)
405  {
406  nod_pt->x(i) =
408  (Orig_node_pos[j][i] - nod_pt->xi(i));
409  }
410  }
411  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
unsigned long nnode() const
Return number of nodes in the mesh.
Definition: mesh.h:596
Vector< Vector< double > > Orig_node_pos
Original nodal positions.
Definition: mesh_smooth.h:486
SolidMesh * Orig_mesh_pt
Bulk original mesh.
Definition: mesh_smooth.h:492
SolidNode * node_pt(const unsigned long &n)
Return a pointer to the n-th global SolidNode.
Definition: mesh.h:2594
double Scale
Definition: mesh_smooth.h:59
OomphInfo oomph_info
Definition: oomph_definitions.cc:319
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References i, j, oomph::Node::ndim(), oomph::Mesh::nnode(), oomph::SolidMesh::node_pt(), oomph::oomph_info, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Orig_mesh_pt, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Orig_node_pos, oomph::Helper_namespace_for_mesh_smoothing::Scale, oomph::Node::x(), and oomph::SolidNode::xi().

◆ backup()

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::backup ( )
inline

Backup nodal positions in dummy mesh to allow for reset after non-convergence of Newton method

417  {
418  unsigned nnod = Dummy_mesh_pt->nnode();
419  Backup_node_pos.resize(nnod);
420  for (unsigned j = 0; j < nnod; j++)
421  {
422  SolidNode* nod_pt = dynamic_cast<SolidNode*>(Dummy_mesh_pt->node_pt(j));
423  unsigned dim = nod_pt->ndim();
424  Backup_node_pos[j].resize(dim);
425  for (unsigned i = 0; i < dim; i++)
426  {
427  Backup_node_pos[j][i] = nod_pt->x(i);
428  }
429  }
430  }
SolidMesh * Dummy_mesh_pt
Copy of mesh to work on.
Definition: mesh_smooth.h:495
Vector< Vector< double > > Backup_node_pos
Backup nodal positions.
Definition: mesh_smooth.h:489

References oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Backup_node_pos, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Dummy_mesh_pt, i, j, oomph::Node::ndim(), oomph::Mesh::nnode(), oomph::SolidMesh::node_pt(), and oomph::Node::x().

Referenced by oomph::NonLinearElasticitySmoothMesh< ELEMENT >::operator()().

◆ doc_solution()

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::doc_solution ( DocInfo doc_info)
inline

Doc the solution.

451  {
452  // Bail out
453  if (!doc_info.is_doc_enabled()) return;
454 
455  std::ofstream some_file;
456  std::ostringstream filename;
457 
458  // Number of plot points
459  unsigned npts;
460  npts = 5;
461 
462  filename << doc_info.directory() << "/smoothing_soln" << doc_info.number()
463  << ".dat";
464 
465  some_file.open(filename.str().c_str());
466  Dummy_mesh_pt->output(some_file, npts);
467  some_file.close();
468 
469  // Check for inverted elements
470  bool mesh_has_inverted_elements;
471  std::ofstream inverted_fluid_elements;
472  filename.str("");
473  filename << doc_info.directory() << "/inverted_elements_during_smoothing"
474  << doc_info.number() << ".dat";
475  some_file.open(filename.str().c_str());
476  Dummy_mesh_pt->check_inverted_elements(mesh_has_inverted_elements,
477  some_file);
478  some_file.close();
479  oomph_info << "Dummy mesh does ";
480  if (!mesh_has_inverted_elements) oomph_info << "not ";
481  oomph_info << "have inverted elements. \n";
482  }
void check_inverted_elements(bool &mesh_has_inverted_elements, std::ofstream &inverted_element_file)
Definition: mesh.cc:870
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
string filename
Definition: MergeRestartFiles.py:39

References oomph::Mesh::check_inverted_elements(), oomph::DocInfo::directory(), oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Dummy_mesh_pt, MergeRestartFiles::filename, oomph::DocInfo::is_doc_enabled(), oomph::DocInfo::number(), oomph::oomph_info, and oomph::Mesh::output().

Referenced by oomph::NonLinearElasticitySmoothMesh< ELEMENT >::operator()().

◆ operator()() [1/2]

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::operator() ( SolidMesh orig_mesh_pt,
SolidMesh copy_of_mesh_pt,
const Vector< unsigned > &  controlled_boundary_id,
const unsigned max_steps = 100000000 
)
inline

Functor to update the nodal positions in SolidMesh pointed to by orig_mesh_pt in response to the displacement of some of its nodes relative to their original position which must still be indicated by the nodes' Lagrangian position. copy_of_mesh_pt must be a deep copy of orig_mesh_pt, with the same boundary coordinates etc. This mesh is used as workspace and can be deleted afterwards. The vector controlled_boundary_id contains the ids of the mesh boundaries in orig_mesh_pt whose position is supposed to remain fixed (while the other nodes are re-positioned to avoid the inversion of elements). The final optional argument specifies the max. number of increments in which the mesh boundary is deformed.

116  {
117  // Dummy doc_info
118  DocInfo doc_info;
119  doc_info.disable_doc();
120  NonLinearElasticitySmoothMesh<ELEMENT>()(orig_mesh_pt,
121  copy_of_mesh_pt,
122  controlled_boundary_id,
123  doc_info,
124  max_steps);
125  }

References oomph::DocInfo::disable_doc().

◆ operator()() [2/2]

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::operator() ( SolidMesh orig_mesh_pt,
SolidMesh copy_of_mesh_pt,
const Vector< unsigned > &  controlled_boundary_id,
DocInfo  doc_info,
const unsigned max_steps = 100000000 
)
inline

Functor to update the nodal positions in SolidMesh pointed to by orig_mesh_pt in response to the displacement of some of its nodes relative to their original position which must still be indicated by the nodes' Lagrangian position. copy_of_mesh_pt must be a deep copy of orig_mesh_pt, with the same boundary coordinates etc. This mesh is used as workspace and can be deleted afterwards. The vector controlled_boundary_id contains the ids of the mesh boundaries in orig_mesh_pt whose position is supposed to remain fixed (while the other nodes are re-positioned to avoid the inversion of elements). The DocInfo allows allows the output of the intermediate meshes. The final optional argument specifies the max. number of increments in which the mesh boundary is deformed.

146  {
147  // Make original mesh available to everyone...
148  Orig_mesh_pt = orig_mesh_pt;
149  Dummy_mesh_pt = copy_of_mesh_pt;
150 
151  unsigned nnode = orig_mesh_pt->nnode();
152  unsigned nbound = orig_mesh_pt->nboundary();
153  unsigned dim = orig_mesh_pt->node_pt(0)->ndim();
154 
155  // Add to problem's collection of sub-meshes
157 
158  // Backup original nodal positions with boundary nodes snapped
159  // into quadratic position; will soon move these back to
160  // undeformed positon and gently move them back towards
161  // their original position
162  unsigned nnod = Orig_mesh_pt->nnode();
163  Orig_node_pos.resize(nnod);
164  for (unsigned j = 0; j < nnod; j++)
165  {
166  Orig_node_pos[j].resize(dim);
167  SolidNode* nod_pt = dynamic_cast<SolidNode*>(Orig_mesh_pt->node_pt(j));
168  for (unsigned i = 0; i < dim; i++)
169  {
170  Orig_node_pos[j][i] = nod_pt->x(i);
171  }
172  }
173 
174  // Meshes containing the face elements that represent the
175  // quadratic surface
176  Vector<SolidMesh*> quadratic_surface_mesh_pt(nbound);
177 
178  // GeomObject incarnations
179  Vector<MeshAsGeomObject*> quadratic_surface_geom_obj_pt(nbound);
180 
181 
182  // Create FaceElements on original mesh to define
183  //-------------------------------------------------
184  // the desired boundary shape
185  //---------------------------
186 
187  unsigned n = controlled_boundary_id.size();
188  for (unsigned i = 0; i < n; i++)
189  {
190  // Get boundary ID
191  unsigned b = controlled_boundary_id[i];
192 
193  // Create mesh for surface elements
194  quadratic_surface_mesh_pt[b] = new SolidMesh;
195 
196  // How many bulk elements are adjacent to boundary b?
197  unsigned n_element = Orig_mesh_pt->nboundary_element(b);
198 
199  // Loop over the bulk elements adjacent to boundary b
200  for (unsigned e = 0; e < n_element; e++)
201  {
202  // Get pointer to the bulk element that is adjacent to boundary b
203  ELEMENT* bulk_elem_pt =
204  dynamic_cast<ELEMENT*>(Orig_mesh_pt->boundary_element_pt(b, e));
205 
206  // What is the index of the face of the element e along boundary b
207  int face_index = Orig_mesh_pt->face_index_at_boundary(b, e);
208 
209  // Create new element
210  SolidTractionElement<ELEMENT>* el_pt =
211  new SolidTractionElement<ELEMENT>(bulk_elem_pt, face_index);
212 
213  // Add it to the mesh
214  quadratic_surface_mesh_pt[b]->add_element_pt(el_pt);
215 
216  // Specify boundary number
217  el_pt->set_boundary_number_in_bulk_mesh(b);
218  }
219 
220  // Create GeomObject incarnation
221  quadratic_surface_geom_obj_pt[b] =
222  new MeshAsGeomObject(quadratic_surface_mesh_pt[b]);
223  }
224 
225 
226  // Now create Lagrange multiplier elements on dummy mesh
227  //-------------------------------------------------------
228  Vector<SolidMesh*> dummy_lagrange_multiplier_mesh_pt(n);
229  for (unsigned i = 0; i < n; i++)
230  {
231  // Get boundary ID
232  unsigned b = controlled_boundary_id[i];
233 
234  // Make new mesh
235  dummy_lagrange_multiplier_mesh_pt[i] = new SolidMesh;
236 
237  // How many bulk elements are adjacent to boundary b?
238  unsigned n_element = Dummy_mesh_pt->nboundary_element(b);
239 
240  // Loop over the bulk fluid elements adjacent to boundary b?
241  for (unsigned e = 0; e < n_element; e++)
242  {
243  // Get pointer to the bulk fluid element that is adjacent to boundary
244  // b
245  ELEMENT* bulk_elem_pt =
246  dynamic_cast<ELEMENT*>(Dummy_mesh_pt->boundary_element_pt(b, e));
247 
248  // Find the index of the face of element e along boundary b
249  int face_index = Dummy_mesh_pt->face_index_at_boundary(b, e);
250 
251  // Create new element
252  ImposeDisplacementByLagrangeMultiplierElement<ELEMENT>* el_pt =
253  new ImposeDisplacementByLagrangeMultiplierElement<ELEMENT>(
254  bulk_elem_pt, face_index);
255 
256  // Add it to the mesh
257  dummy_lagrange_multiplier_mesh_pt[i]->add_element_pt(el_pt);
258 
259  // Set the GeomObject that defines the boundary shape and set
260  // which bulk boundary we are attached to (needed to extract
261  // the boundary coordinate from the bulk nodes)
262  el_pt->set_boundary_shape_geom_object_pt(
263  quadratic_surface_geom_obj_pt[b], b);
264  }
265 
266  // Add sub mesh
267  add_sub_mesh(dummy_lagrange_multiplier_mesh_pt[i]);
268  }
269 
270 
271  // Combine the lot
273 
274  oomph_info << "Number of equations for nonlinear smoothing problem: "
275  << assign_eqn_numbers() << std::endl;
276 
277 
278  // Complete the build of the elements so they are fully functional
279  //----------------------------------------------------------------
280  unsigned n_element = Dummy_mesh_pt->nelement();
281  for (unsigned e = 0; e < n_element; e++)
282  {
283  // Upcast from GeneralisedElement to the present element
284  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Dummy_mesh_pt->element_pt(e));
285 
286  // Set the constitutive law for pseudo-elastic mesh deformation
287  el_pt->constitutive_law_pt() =
289 
290  } // end loop over elements
291 
292 
293  // Output initial configuration
294  doc_solution(doc_info);
295  doc_info.number()++;
296 
297  // Initial scale
300 
301 
302  // Increase scale of deformation until full range is reached
303  //----------------------------------------------------------
304  bool done = false;
305  unsigned count = 0;
306  while (!done)
307  {
308  // Increase scale
311 
312  // Backup current nodal positions in dummy mesh
313  backup();
314 
315  // Try it...
316  bool success = true;
317  try
318  {
319  // Avoid overshoot
321  {
323  }
324 
325  // Solve
326  newton_solve();
327  }
328  catch (oomph::NewtonSolverError&)
329  {
330  success = false;
334 
335  // Reset current nodal positions in dummy mesh
336  reset();
337  }
338 
339  // Output solution
340  if (success)
341  {
342  count++;
343  doc_solution(doc_info);
344  doc_info.number()++;
345  if (Helper_namespace_for_mesh_smoothing::Scale >= 1.0) done = true;
346  if (count == max_steps)
347  {
348  oomph_info << "Bailing out after " << count << " steps.\n";
349  done = true;
350  }
351  }
352  }
353 
354  oomph_info << "Done with Helper_namespace_for_mesh_smoothing::Scale="
356 
357  // Loop over nodes in actual mesh and assign new position
358  for (unsigned j = 0; j < nnode; j++)
359  {
360  // Get nodes
361  Node* orig_node_pt = orig_mesh_pt->node_pt(j);
362  Node* new_node_pt = Dummy_mesh_pt->node_pt(j);
363 
364  // Assign new position
365  for (unsigned i = 0; i < dim; i++)
366  {
367  orig_node_pt->x(i) = new_node_pt->x(i);
368  }
369  }
370 
371  // Now re-assign undeformed position
372  orig_mesh_pt->set_lagrangian_nodal_coordinates();
373 
374  // Cleanup
375  //--------
376  n = controlled_boundary_id.size();
377  for (unsigned i = 0; i < n; i++)
378  {
379  // Get boundary ID
380  unsigned b = controlled_boundary_id[i];
381 
382  // Kill meshes and GeomObject representations
383  delete quadratic_surface_mesh_pt[b];
384  delete quadratic_surface_geom_obj_pt[b];
385  delete dummy_lagrange_multiplier_mesh_pt[i];
386  }
387  }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Scalar * b
Definition: benchVecAdd.cpp:17
int face_index_at_boundary(const unsigned &b, const unsigned &e) const
Definition: mesh.h:896
unsigned nboundary_element(const unsigned &b) const
Return number of finite elements that are adjacent to boundary b.
Definition: mesh.h:878
FiniteElement * boundary_element_pt(const unsigned &b, const unsigned &e) const
Return pointer to e-th finite element on boundary b.
Definition: mesh.h:840
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
A class to handle errors in the Newton solver.
Definition: problem.h:2952
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
void backup()
Definition: mesh_smooth.h:416
void doc_solution(DocInfo &doc_info)
Doc the solution.
Definition: mesh_smooth.h:450
void reset()
Definition: mesh_smooth.h:435
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
void newton_solve()
Use Newton method to solve the problem.
Definition: problem.cc:8783
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
ConstitutiveLaw * Constitutive_law_pt
Create constitutive law (for smoothing by nonlinear elasticity)
Definition: mesh_smooth.h:55
double Scale_increment
Increment for scale factor for displacement of quadratic boundary.
Definition: mesh_smooth.h:62

References oomph::Problem::add_sub_mesh(), oomph::Problem::assign_eqn_numbers(), b, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::backup(), oomph::Mesh::boundary_element_pt(), oomph::Problem::build_global_mesh(), oomph::Helper_namespace_for_mesh_smoothing::Constitutive_law_pt, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::doc_solution(), oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Dummy_mesh_pt, e(), oomph::Mesh::element_pt(), oomph::Mesh::face_index_at_boundary(), i, j, n, oomph::Mesh::nboundary(), oomph::Mesh::nboundary_element(), oomph::Node::ndim(), oomph::Mesh::nelement(), oomph::Problem::newton_solve(), oomph::Mesh::nnode(), oomph::SolidMesh::node_pt(), oomph::DocInfo::number(), oomph::oomph_info, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Orig_mesh_pt, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Orig_node_pos, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::reset(), oomph::Helper_namespace_for_mesh_smoothing::Scale, oomph::Helper_namespace_for_mesh_smoothing::Scale_increment, oomph::FaceElement::set_boundary_number_in_bulk_mesh(), oomph::ImposeDisplacementByLagrangeMultiplierElement< ELEMENT >::set_boundary_shape_geom_object_pt(), oomph::SolidMesh::set_lagrangian_nodal_coordinates(), and oomph::Node::x().

◆ reset()

template<class ELEMENT >
void oomph::NonLinearElasticitySmoothMesh< ELEMENT >::reset ( )
inline

Reset nodal positions in dummy mesh to allow for restart of Newton method with reduced increment in Scale

436  {
437  unsigned nnod = Dummy_mesh_pt->nnode();
438  for (unsigned j = 0; j < nnod; j++)
439  {
440  SolidNode* nod_pt = dynamic_cast<SolidNode*>(Dummy_mesh_pt->node_pt(j));
441  unsigned dim = nod_pt->ndim();
442  for (unsigned i = 0; i < dim; i++)
443  {
444  nod_pt->x(i) = Backup_node_pos[j][i];
445  }
446  }
447  }

References oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Backup_node_pos, oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Dummy_mesh_pt, i, j, oomph::Node::ndim(), oomph::Mesh::nnode(), oomph::SolidMesh::node_pt(), and oomph::Node::x().

Referenced by oomph::NonLinearElasticitySmoothMesh< ELEMENT >::operator()().

Member Data Documentation

◆ Backup_node_pos

template<class ELEMENT >
Vector<Vector<double> > oomph::NonLinearElasticitySmoothMesh< ELEMENT >::Backup_node_pos
private

◆ Dummy_mesh_pt

◆ Orig_mesh_pt

◆ Orig_node_pos


The documentation for this class was generated from the following file: