#include <AutoDiffJacobian.h>
|
enum | { InputsAtCompileTime = InputType::RowsAtCompileTime
, ValuesAtCompileTime = ValueType::RowsAtCompileTime
} |
|
typedef Functor::InputType | InputType |
|
typedef Functor::ValueType | ValueType |
|
typedef ValueType::Scalar | Scalar |
|
typedef Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > | JacobianType |
|
typedef JacobianType::Index | Index |
|
typedef Matrix< Scalar, InputsAtCompileTime, 1 > | DerivativeType |
|
typedef AutoDiffScalar< DerivativeType > | ActiveScalar |
|
typedef Matrix< ActiveScalar, InputsAtCompileTime, 1 > | ActiveInput |
|
typedef Matrix< ActiveScalar, ValuesAtCompileTime, 1 > | ActiveValue |
|
enum | { InputsAtCompileTime = NX
, ValuesAtCompileTime = NY
} |
|
enum | { InputsAtCompileTime = NX
, ValuesAtCompileTime = NY
} |
|
typedef Scalar_ | Scalar |
|
typedef Matrix< Scalar, InputsAtCompileTime, 1 > | InputType |
|
typedef Matrix< Scalar, ValuesAtCompileTime, 1 > | ValueType |
|
typedef Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > | JacobianType |
|
typedef Scalar_ | Scalar |
|
typedef Matrix< Scalar, InputsAtCompileTime, 1 > | InputType |
|
typedef Matrix< Scalar, ValuesAtCompileTime, 1 > | ValueType |
|
typedef Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > | JacobianType |
|
◆ ActiveInput
template<typename Functor >
◆ ActiveScalar
template<typename Functor >
◆ ActiveValue
template<typename Functor >
◆ DerivativeType
template<typename Functor >
◆ Index
template<typename Functor >
◆ InputType
template<typename Functor >
◆ JacobianType
template<typename Functor >
◆ Scalar
template<typename Functor >
◆ ValueType
template<typename Functor >
◆ anonymous enum
template<typename Functor >
Enumerator |
---|
InputsAtCompileTime | |
ValuesAtCompileTime | |
@ ValuesAtCompileTime
Definition: AutoDiffJacobian.h:32
@ InputsAtCompileTime
Definition: AutoDiffJacobian.h:32
◆ AutoDiffJacobian() [1/3]
template<typename Functor >
Functor()
Definition: NonLinearOptimization.cpp:106
◆ AutoDiffJacobian() [2/3]
template<typename Functor >
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237
◆ AutoDiffJacobian() [3/3]
template<typename Functor >
template<typename... T>
std::vector< float > Values
Definition: sparse_setter.cpp:48
◆ operator()() [1/2]
template<typename Functor >
◆ operator()() [2/2]
template<typename Functor >
template<typename... ParamsType>
51 Functor::operator()(
x,
v, Params...);
61 for (
Index j = 0;
j < jac.rows();
j++) av[
j].derivatives().resize(
x.rows());
63 for (
Index i = 0;
i < jac.cols();
i++)
ax[
i].derivatives() = DerivativeType::Unit(
x.rows(),
i);
65 Functor::operator()(
ax, &av, Params...);
67 for (
Index i = 0;
i < jac.rows();
i++) {
68 (*v)[
i] = av[
i].value();
69 jac.row(
i) = av[
i].derivatives();
int i
Definition: BiCGSTAB_step_by_step.cpp:9
#define eigen_assert(x)
Definition: Macros.h:910
Matrix< Scalar, ValuesAtCompileTime, InputsAtCompileTime > JacobianType
Definition: AutoDiffJacobian.h:34
Matrix< ActiveScalar, ValuesAtCompileTime, 1 > ActiveValue
Definition: AutoDiffJacobian.h:41
JacobianType::Index Index
Definition: AutoDiffJacobian.h:35
Matrix< ActiveScalar, InputsAtCompileTime, 1 > ActiveInput
Definition: AutoDiffJacobian.h:40
const int Dynamic
Definition: Constants.h:25
ax
Definition: plotDoE.py:39
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
References plotDoE::ax, Eigen::PlainObjectBase< Derived >::cols(), Eigen::Dynamic, eigen_assert, i, Eigen::AutoDiffJacobian< Functor >::InputsAtCompileTime, j, Eigen::PlainObjectBase< Derived >::resize(), Eigen::PlainObjectBase< Derived >::rows(), v, and plotDoE::x.
The documentation for this class was generated from the following file: