10 #ifndef EIGEN_AUTODIFF_JACOBIAN_H
11 #define EIGEN_AUTODIFF_JACOBIAN_H
18 template <
typename Functor>
25 template <
typename...
T>
46 template <
typename... ParamsType>
51 Functor::operator()(
x,
v, Params...);
63 for (
Index i = 0;
i < jac.
cols();
i++)
ax[
i].derivatives() = DerivativeType::Unit(
x.rows(),
i);
65 Functor::operator()(
ax, &av, Params...);
68 (*v)[
i] = av[
i].value();
69 jac.row(
i) = av[
i].derivatives();
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
int i
Definition: BiCGSTAB_step_by_step.cpp:9
#define eigen_assert(x)
Definition: Macros.h:910
#define EIGEN_STRONG_INLINE
Definition: Macros.h:834
SCALAR Scalar
Definition: bench_gemm.cpp:45
Definition: AutoDiffJacobian.h:19
Functor::InputType InputType
Definition: AutoDiffJacobian.h:28
@ ValuesAtCompileTime
Definition: AutoDiffJacobian.h:32
@ InputsAtCompileTime
Definition: AutoDiffJacobian.h:32
AutoDiffJacobian()
Definition: AutoDiffJacobian.h:21
ValueType::Scalar Scalar
Definition: AutoDiffJacobian.h:30
Functor::ValueType ValueType
Definition: AutoDiffJacobian.h:29
void operator()(const InputType &x, ValueType *v, JacobianType *_jac, const ParamsType &... Params) const
Definition: AutoDiffJacobian.h:47
AutoDiffScalar< DerivativeType > ActiveScalar
Definition: AutoDiffJacobian.h:38
Matrix< Scalar, InputsAtCompileTime, 1 > DerivativeType
Definition: AutoDiffJacobian.h:37
EIGEN_STRONG_INLINE void operator()(const InputType &x, ValueType *v) const
Definition: AutoDiffJacobian.h:45
Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > JacobianType
Definition: AutoDiffJacobian.h:34
Matrix< ActiveScalar, ValuesAtCompileTime, 1 > ActiveValue
Definition: AutoDiffJacobian.h:41
JacobianType::Index Index
Definition: AutoDiffJacobian.h:35
Matrix< ActiveScalar, InputsAtCompileTime, 1 > ActiveInput
Definition: AutoDiffJacobian.h:40
AutoDiffJacobian(const Functor &f)
Definition: AutoDiffJacobian.h:22
AutoDiffJacobian(const T &... Values)
Definition: AutoDiffJacobian.h:26
A scalar type replacement with automatic differentiation capability.
Definition: AutoDiffScalar.h:99
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:192
EIGEN_DEVICE_FUNC constexpr EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition: PlainObjectBase.h:294
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:191
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:70
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:83
const int Dynamic
Definition: Constants.h:25
ax
Definition: plotDoE.py:39
list x
Definition: plotDoE.py:28
std::vector< float > Values
Definition: sparse_setter.cpp:48
Definition: NonLinearOptimization.cpp:97
Matrix< Scalar, InputsAtCompileTime, 1 > InputType
Definition: NonLinearOptimization.cpp:100
Matrix< Scalar, ValuesAtCompileTime, 1 > ValueType
Definition: NonLinearOptimization.cpp:101
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2