AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER > Class Template Reference
+ Inheritance diagram for AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >:

Public Member Functions

 AxisymmetricLinearElasticityProblem ()
 
void actions_before_newton_solve ()
 Update before solve is empty. More...
 
void actions_after_newton_solve ()
 Update after solve is empty. More...
 
void actions_before_implicit_timestep ()
 Actions before implicit timestep. More...
 
void set_initial_conditions ()
 Set the initial conditions (history values) More...
 
void set_boundary_conditions ()
 Set the boundary conditions. More...
 
void doc_solution (DocInfo &doc_info)
 Doc the solution. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Member Functions

void assign_traction_elements ()
 Allocate traction elements on the bottom surface. More...
 

Private Attributes

MeshBulk_mesh_pt
 Pointer to the bulk mesh. More...
 
MeshSurface_mesh_pt
 Pointer to the mesh of traction elements. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT, class TIMESTEPPER>
class AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >

Class to validate time harmonic linear elasticity (Fourier decomposed)

Constructor & Destructor Documentation

◆ AxisymmetricLinearElasticityProblem()

template<class ELEMENT , class TIMESTEPPER >
AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::AxisymmetricLinearElasticityProblem

Constructor: Pass number of elements in r and z directions, boundary locations and whether we are doing an impulsive start or not

Problem constructor: Pass number of elements in coordinate directions and size of domain.

278 {
279  //Allocate the timestepper
280  add_time_stepper_pt(new TIMESTEPPER());
281 
282  //Now create the mesh
290  time_stepper_pt());
291 
292  //Create the surface mesh of traction elements
293  Surface_mesh_pt=new Mesh;
295 
296  //Set the boundary conditions
298 
299  // Complete the problem setup to make the elements fully functional
300 
301  // Loop over the elements
302  unsigned n_el = Bulk_mesh_pt->nelement();
303  for(unsigned e=0;e<n_el;e++)
304  {
305  // Cast to a bulk element
306  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
307 
308  // Set the body force
309  el_pt->body_force_fct_pt() = &Global_Parameters::body_force;
310 
311  // Set the pointer to Poisson's ratio
312  el_pt->nu_pt() = &Global_Parameters::Nu;
313 
314  // Set the pointer to non-dim Young's modulus
315  el_pt->youngs_modulus_pt() = &Global_Parameters::E;
316 
317  // Set the pointer to the Lambda parameter
318  el_pt->lambda_sq_pt() = &Global_Parameters::Omega_sq;
319 
320  }// end_loop_over_elements
321 
322  // Loop over the traction elements
323  unsigned n_traction = Surface_mesh_pt->nelement();
324  for(unsigned e=0;e<n_traction;e++)
325  {
326  // Cast to a surface element
328  el_pt =
330  <ELEMENT>* >(Surface_mesh_pt->element_pt(e));
331 
332  // Set the applied traction
334 
335  }// end_loop_over_traction_elements
336 
337  // Add the submeshes to the problem
340 
341  // Now build the global mesh
343 
344  // Assign equation numbers
345  cout << assign_eqn_numbers() << " equations assigned" << std::endl;
346 
347 
348  //{
349  // // Create animation
350  // unsigned ntime=20;
351  // double displ_r=0;
352  // char filename[30];
353  // unsigned n_node=Bulk_mesh_pt->nnode();
354  // Node* nod_pt=0;
355 
356  // for (unsigned it=0;it<ntime;it++)
357  // {
358  // sprintf(filename,"animation%i.dat",it);
359  // Global_Parameters::Output_stream.open(filename);
360  // double t=(2*MathematicalConstants::Pi)*(double(it)/(ntime-1));
361  // std::cout << t << std::endl;
362  //
363  // // Loop over nodes of the mesh
364  // for(unsigned j=0;j<n_node;j++)
365  // {
366  // nod_pt=Bulk_mesh_pt->node_pt(j);
367  // Vector<double> x(2);
368  // x[0]=nod_pt->x(0);
369  // x[1]=nod_pt->x(1);
370 
371  // displ_r = Global_Parameters::u_r(t,x);
372  // Global_Parameters::Output_stream << x[0] << ' ';
373  // Global_Parameters::Output_stream << x[1] << ' ';
374  // Global_Parameters::Output_stream << displ_r << std::endl;
375  // }
376  // Global_Parameters::Output_stream.close();
377  // }
378  //} //end_of_animation
379 
380 } // end_of_constructor
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Mesh * Bulk_mesh_pt
Pointer to the bulk mesh.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:264
Mesh * Surface_mesh_pt
Pointer to the mesh of traction elements.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:267
void assign_traction_elements()
Allocate traction elements on the bottom surface.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:388
void set_boundary_conditions()
Set the boundary conditions.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:574
Definition: axisym_linear_elasticity_traction_elements.h:81
void(*&)(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction) traction_fct_pt()
Reference to the traction function pointer.
Definition: axisym_linear_elasticity_traction_elements.h:150
Definition: mesh.h:67
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Definition: problem.cc:1545
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
TimeStepper *& time_stepper_pt()
Definition: problem.h:1524
Definition: rectangular_quadmesh.template.h:59
double Rmax
Set up max r coordinate.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:77
double Zmin
Set up min z coordinate.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:74
unsigned Nz
Number of elements in z-direction.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:62
double Nu
Define Poisson's ratio Nu.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:46
double Zmax
Set up max z coordinate.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:80
void boundary_traction(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &result)
The traction function at r=Rmin: (t_r, t_z, t_theta)
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:83
void body_force(const double &time, const Vector< double > &x, Vector< double > &result)
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:96
double Rmin
Set up min r coordinate.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:71
double E
Define the non-dimensional Young's modulus.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:49
unsigned Nr
Number of elements in r-direction.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:59
double Omega_sq
Square of the frequency of the time dependence.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:56

References Global_Parameters::body_force(), Global_Parameters::boundary_traction(), e(), Global_Parameters::E, Global_Parameters::Nr, Global_Parameters::Nu, Global_Parameters::Nz, Global_Parameters::Omega_sq, Global_Parameters::Rmax, Global_Parameters::Rmin, oomph::AxisymmetricLinearElasticityTractionElement< ELEMENT >::traction_fct_pt, Global_Parameters::Zmax, and Global_Parameters::Zmin.

Member Function Documentation

◆ actions_after_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::actions_after_newton_solve ( )
inlinevirtual

Update after solve is empty.

Reimplemented from oomph::Problem.

239 {}

◆ actions_before_implicit_timestep()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::actions_before_implicit_timestep ( )
inlinevirtual

Actions before implicit timestep.

Reimplemented from oomph::Problem.

243  {
244  // Just need to update the boundary conditions
246  }

◆ actions_before_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::actions_before_newton_solve ( )
inlinevirtual

Update before solve is empty.

Reimplemented from oomph::Problem.

236 {}

◆ assign_traction_elements()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::assign_traction_elements
private

Allocate traction elements on the bottom surface.

Make traction elements along the boundary r=Rmin.

389 {
390  unsigned bound, n_neigh;
391 
392  // How many bulk elements are next to boundary 3
393  bound=3;
394  n_neigh = Bulk_mesh_pt->nboundary_element(bound);
395 
396  // Now loop over bulk elements and create the face elements
397  for(unsigned n=0;n<n_neigh;n++)
398  {
399  // Create the face element
400  FiniteElement *traction_element_pt
404 
405  // Add to mesh
406  Surface_mesh_pt->add_element_pt(traction_element_pt);
407  }
408 
409 } // end of assign_traction_elements
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Definition: elements.h:1313
int face_index_at_boundary(const unsigned &b, const unsigned &e) const
Definition: mesh.h:896
unsigned nboundary_element(const unsigned &b) const
Return number of finite elements that are adjacent to boundary b.
Definition: mesh.h:878
FiniteElement * boundary_element_pt(const unsigned &b, const unsigned &e) const
Return pointer to e-th finite element on boundary b.
Definition: mesh.h:840
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617

References n.

◆ doc_solution()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::doc_solution ( DocInfo doc_info)

Doc the solution.

665 {
666  ofstream some_file;
667  char filename[100];
668 
669  // Number of plot points
670  unsigned npts=10;
671 
672  // Output solution
673  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
674  doc_info.number());
675  some_file.open(filename);
676  Bulk_mesh_pt->output(some_file,npts);
677  some_file.close();
678 
679  // Output exact solution
680  sprintf(filename,"%s/exact_soln%i.dat",doc_info.directory().c_str(),
681  doc_info.number());
682  some_file.open(filename);
683  Bulk_mesh_pt->output_fct(some_file,npts,time_pt()->time(),
685  some_file.close();
686 
687  // Doc error
688  double error=0.0;
689  double norm=0.0;
690  sprintf(filename,"%s/error%i.dat",doc_info.directory().c_str(),
691  doc_info.number());
692  some_file.open(filename);
693  Bulk_mesh_pt->compute_error(some_file,
695  time_pt()->time(),
696  error,norm);
697  some_file.close();
698 
699  // Doc error norm:
700  cout << "\nNorm of error: " << sqrt(error) << std::endl;
701  cout << "Norm of solution: " << sqrt(norm) << std::endl << std::endl;
702  cout << std::endl;
703 } // end_of_doc_solution
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt)
Output a given Vector function at f(n_plot) points in each element.
Definition: mesh.cc:2199
virtual void compute_error(std::ostream &outfile, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, double &error, double &norm)
Definition: mesh.h:1140
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
Time *& time_pt()
Return a pointer to the global time object.
Definition: problem.h:1504
double & time()
Return the current value of continuous time.
Definition: problem.cc:11531
void exact_solution(const double &time, const Vector< double > &x, Vector< double > &u)
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:203
string filename
Definition: MergeRestartFiles.py:39
int error
Definition: calibrate.py:297

References oomph::DocInfo::directory(), calibrate::error, Global_Parameters::exact_solution(), MergeRestartFiles::filename, oomph::DocInfo::number(), and sqrt().

◆ set_boundary_conditions()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::set_boundary_conditions

Set the boundary conditions.

575 {
576  // Set the boundary conditions for this problem: All nodes are
577  // free by default -- just pin & set the ones that have Dirichlet
578  // conditions here
579 
580  // storage for nodal position
581  Vector<double> x(2);
582 
583  // Storage for prescribed displacements
584  Vector<double> u(9);
585 
586  // Storage for pointers to the functions defining the displacement,
587  // velocity and acceleration components
589  initial_value_fct(3);
591  initial_veloc_fct(3);
593  initial_accel_fct(3);
594 
595  // Set the displacement function pointers
596  initial_value_fct[0]=&Global_Parameters::u_r;
597  initial_value_fct[1]=&Global_Parameters::u_z;
598  initial_value_fct[2]=&Global_Parameters::u_theta;
599 
600  // Set the velocity function pointers
601  initial_veloc_fct[0]=&Global_Parameters::d_u_r_dt;
602  initial_veloc_fct[1]=&Global_Parameters::d_u_z_dt;
603  initial_veloc_fct[2]=&Global_Parameters::d_u_theta_dt;
604 
605  // Set the acceleration function pointers
606  initial_accel_fct[0]=&Global_Parameters::d2_u_r_dt2;
607  initial_accel_fct[1]=&Global_Parameters::d2_u_z_dt2;
608  initial_accel_fct[2]=&Global_Parameters::d2_u_theta_dt2;
609 
610 
611  // Now set displacements on boundaries 0 (z=Zmin),
612  //------------------------------------------------
613  // 1 (r=Rmax) and 2 (z=Zmax)
614  //--------------------------
615  for (unsigned ibound=0;ibound<=2;ibound++)
616  {
617  unsigned num_nod=Bulk_mesh_pt->nboundary_node(ibound);
618  for (unsigned inod=0;inod<num_nod;inod++)
619  {
620  // Get pointer to node
621  Node* nod_pt=Bulk_mesh_pt->boundary_node_pt(ibound,inod);
622 
623  // Pinned in r, z and theta
624  nod_pt->pin(0);nod_pt->pin(1);nod_pt->pin(2);
625 
626  // Direct assigment of just the current values...
627  bool use_direct_assigment=true;
628  if (use_direct_assigment)
629  {
630  // get r and z coordinates
631  x[0]=nod_pt->x(0);
632  x[1]=nod_pt->x(1);
633 
634  // Compute the value of the exact solution at the nodal point
636 
637  // Set the displacements
638  nod_pt->set_value(0,u[0]);
639  nod_pt->set_value(1,u[1]);
640  nod_pt->set_value(2,u[2]);
641  }
642  // ...or the history values too:
643  else
644  {
645  // Upcast the timestepper to the specific type we have
646  TIMESTEPPER* timestepper_pt =
647  dynamic_cast<TIMESTEPPER*>(time_stepper_pt());
648 
649  // Assign the history values
650  timestepper_pt->assign_initial_data_values(nod_pt,
651  initial_value_fct,
652  initial_veloc_fct,
653  initial_accel_fct);
654  }
655  }
656  } // end_of_loop_over_boundary_nodes
657 } // end_of_set_boundary_conditions
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
unsigned long nboundary_node(const unsigned &ibound) const
Return number of nodes on a particular boundary.
Definition: mesh.h:833
Node *& boundary_node_pt(const unsigned &b, const unsigned &n)
Return pointer to node n on boundary b.
Definition: mesh.h:493
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
double d2_u_z_dt2(const double &time, const Vector< double > &x)
Calculate the time dependent form of the z-component of acceleration.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:186
double d2_u_r_dt2(const double &time, const Vector< double > &x)
Calculate the time dependent form of the r-component of acceleration.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:178
double d_u_theta_dt(const double &time, const Vector< double > &x)
Calculate the time dependent form of the theta-component of velocity.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:170
double d2_u_theta_dt2(const double &time, const Vector< double > &x)
Calculate the time dependent form of the theta-component of acceleration.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:194
double d_u_r_dt(const double &time, const Vector< double > &x)
Calculate the time dependent form of the r-component of velocity.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:154
double d_u_z_dt(const double &time, const Vector< double > &x)
Calculate the time dependent form of the z-component of velocity.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:162
double u_z(const double &time, const Vector< double > &x)
Calculate the time dependent form of the z-component of displacement.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:138
double u_r(const double &time, const Vector< double > &x)
Calculate the time dependent form of the r-component of displacement.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:130
double u_theta(const double &time, const Vector< double > &x)
Calculate the time dependent form of the theta-component of displacement.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:146
list x
Definition: plotDoE.py:28

References Global_Parameters::d2_u_r_dt2(), Global_Parameters::d2_u_theta_dt2(), Global_Parameters::d2_u_z_dt2(), Global_Parameters::d_u_r_dt(), Global_Parameters::d_u_theta_dt(), Global_Parameters::d_u_z_dt(), Global_Parameters::exact_solution(), oomph::Data::pin(), oomph::Data::set_value(), Global_Parameters::u_r(), Global_Parameters::u_theta(), Global_Parameters::u_z(), plotDoE::x, and oomph::Node::x().

◆ set_initial_conditions()

template<class ELEMENT , class TIMESTEPPER >
void AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::set_initial_conditions

Set the initial conditions (history values)

Set the initial conditions, either for an impulsive start or with history values for the time stepper

417 {
418  // Upcast the timestepper to the specific type we have
419  TIMESTEPPER* timestepper_pt =
420  dynamic_cast<TIMESTEPPER*>(time_stepper_pt());
421 
422  // By default do a non-impulsive start and provide initial conditions
423  bool impulsive_start=false;
424 
425  if(impulsive_start)
426  {
427  // Number of nodes in the bulk mesh
428  unsigned n_node = Bulk_mesh_pt->nnode();
429 
430  // Loop over all nodes in the bulk mesh
431  for(unsigned inod=0;inod<n_node;inod++)
432  {
433  // Pointer to node
434  Node* nod_pt = Bulk_mesh_pt->node_pt(inod);
435 
436  // Get nodal coordinates
437  Vector<double> x(2);
438  x[0] = nod_pt->x(0);
439  x[1] = nod_pt->x(1);
440 
441  // Assign zero solution at t=0
442  nod_pt->set_value(0,0);
443  nod_pt->set_value(1,0);
444  nod_pt->set_value(2,0);
445 
446  // Set the impulsive initial values in the timestepper
447  timestepper_pt->assign_initial_values_impulsive(nod_pt);
448  }
449  } // end_of_impulsive_start
450  else // Smooth start
451  {
452  // Storage for pointers to the functions defining the displacement,
453  // velocity and acceleration components
455  initial_value_fct(3);
457  initial_veloc_fct(3);
459  initial_accel_fct(3);
460 
461  // Set the displacement function pointers
462  initial_value_fct[0]=&Global_Parameters::u_r;
463  initial_value_fct[1]=&Global_Parameters::u_z;
464  initial_value_fct[2]=&Global_Parameters::u_theta;
465 
466  // Set the velocity function pointers
467  initial_veloc_fct[0]=&Global_Parameters::d_u_r_dt;
468  initial_veloc_fct[1]=&Global_Parameters::d_u_z_dt;
469  initial_veloc_fct[2]=&Global_Parameters::d_u_theta_dt;
470 
471  // Set the acceleration function pointers
472  initial_accel_fct[0]=&Global_Parameters::d2_u_r_dt2;
473  initial_accel_fct[1]=&Global_Parameters::d2_u_z_dt2;
474  initial_accel_fct[2]=&Global_Parameters::d2_u_theta_dt2;
475 
476  // Number of nodes in the bulk mesh
477  unsigned n_node = Bulk_mesh_pt->nnode();
478 
479  // Loop over all nodes in bulk mesh
480  for(unsigned inod=0;inod<n_node;inod++)
481  {
482  // Pointer to node
483  Node* nod_pt = Bulk_mesh_pt->node_pt(inod);
484 
485  // Assign the history values
486  timestepper_pt->assign_initial_data_values(nod_pt,
487  initial_value_fct,
488  initial_veloc_fct,
489  initial_accel_fct);
490  } // end_of_loop_over_nodes
491 
492  // Paranoid checking of history values
493  double err_max=0.0;
494 
495  // Loop over all nodes in bulk mesh
496  for(unsigned jnod=0;jnod<n_node;jnod++)
497  {
498  // Pointer to node
499  Node* nod_pt=Bulk_mesh_pt->node_pt(jnod);
500 
501  // Get nodal coordinates
502  Vector<double> x(2);
503  x[0]=nod_pt->x(0);
504  x[1]=nod_pt->x(1);
505 
506  // Get exact displacements
507  double u_r_exact=
509  double u_z_exact=
511  double u_theta_exact=
513 
514  // Get exact velocities
515  double d_u_r_dt_exact=
517  double d_u_z_dt_exact=
519  double d_u_theta_dt_exact=
521 
522  // Get exact accelerations
523  double d2_u_r_dt2_exact=
525  double d2_u_z_dt2_exact=
527  double d2_u_theta_dt2_exact=
529 
530  // Get Newmark approximations for:
531  // zero-th time derivatives
532  double u_r_fe=timestepper_pt->time_derivative(0,nod_pt,0);
533  double u_z_fe=timestepper_pt->time_derivative(0,nod_pt,1);
534  double u_theta_fe=timestepper_pt->time_derivative(0,nod_pt,2);
535 
536  // first time derivatives
537  double d_u_r_dt_fe=timestepper_pt->time_derivative(1,nod_pt,0);
538  double d_u_z_dt_fe=timestepper_pt->time_derivative(1,nod_pt,1);
539  double d_u_theta_dt_fe=timestepper_pt->time_derivative(1,nod_pt,2);
540 
541  // second time derivatives
542  double d2_u_r_dt2_fe=timestepper_pt->time_derivative(2,nod_pt,0);
543  double d2_u_z_dt2_fe=timestepper_pt->time_derivative(2,nod_pt,1);
544  double d2_u_theta_dt2_fe=timestepper_pt->time_derivative(2,nod_pt,2);
545 
546  // Calculate the error as the norm of all the differences between the
547  // Newmark approximations and the 'exact' (numerical) expressions
548  double error=sqrt(pow(u_r_exact-u_r_fe,2)+
549  pow(u_z_exact-u_z_fe,2)+
550  pow(u_theta_exact-u_theta_fe,2)+
551  pow(d_u_r_dt_exact-d_u_r_dt_fe,2)+
552  pow(d_u_z_dt_exact-d_u_z_dt_fe,2)+
553  pow(d_u_theta_dt_exact-d_u_theta_dt_fe,2)+
554  pow(d2_u_r_dt2_exact-d2_u_r_dt2_fe,2)+
555  pow(d2_u_z_dt2_exact-d2_u_z_dt2_fe,2)+
556  pow(d2_u_theta_dt2_exact-d2_u_theta_dt2_fe,2));
557 
558  // If there is an error greater than one previously seen, keep hold of it
559  if(error>err_max)
560  {
561  err_max=error;
562  }
563  } // end of loop over nodes
564  std::cout << "Max error in assignment of initial conditions "
565  << err_max << std::endl;
566  }
567 } // end_of_set_initial_conditions
unsigned long nnode() const
Return number of nodes in the mesh.
Definition: mesh.h:596
Node *& node_pt(const unsigned long &n)
Return pointer to global node n.
Definition: mesh.h:436
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625

References Global_Parameters::d2_u_r_dt2(), Global_Parameters::d2_u_theta_dt2(), Global_Parameters::d2_u_z_dt2(), Global_Parameters::d_u_r_dt(), Global_Parameters::d_u_theta_dt(), Global_Parameters::d_u_z_dt(), calibrate::error, Eigen::bfloat16_impl::pow(), oomph::Data::set_value(), sqrt(), Global_Parameters::u_r(), Global_Parameters::u_theta(), Global_Parameters::u_z(), plotDoE::x, and oomph::Node::x().

Member Data Documentation

◆ Bulk_mesh_pt

template<class ELEMENT , class TIMESTEPPER >
Mesh* AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::Bulk_mesh_pt
private

Pointer to the bulk mesh.

◆ Surface_mesh_pt

template<class ELEMENT , class TIMESTEPPER >
Mesh* AxisymmetricLinearElasticityProblem< ELEMENT, TIMESTEPPER >::Surface_mesh_pt
private

Pointer to the mesh of traction elements.


The documentation for this class was generated from the following file: