RefineablePoissonProblem< ELEMENT > Class Template Reference
+ Inheritance diagram for RefineablePoissonProblem< ELEMENT >:

Public Member Functions

 RefineablePoissonProblem (PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt, const int &n_power)
 
 ~RefineablePoissonProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void set_problem_is_nonlinear ()
 Treat the problem as being nonlinear. More...
 
void set_problem_is_linear ()
 Treat the problem as being linear. More...
 
bool is_problem_nonlinear () const
 
void doc_solution (DocInfo &doc_info)
 Doc the solution: doc_info contains labels/output directory etc. More...
 
SimpleRefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 
 RefineablePoissonProblem (PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt)
 Constructor: Pass pointer to source function. More...
 
 ~RefineablePoissonProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void doc_solution (DocInfo &doc_info)
 
SimpleRefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 
 RefineablePoissonProblem (PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt)
 Constructor: Pass pointer to source function. More...
 
 ~RefineablePoissonProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void doc_solution (DocInfo &doc_info)
 
SimpleRefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 
 RefineablePoissonProblem (PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt)
 Constructor: Pass pointer to source function. More...
 
 ~RefineablePoissonProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void doc_solution (DocInfo &doc_info)
 
SimpleRefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 
 RefineablePoissonProblem (PoissonEquations< 2 >::PoissonSourceFctPt source_fct_pt)
 Constructor: Pass pointer to source functions. More...
 
 ~RefineablePoissonProblem ()
 Destructor. Empty. More...
 
void actions_before_newton_solve ()
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void doc_solution (DocInfo &doc_info)
 Doc the solution. More...
 
MyRefineableRectangularQuadMesh< ELEMENT > * mesh_pt ()
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Attributes

PoissonEquations< 2 >::PoissonSourceFctPt Source_fct_pt
 Pointer to source function. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class RefineablePoissonProblem< ELEMENT >

2D Poisson problem on rectangular domain, discretised with refineable 2D QPoisson elements. The specific type of element is specified via the template parameter.

/////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////// 2D Poisson problem on rectangular domain, discretised with refineable 2D QPoisson elements. The specific type of element is specified via the template parameter.

Constructor & Destructor Documentation

◆ RefineablePoissonProblem() [1/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem ( PoissonEquations< 2 >::PoissonSourceFctPt  source_fct_pt,
const int n_power 
)

Constructor: Pass pointer to source function and number of refinements for the base mesh. Mesh has 2^|n_power| x 2^|n_power| elements. If n_power>0 this is achieved by building a base mesh with that number of elements; if n_power<0, we apply the required number of uniform refinements to a 2x2 base mesh.

Constructor for Poisson problem: Pass pointer to source function and power for number of elements in base mesh.

212 {
213 
214  // Setup mesh
215  unsigned n_x,n_y;
216 
217  if (n_power>0)
218  {
219  // # of elements in x-direction
220  n_x=unsigned(pow(2.0,int(n_power)));
221 
222  // # of elements in y-direction
223  n_y=unsigned(pow(2.0,int(n_power)));
224  }
225  else
226  {
227  // # of elements in x-direction
228  n_x=2;
229 
230  // # of elements in y-direction
231  n_y=2;
232  }
233 
234  cout << " Building a " << n_x << " x " << n_y << " refineable base mesh."
235  << std::endl;
236 
237  // Domain length in x-direction
238  double l_x=1.0;
239 
240  // Domain length in y-direction
241  double l_y=2.0;
242 
243 
244  // Initialise timers
245  clock_t t_start = clock();
246 
247  // Build and assign mesh
248  Problem::mesh_pt() =
250 
251 
252  // Do uniform refinement if required
253  if (n_power<0)
254  {
255  for (int r=0;r<std::abs(n_power);r++)
256  {
257  cout << "Doing one round of uniform mesh refinement" << std::endl;
258  mesh_pt()->refine_uniformly();
259  }
260  }
261 
262  // Finish/doc timing
263  clock_t t_end = clock();
264  double total_time=double(t_end-t_start)/CLOCKS_PER_SEC;
265  cout << std::endl;
266  cout << "======================================================= " << std::endl;
267  cout << "Total time for Mesh setup [sec]: " << total_time << std::endl;
268  cout << "======================================================= " << std::endl;
269  cout << std::endl;
270 
271 
272  // Create/set error estimator
273  mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;
274 
275  // Set the boundary conditions for this problem: All nodes are
276  // free by default -- only need to pin the ones that have Dirichlet conditions
277  // here.
278  unsigned num_bound = mesh_pt()->nboundary();
279  for(unsigned ibound=0;ibound<num_bound;ibound++)
280  {
281  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
282  for (unsigned inod=0;inod<num_nod;inod++)
283  {
284  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
285  }
286  }
287 
288  // Complete the build of all elements so they are fully functional
289 
290  // Loop over the elements to set up element-specific
291  // things that cannot be handled by the (argument-free!) ELEMENT
292  // constructor: Pass pointer to source function
293  unsigned n_element = mesh_pt()->nelement();
294  for(unsigned i=0;i<n_element;i++)
295  {
296  // Upcast from GeneralsedElement to the present element
297  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
298 
299  //Set the source function pointer
300  el_pt->source_fct_pt() = Source_fct_pt;
301  }
302 
303  // Setup equation numbering scheme
304  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
305 
306 } // end of constructor
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
int i
Definition: BiCGSTAB_step_by_step.cpp:9
PoissonEquations< 2 >::PoissonSourceFctPt Source_fct_pt
Pointer to source function.
Definition: optimisation/use_coarse_base_meshes/two_d_poisson_adapt.cc:197
SimpleRefineableRectangularQuadMesh< ELEMENT > * mesh_pt()
Definition: optimisation/use_coarse_base_meshes/two_d_poisson_adapt.cc:188
Definition: mpi/distribution/hanging_node_reconciliation/hp_adaptive_driven_cavity.cc:63
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: error_estimator.h:266
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
r
Definition: UniformPSDSelfTest.py:20
GeneralisedAxisymAdvectionDiffusionSourceFctPt & source_fct_pt()
Access function: Pointer to source function.
Definition: gen_axisym_advection_diffusion_elements.h:229

References abs(), oomph::Problem::assign_eqn_numbers(), i, RefineablePoissonProblem< ELEMENT >::mesh_pt(), Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, and RefineablePoissonProblem< ELEMENT >::Source_fct_pt.

◆ ~RefineablePoissonProblem() [1/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::~RefineablePoissonProblem ( )
inline

Destructor (empty)

162 {};

◆ RefineablePoissonProblem() [2/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem ( PoissonEquations< 2 >::PoissonSourceFctPt  source_fct_pt)

Constructor: Pass pointer to source function.

Constructor for Poisson problem: Pass pointer to source function.

198 {
199 
200  // Setup mesh
201 
202  // # of elements in x-direction
203  unsigned n_x=4;
204 
205  // # of elements in y-direction
206  unsigned n_y=4;
207 
208  // Domain length in x-direction
209  double l_x=1.0;
210 
211  // Domain length in y-direction
212  double l_y=2.0;
213 
214  // Build and assign mesh
215  Problem::mesh_pt() =
217 
218  // Create/set error estimator
219  mesh_pt()->spatial_error_estimator_pt()=new Z2ErrorEstimator;
220 
221  // Set the boundary conditions for this problem: All nodes are
222  // free by default -- only need to pin the ones that have Dirichlet conditions
223  // here.
224  unsigned num_bound = mesh_pt()->nboundary();
225  for(unsigned ibound=0;ibound<num_bound;ibound++)
226  {
227  unsigned num_nod= mesh_pt()->nboundary_node(ibound);
228  for (unsigned inod=0;inod<num_nod;inod++)
229  {
230  mesh_pt()->boundary_node_pt(ibound,inod)->pin(0);
231  }
232  }
233 
234  // Complete the build of all elements so they are fully functional
235 
236  // Loop over the elements to set up element-specific
237  // things that cannot be handled by the (argument-free!) ELEMENT
238  // constructor: Pass pointer to source function
239  unsigned n_element = mesh_pt()->nelement();
240  for(unsigned i=0;i<n_element;i++)
241  {
242  // Upcast from GeneralsedElement to the present element
243  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
244 
245  //Set the source function pointer
246  el_pt->source_fct_pt() = Source_fct_pt;
247  }
248 
249  // Setup equation numbering scheme
250  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
251 
252 } // end of constructor

References oomph::Problem::assign_eqn_numbers(), i, RefineablePoissonProblem< ELEMENT >::mesh_pt(), and RefineablePoissonProblem< ELEMENT >::Source_fct_pt.

◆ ~RefineablePoissonProblem() [2/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::~RefineablePoissonProblem ( )
inline

Destructor (empty)

159 {}

◆ RefineablePoissonProblem() [3/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem ( PoissonEquations< 2 >::PoissonSourceFctPt  source_fct_pt)

Constructor: Pass pointer to source function.

◆ ~RefineablePoissonProblem() [3/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::~RefineablePoissonProblem ( )
inline

Destructor (empty)

137 {}

◆ RefineablePoissonProblem() [4/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem ( PoissonEquations< 2 >::PoissonSourceFctPt  source_fct_pt)

Constructor: Pass pointer to source function.

◆ ~RefineablePoissonProblem() [4/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::~RefineablePoissonProblem ( )
inline

Destructor (empty)

144  {
145  delete mesh_pt()->spatial_error_estimator_pt();
146  delete Problem::mesh_pt();
147 
148  }

◆ RefineablePoissonProblem() [5/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem ( PoissonEquations< 2 >::PoissonSourceFctPt  source_fct_pt)

Constructor: Pass pointer to source functions.

◆ ~RefineablePoissonProblem() [5/5]

template<class ELEMENT >
RefineablePoissonProblem< ELEMENT >::~RefineablePoissonProblem ( )
inline

Destructor. Empty.

120 {};

Member Function Documentation

◆ actions_after_newton_solve() [1/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

169 {}

◆ actions_after_newton_solve() [2/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

166 {}

◆ actions_after_newton_solve() [3/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

144 {}

◆ actions_after_newton_solve() [4/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

155 {}

◆ actions_after_newton_solve() [5/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

127 {}

◆ actions_before_newton_solve() [1/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_before_newton_solve
virtual

Update the problem specs before solve: Reset boundary conditions to the values from the exact solution.

Update the problem specs before solve: (Re-)set boundary conditions to the values from the exact solution.

Update the problem specs before solve: (Re-)set boundary conditions to the values from the tanh solution.

Reimplemented from oomph::Problem.

317 {
318  // How many boundaries are there?
319  unsigned num_bound = mesh_pt()->nboundary();
320 
321  //Loop over the boundaries
322  for(unsigned ibound=0;ibound<num_bound;ibound++)
323  {
324  // How many nodes are there on this boundary?
325  unsigned num_nod=mesh_pt()->nboundary_node(ibound);
326 
327  // Loop over the nodes on boundary
328  for (unsigned inod=0;inod<num_nod;inod++)
329  {
330  // Get pointer to node
331  Node* nod_pt=mesh_pt()->boundary_node_pt(ibound,inod);
332 
333  // Extract nodal coordinates from node:
334  Vector<double> x(2);
335  x[0]=nod_pt->x(0);
336  x[1]=nod_pt->x(1);
337 
338  // Compute the value of the exact solution at the nodal point
339  Vector<double> u(1);
341 
342  // Assign the value to the one (and only) nodal value at this node
343  nod_pt->set_value(0,u[0]);
344  }
345  }
346 } // end of actions before solve
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
void get_exact_u(const Vector< double > &x, Vector< double > &u)
Exact solution as a Vector.
Definition: extrude_with_macro_element_representation.cc:206
list x
Definition: plotDoE.py:28

References TanhSolnForPoisson::get_exact_u(), oomph::Data::set_value(), plotDoE::x, and oomph::Node::x().

◆ actions_before_newton_solve() [2/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_before_newton_solve ( )
virtual

Update the problem specs before solve: Reset boundary conditions to the values from the exact solution.

Reimplemented from oomph::Problem.

◆ actions_before_newton_solve() [3/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_before_newton_solve ( )
virtual

Update the problem specs before solve: Reset boundary conditions to the values from the exact solution.

Reimplemented from oomph::Problem.

◆ actions_before_newton_solve() [4/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_before_newton_solve ( )
virtual

Update the problem specs before solve: Reset boundary conditions to the values from the exact solution.

Reimplemented from oomph::Problem.

◆ actions_before_newton_solve() [5/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::actions_before_newton_solve ( )
virtual

Update the problem specs before solve: Reset boundary conditions to the values from the tanh solution.

Reimplemented from oomph::Problem.

◆ doc_solution() [1/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution: doc_info contains labels/output directory etc.

Doc the solution.

Doc the solution. DocInfo object stores flags/labels for where the output gets written to

355 {
356 
357  ofstream some_file;
358  char filename[100];
359 
360  // Number of plot points: npts x npts
361  unsigned npts=5;
362 
363  // Output solution (C++ style)
364  //----------------------------
365  {
366  // Start timer
367  clock_t t_start = clock();
368 
369  // Do output
370  sprintf(filename,"%s/soln%i.cpp_style.dat",doc_info.directory().c_str(),
371  doc_info.number());
372  some_file.open(filename);
373  mesh_pt()->output(some_file,npts);
374  some_file.close();
375 
376  // Finish/doc timing
377  clock_t t_end = clock();
378  double total_time=double(t_end-t_start)/CLOCKS_PER_SEC;
379  cout << "------------------------------------------------------- " << std::endl;
380  cout << "Total time for C++ style output [sec]: " << total_time << std::endl;
381  cout << "------------------------------------------------------- " << std::endl;
382  }
383 
384 
385  // Output solution (C style)
386  //--------------------------
387  {
388  // Start timer
389  clock_t t_start = clock();
390 
391  // Do output
392  sprintf(filename,"%s/soln%i.c_style.dat",doc_info.directory().c_str(),
393  doc_info.number());
394  FILE* file_pt = fopen(filename,"w");
395  mesh_pt()->output(file_pt,npts);
396  fclose(file_pt);
397 
398  // Finish/doc timing
399  clock_t t_end = clock();
400  double total_time=double(t_end-t_start)/CLOCKS_PER_SEC;
401  cout << "------------------------------------------------------- " << std::endl;
402  cout << "Total time for C style output [sec]: " << total_time << std::endl;
403  cout << "------------------------------------------------------- " << std::endl;
404  }
405 
406 
407 
408  // Doc error and return of the square of the L2 error
409  //---------------------------------------------------
410  double error,norm;
411  sprintf(filename,"%s/error%i.dat",doc_info.directory().c_str(),
412  doc_info.number());
413  some_file.open(filename);
414  mesh_pt()->compute_error(some_file,TanhSolnForPoisson::get_exact_u,
415  error,norm);
416  some_file.close();
417 
418  // Doc L2 error and norm of solution
419  cout << "\nNorm of error : " << sqrt(error) << std::endl;
420  cout << "Norm of solution: " << sqrt(norm) << std::endl << std::endl;
421 
422 } // end of doc
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
string filename
Definition: MergeRestartFiles.py:39
int error
Definition: calibrate.py:297

References oomph::DocInfo::directory(), calibrate::error, MergeRestartFiles::filename, TanhSolnForPoisson::get_exact_u(), oomph::DocInfo::number(), and sqrt().

Referenced by parallel_test().

◆ doc_solution() [2/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution. DocInfo object stores flags/labels for where the output gets written to

◆ doc_solution() [3/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution. DocInfo object stores flags/labels for where the output gets written to

◆ doc_solution() [4/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution. DocInfo object stores flags/labels for where the output gets written to

◆ doc_solution() [5/5]

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution.

◆ is_problem_nonlinear()

template<class ELEMENT >
bool RefineablePoissonProblem< ELEMENT >::is_problem_nonlinear ( ) const
inline

Return the flag to determine whether the problem is being treated as linear or nonlinear

179 {return Problem::Problem_is_nonlinear;}

◆ mesh_pt() [1/5]

template<class ELEMENT >
SimpleRefineableRectangularQuadMesh<ELEMENT>* RefineablePoissonProblem< ELEMENT >::mesh_pt ( )
inline

Overloaded version of the Problem's access function to the mesh. Recasts the pointer to the base Mesh object to the actual mesh type.

189  {
191  (Problem::mesh_pt());
192  }

Referenced by parallel_test(), and RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem().

◆ mesh_pt() [2/5]

template<class ELEMENT >
SimpleRefineableRectangularQuadMesh<ELEMENT>* RefineablePoissonProblem< ELEMENT >::mesh_pt ( )
inline

Overloaded version of the Problem's access function to the mesh. Recasts the pointer to the base Mesh object to the actual mesh type.

177  {
178  return dynamic_cast<SimpleRefineableRectangularQuadMesh<ELEMENT>*>(Problem::mesh_pt());
179  }

◆ mesh_pt() [3/5]

template<class ELEMENT >
SimpleRefineableRectangularQuadMesh<ELEMENT>* RefineablePoissonProblem< ELEMENT >::mesh_pt ( )
inline

Overloaded version of the Problem's access function to the mesh. Recasts the pointer to the base Mesh object to the actual mesh type.

154  {
155  return dynamic_cast<SimpleRefineableRectangularQuadMesh<ELEMENT>*>(
156  Problem::mesh_pt());
157  }

◆ mesh_pt() [4/5]

template<class ELEMENT >
SimpleRefineableRectangularQuadMesh<ELEMENT>* RefineablePoissonProblem< ELEMENT >::mesh_pt ( )
inline

Overloaded version of the Problem's access function to the mesh. Recasts the pointer to the base Mesh object to the actual mesh type.

165  {
166  return dynamic_cast<SimpleRefineableRectangularQuadMesh<ELEMENT>*>(
167  Problem::mesh_pt());
168  }

◆ mesh_pt() [5/5]

template<class ELEMENT >
MyRefineableRectangularQuadMesh<ELEMENT>* RefineablePoissonProblem< ELEMENT >::mesh_pt ( )
inline

Overloaded version of the problem's access function to the mesh. Recasts the pointer to the base Mesh object to the actual mesh type.

136  {
137  return dynamic_cast<MyRefineableRectangularQuadMesh<ELEMENT>*>(
138  Problem::mesh_pt());
139  }
Upgraded mesh.
Definition: two_d_mesh_dist.cc:52

◆ set_problem_is_linear()

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::set_problem_is_linear ( )
inline

Treat the problem as being linear.

175 {Problem::Problem_is_nonlinear = false;}

◆ set_problem_is_nonlinear()

template<class ELEMENT >
void RefineablePoissonProblem< ELEMENT >::set_problem_is_nonlinear ( )
inline

Treat the problem as being nonlinear.

172 {Problem::Problem_is_nonlinear = true;}

Member Data Documentation

◆ Source_fct_pt

template<class ELEMENT >
PoissonEquations< 2 >::PoissonSourceFctPt RefineablePoissonProblem< ELEMENT >::Source_fct_pt
private

Pointer to source function.

Referenced by RefineablePoissonProblem< ELEMENT >::RefineablePoissonProblem().


The documentation for this class was generated from the following files: