FreeSurfaceRotationProblem< ELEMENT > Class Template Reference

Entry flow problem in quarter tube domain. More...

+ Inheritance diagram for FreeSurfaceRotationProblem< ELEMENT >:

Public Member Functions

 FreeSurfaceRotationProblem (DocInfo &doc_info, const double &min_error_target, const double &max_error_target)
 Constructor: Pass DocInfo object and target errors. More...
 
 ~FreeSurfaceRotationProblem ()
 Destructor (empty) More...
 
void actions_after_newton_solve ()
 Doc the solution after solve. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve. More...
 
void actions_before_newton_convergence_check ()
 
void doc_solution ()
 Doc the solution. More...
 
AxialSpineQuarterTubeMesh< ELEMENT, SpineSurfaceFluidInterfaceElement< ELEMENT > > * mesh_pt ()
 
 FreeSurfaceRotationProblem (DocInfo &doc_info, const double &min_error_target, const double &max_error_target, const unsigned &hijack_flag)
 Constructor: Pass DocInfo object and target errors. More...
 
 ~FreeSurfaceRotationProblem ()
 Destructor to clean up memory (empty) More...
 
void actions_after_newton_solve ()
 Doc the solution after solve. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve. More...
 
void actions_before_newton_convergence_check ()
 
void create_volume_constraint_elements ()
 Create the volume constraint elements. More...
 
void doc_solution ()
 Doc the solution. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Public Attributes

AxialSpineQuarterTubeMesh< ELEMENT, SpineSurfaceFluidInterfaceElement< ELEMENT > > * Bulk_mesh_pt
 
MeshVolume_computation_mesh_pt
 Storage for the elements that compute the enclosed fluid volume. More...
 
MeshVolume_constraint_mesh_pt
 Storage for the volume constraint element. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 

Private Attributes

DocInfo Doc_info
 Doc info object. More...
 
double Volume
 The volume of the fluid. More...
 
DataPext_pt
 
DataTraded_pressure_data_pt
 Storage for the pressure that is traded for the volume constraint. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class FreeSurfaceRotationProblem< ELEMENT >

Entry flow problem in quarter tube domain.

Constructor & Destructor Documentation

◆ FreeSurfaceRotationProblem() [1/2]

template<class ELEMENT >
FreeSurfaceRotationProblem< ELEMENT >::FreeSurfaceRotationProblem ( DocInfo doc_info,
const double min_error_target,
const double max_error_target 
)

Constructor: Pass DocInfo object and target errors.

Constructor: Pass DocInfo object and error targets.

453  : Doc_info(doc_info)
454 {
455  Data *Pext_pt = new Data(1);
456  Pext_pt->pin(0);
457  Pext_pt->set_value(0,0.0);
458 
459  //Set the contact angle
460  const double pi = MathematicalConstants::Pi;
462 
463  Newton_solver_tolerance = 2.0e-5;
464  // Setup mesh:
465  //------------
466 
467  // Create geometric objects: Elliptical tube with half axes = radius = 1.0
468  double radius=1.0;
469  GeomObject* Wall_pt=new EllipticalTube(radius,radius);
470 
471  // Boundaries on object
472  Vector<double> xi_lo(2);
473  // height of inflow
474  xi_lo[0]=0.0;
475  // start of Wall_pt
476  xi_lo[1]=0.0;
477 
478  Vector<double> xi_hi(2);
479  // height of outflow
480  xi_hi[0]=2.0;
481  // end of Wall_pt
482  xi_hi[1]=0.5*MathematicalConstants::Pi;
483 
484  // # of layers
485  unsigned nlayer=1;
486 
487  //Radial divider is located half-way along the circumference
488  double frac_mid=0.5;
489 
490  // Build and assign mesh
491  Problem::mesh_pt()=
493  (Wall_pt,xi_lo,frac_mid,xi_hi,nlayer);
494 
495 
496  // Set error estimator
498  mesh_pt()->spatial_error_estimator_pt()=error_estimator_pt;
499 
500  // Error targets for adaptive refinement
501  mesh_pt()->max_permitted_error()=max_error_target;
502  mesh_pt()->min_permitted_error()=min_error_target;
503 
504  //Doc the boundaries
505  ofstream some_file;
506  char filename[100];
507  sprintf(filename,"boundaries.dat");
508  some_file.open(filename);
509  mesh_pt()->output_boundaries(some_file);
510  some_file.close();
511 
512  //Set the boundary conditions
513 
514  //Boundary 0 is the bottom of the domain (pinned)
515  {
516  unsigned b = 0;
517  unsigned n_node = mesh_pt()->nboundary_node(b);
518  for(unsigned n=0;n<n_node;n++)
519  {
520  for(unsigned i=0;i<3;i++) {mesh_pt()->boundary_node_pt(b,n)->pin(i);}
521  }
522  }
523 
524  //Boundary 1 is the boundary x is zero, so pin the x-velocity
525  {
526  unsigned b = 1;
527  unsigned n_node = mesh_pt()->nboundary_node(b);
528  for(unsigned n=0;n<n_node;n++)
529  {
530  mesh_pt()->boundary_node_pt(b,n)->pin(0);
531  }
532  }
533 
534 
535  //Boundary 2 is the boundary y=0, so pin the y-velocity
536  //otherwise free
537  {
538  unsigned b = 2;
539  unsigned n_node = mesh_pt()->nboundary_node(b);
540  for(unsigned n=0;n<n_node;n++)
541  {
542  mesh_pt()->boundary_node_pt(b,n)->pin(1);
543  }
544  }
545 
546  //Boundary 3 is the wall, so pinned in all coordinates
547  {
548  unsigned b = 3;
549  unsigned n_node = mesh_pt()->nboundary_node(b);
550  for(unsigned n=0;n<n_node;n++)
551  {
552  for(unsigned i=0;i<3;i++)
553  {
554  mesh_pt()->boundary_node_pt(b,n)->pin(i);
555  }
556  if(n==0)
557  {
558  //Pin one spine heights on the wall
559  static_cast<SpineNode*>(mesh_pt()->boundary_node_pt(b,n))->
560  spine_pt()->spine_height_pt()->pin(0);
561  }
562  }
563  }
564 
565 
566  //Boundary 4 must be the top, so it's traction free
567 
568 
569  // Loop over the elements to set up element-specific
570  // things that cannot be handled by constructor
571  unsigned n_element = mesh_pt()->nbulk();
572  for(unsigned i=0;i<n_element;i++)
573  {
574  // Upcast from GeneralisedElement to the present element
575  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(i));
576 
577  //Set the Reynolds number, etc
578  el_pt->re_pt() = &Global_Physical_Variables::Re;
579 
580  //Set the gravitational force
581  el_pt->re_invfr_pt() = &Global_Physical_Variables::ReInvFr;
582  el_pt->g_pt() = &Global_Physical_Variables::G;
583  }
584 
585  //Loop over the interface elements and set the capillary number
586  unsigned n_interface = mesh_pt()->ninterface_element();
587  for(unsigned e=0;e<n_interface;e++)
588  {
592 
593  //set the capillary number
595  //Set the
597  }
598 
599 
600  // Pin redudant pressure dofs
602  pin_redundant_nodal_pressures(mesh_pt()->bulk_element_pt());
603 
604  // Set solid body rotation as initial solution
605  unsigned n_nod=mesh_pt()->nnode();
606  for (unsigned j=0;j<n_nod;j++)
607  {
608  using namespace Global_Physical_Variables;
609  Node* node_pt=mesh_pt()->node_pt(j);
610  // Recover coordinates
611  double x=node_pt->x(0);
612  double y=node_pt->x(1);
613  double r=sqrt(x*x+y*y);
614  double theta = atan2(y,x);
615 
616  // Solid body rotation
617  node_pt->set_value(0,-Omega*r*sin(theta));
618  node_pt->set_value(1,Omega*r*cos(theta));
619  node_pt->set_value(2,0.0);
620  }
621 
622  //Attach the boundary conditions to the mesh
623  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
624 
625 } // end_of_constructor
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar atan2(const AnnoyingScalar &y, const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:139
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
int i
Definition: BiCGSTAB_step_by_step.cpp:9
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Scalar * b
Definition: benchVecAdd.cpp:17
Definition: free_surface_rotation.cc:81
FiniteElement *& interface_element_pt(const unsigned long &i)
Access functions for pointers to interface elements.
Definition: free_surface_rotation.cc:95
unsigned long ninterface_element() const
Number of elements on interface.
Definition: free_surface_rotation.cc:99
unsigned long nbulk() const
Number of elements in bulk.
Definition: free_surface_rotation.cc:117
DocInfo Doc_info
Doc info object.
Definition: free_surface_rotation.cc:439
AxialSpineQuarterTubeMesh< ELEMENT, SpineSurfaceFluidInterfaceElement< ELEMENT > > * mesh_pt()
Definition: free_surface_rotation.cc:428
Data * Pext_pt
Definition: 3d_static_cap.cc:400
Definition: nodes.h:86
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
Definition: geom_objects.h:1131
double *& ca_pt()
Pointer to the Capillary number.
Definition: interface_elements.h:492
void set_external_pressure_data(Data *external_pressure_data_pt)
Definition: interface_elements.h:539
Definition: geom_objects.h:101
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
double Newton_solver_tolerance
Definition: problem.h:596
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: refineable_navier_stokes_elements.h:322
Definition: spines.h:328
Definition: specific_node_update_interface_elements.h:628
Definition: error_estimator.h:266
Scalar * y
Definition: level1_cplx_impl.h:128
double Pi
Definition: two_d_biharmonic.cc:235
double theta
Definition: two_d_biharmonic.cc:236
Global variables.
Definition: TwenteMeshGluing.cpp:60
double Omega
Rotation rate.
Definition: free_surface_rotation.cc:52
double Angle
The contact angle.
Definition: marangoni_convection_box.cc:564
double Ca
Capillary number.
Definition: fibre.cc:61
double ReInvFr
Product of Reynolds number and inverse of Froude number.
Definition: fibre.cc:58
double Re
Reynolds number.
Definition: fibre.cc:55
Vector< double > G(3)
Direction of gravity.
Definition: spherical_shell_convection.cc:62
string filename
Definition: MergeRestartFiles.py:39
Z2ErrorEstimator * error_estimator_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:190
r
Definition: UniformPSDSelfTest.py:20
radius
Definition: UniformPSDSelfTest.py:15
const Mdouble pi
Definition: ExtendedMath.h:23
list x
Definition: plotDoE.py:28
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References Global_Physical_Variables::Angle, oomph::Problem::assign_eqn_numbers(), atan2(), b, Global_Physical_Variables::Ca, oomph::FluidInterfaceElement::ca_pt(), cos(), e(), MeshRefinement::error_estimator_pt, MergeRestartFiles::filename, Global_Physical_Variables::G, i, AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::interface_element_pt(), j, FreeSurfaceRotationProblem< ELEMENT >::mesh_pt(), n, AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::nbulk(), oomph::Problem::Newton_solver_tolerance, AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::ninterface_element(), Global_Physical_Variables::Omega, FreeSurfaceRotationProblem< ELEMENT >::Pext_pt, constants::pi, BiharmonicTestFunctions2::Pi, oomph::Data::pin(), UniformPSDSelfTest::r, UniformPSDSelfTest::radius, Global_Physical_Variables::Re, Global_Physical_Variables::ReInvFr, oomph::FluidInterfaceElement::set_external_pressure_data(), oomph::Data::set_value(), sin(), sqrt(), BiharmonicTestFunctions2::theta, plotDoE::x, oomph::Node::x(), and y.

◆ ~FreeSurfaceRotationProblem() [1/2]

template<class ELEMENT >
FreeSurfaceRotationProblem< ELEMENT >::~FreeSurfaceRotationProblem ( )
inline

Destructor (empty)

398 {}

◆ FreeSurfaceRotationProblem() [2/2]

template<class ELEMENT >
FreeSurfaceRotationProblem< ELEMENT >::FreeSurfaceRotationProblem ( DocInfo doc_info,
const double min_error_target,
const double max_error_target,
const unsigned hijack_flag 
)

Constructor: Pass DocInfo object and target errors.

Constructor: Pass DocInfo object and error targets.

419  : Volume(atan(1.0)), Doc_info(doc_info)
420 {
421  //Create a pointer to the external pressure
422  Pext_pt = new Data(1);
423  Pext_pt->set_value(0,0.0);
424  //Add the external pressure to the global data
426 
427  //Set the contact angle
428  const double pi = MathematicalConstants::Pi;
430 
431  // Setup mesh:
432  //------------
433 
434  // Create geometric objects: Elliptical tube with half axes = radius = 1.0
435  double radius=1.0;
436  GeomObject* Wall_pt=new EllipticalTube(radius,radius);
437 
438  // Boundaries on object
439  Vector<double> xi_lo(2);
440  // height of inflow
441  xi_lo[0]=0.0;
442  // start of Wall_pt
443  xi_lo[1]=0.0;
444 
445  Vector<double> xi_hi(2);
446  // height of outflow
447  xi_hi[0]=1.0;
448  // end of Wall_pt
449  xi_hi[1]=0.5*MathematicalConstants::Pi;
450 
451  // # of layers
452  unsigned nlayer=1;
453 
454  //Radial divider is located half-way along the circumference
455  double frac_mid=0.5;
456 
457  // Build and assign mesh
458  Bulk_mesh_pt =
460  ELEMENT,
462  (Wall_pt,xi_lo,frac_mid,xi_hi,nlayer);
463 
464  // Set error estimator
466  Bulk_mesh_pt->spatial_error_estimator_pt()=error_estimator_pt;
467 
468  // Error targets for adaptive refinement
469  Bulk_mesh_pt->max_permitted_error()=max_error_target;
470  Bulk_mesh_pt->min_permitted_error()=min_error_target;
471 
472  //Doc the boundaries
473  /*ofstream some_file;
474  char filename[100];
475  sprintf(filename,"boundaries.dat");
476  some_file.open(filename);
477  Bulk_mesh_pt->output_boundaries(some_file);
478  some_file.close();*/
479 
480  //Set the boundary conditions
481 
482  //Boundary 0 is the bottom of the domain (pinned)
483  {
484  unsigned b = 0;
485  unsigned n_node = Bulk_mesh_pt->nboundary_node(b);
486  for(unsigned n=0;n<n_node;n++)
487  {
488  for(unsigned i=0;i<3;i++) {Bulk_mesh_pt->boundary_node_pt(b,n)->pin(i);}
489  }
490  }
491 
492  //Boundary 1 is the boundary x is zero, so pin the x-velocity
493  {
494  unsigned b = 1;
495  unsigned n_node = Bulk_mesh_pt->nboundary_node(b);
496  for(unsigned n=0;n<n_node;n++)
497  {
498  Bulk_mesh_pt->boundary_node_pt(b,n)->pin(0);
499  }
500  }
501 
502 
503  //Boundary 2 is the boundary y=0, so pin the y-velocity
504  //otherwise free
505  {
506  unsigned b = 2;
507  unsigned n_node = Bulk_mesh_pt->nboundary_node(b);
508  for(unsigned n=0;n<n_node;n++)
509  {
510  Bulk_mesh_pt->boundary_node_pt(b,n)->pin(1);
511  }
512  }
513 
514  //Boundary 3 is the wall, so pinned in all coordinates
515  {
516  unsigned b = 3;
517  unsigned n_node = Bulk_mesh_pt->nboundary_node(b);
518  for(unsigned n=0;n<n_node;n++)
519  {
520  for(unsigned i=0;i<3;i++)
521  {
522  Bulk_mesh_pt->boundary_node_pt(b,n)->pin(i);
523  }
524  /*if(n==0)
525  {
526  //Pin one spine heights on the wall
527  static_cast<SpineNode*>(Bulk_mesh_pt->boundary_node_pt(b,n))->
528  spine_pt()->spine_height_pt()->pin(0);
529  }*/
530  }
531  }
532 
533 
534  //Boundary 4 must be the top, so it's traction free
535 
536 
537  // Loop over the elements to set up element-specific
538  // things that cannot be handled by constructor
539  unsigned n_element = Bulk_mesh_pt->nbulk();
540  for(unsigned i=0;i<n_element;i++)
541  {
542  // Upcast from GeneralisedElement to the present element
543  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(i));
544 
545  //Set the Reynolds number, etc
546  el_pt->re_pt() = &Global_Physical_Variables::Re;
547 
548  //Set the gravitational force
549  el_pt->re_invfr_pt() = &Global_Physical_Variables::ReInvFr;
550  el_pt->g_pt() = &Global_Physical_Variables::G;
551  }
552 
553  // Pin redudant pressure dofs. This must be done before
554  // pinning the single pressure does because it unpins things
557 
558 
559  //If not hijacking the internal pressure
560  if(hijack_flag==0)
561  {
562  //We trade for the external pressu
564 
565  // Since the external pressure is "traded" for the volume constraint,
566  // it no longer sets the overall pressure, and we
567  // can add an arbitrary constant to all pressures. To make
568  // the solution unique, we pin a single pressure value in the bulk:
569  // We arbitrarily set the pressure dof 0 in element 0 to zero.
570  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->bulk_element_pt(0))
571  ->fix_pressure(0,0.0);
572  }
573  //Otherwise we are hijacking an internal value
574  else
575  {
576  // The external pressure is pinned -- the external pressure
577  // sets the pressure throughout the domain -- we do not have
578  // the liberty to fix another pressure value!
579  Pext_pt->pin(0);
580 
581  //If the flag is one, it's Taylor hood (hijack the nodal value)
582  if(hijack_flag==1)
583  {
584  //Hijack one of the pressure values in the fluid and use it
585  //as the pressure whose value is determined by the volume constraint.
586  //(Its value will affect the residual of that element but it will not
587  //be determined by it, i.e. it's hijacked).
588  Traded_pressure_data_pt = dynamic_cast<ELEMENT*>(
589  Bulk_mesh_pt->bulk_element_pt(0))->hijack_nodal_value(0,3);
590  }
591  //Otherwise hijack internal
592  else
593  {
594  //Hijack one of the pressure values in the fluid and use it
595  //as the pressure whose value is determined by the volume constraint.
596  //(Its value will affect the residual of that element but it will not
597  //be determined by it, i.e. it's hijacked).
598  Traded_pressure_data_pt = dynamic_cast<ELEMENT*>(
599  Bulk_mesh_pt->bulk_element_pt(0))->hijack_internal_value(0,0);
600  }
601  }
602 
603 
604  //Loop over the interface elements and set the capillary number
605  unsigned n_interface = Bulk_mesh_pt->ninterface_element();
606  for(unsigned e=0;e<n_interface;e++)
607  {
611 
612  //set the capillary number
614  //Set the external pressure
616  }
617 
618  // Set solid body rotation as initial solution
619  unsigned n_nod=Bulk_mesh_pt->nnode();
620  for (unsigned j=0;j<n_nod;j++)
621  {
622  using namespace Global_Physical_Variables;
623  Node* node_pt=Bulk_mesh_pt->node_pt(j);
624  // Recover coordinates
625  double x=node_pt->x(0);
626  double y=node_pt->x(1);
627  double r=sqrt(x*x+y*y);
628  double theta = atan2(y,x);
629 
630  // Solid body rotation
631  node_pt->set_value(0,-Omega*r*sin(theta));
632  node_pt->set_value(1,Omega*r*cos(theta));
633  node_pt->set_value(2,0.0);
634  }
635 
637 
638  this->add_sub_mesh(Bulk_mesh_pt);
641 
642  this->build_global_mesh();
643 
644  //Attach the boundary conditions to the mesh
645  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
646 
647 
648 } // end_of_constructor
Vector< GeneralisedElement * > & bulk_element_pt()
Definition: free_surface_rotation.cc:109
double Volume
The volume of the fluid.
Definition: 3d_static_cap.cc:344
AxialSpineQuarterTubeMesh< ELEMENT, SpineSurfaceFluidInterfaceElement< ELEMENT > > * Bulk_mesh_pt
Definition: 3d_static_cap.cc:387
Data * Traded_pressure_data_pt
Storage for the pressure that is traded for the volume constraint.
Definition: 3d_static_cap.cc:403
Mesh * Volume_constraint_mesh_pt
Storage for the volume constraint element.
Definition: 3d_static_cap.cc:393
Mesh * Volume_computation_mesh_pt
Storage for the elements that compute the enclosed fluid volume.
Definition: 3d_static_cap.cc:390
void create_volume_constraint_elements()
Create the volume constraint elements.
Definition: 3d_static_cap.cc:655
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void add_global_data(Data *const &global_data_pt)
Definition: problem.h:1654
void build_global_mesh()
Definition: problem.cc:1493
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atan(const bfloat16 &a)
Definition: BFloat16.h:636
double Omega
Definition: osc_ring_sarah_asymptotics.h:43

References oomph::Problem::add_global_data(), oomph::Problem::add_sub_mesh(), Global_Physical_Variables::Angle, oomph::Problem::assign_eqn_numbers(), atan2(), b, oomph::Problem::build_global_mesh(), AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::bulk_element_pt(), FreeSurfaceRotationProblem< ELEMENT >::Bulk_mesh_pt, Global_Physical_Variables::Ca, oomph::FluidInterfaceElement::ca_pt(), cos(), FreeSurfaceRotationProblem< ELEMENT >::create_volume_constraint_elements(), e(), MeshRefinement::error_estimator_pt, Global_Physical_Variables::G, i, AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::interface_element_pt(), j, n, AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::nbulk(), AxialSpineQuarterTubeMesh< ELEMENT, INTERFACE_ELEMENT >::ninterface_element(), oomph::SarahBL::Omega, FreeSurfaceRotationProblem< ELEMENT >::Pext_pt, constants::pi, BiharmonicTestFunctions2::Pi, oomph::Data::pin(), UniformPSDSelfTest::r, UniformPSDSelfTest::radius, Global_Physical_Variables::Re, Global_Physical_Variables::ReInvFr, oomph::FluidInterfaceElement::set_external_pressure_data(), oomph::Data::set_value(), sin(), sqrt(), BiharmonicTestFunctions2::theta, FreeSurfaceRotationProblem< ELEMENT >::Traded_pressure_data_pt, FreeSurfaceRotationProblem< ELEMENT >::Volume_computation_mesh_pt, FreeSurfaceRotationProblem< ELEMENT >::Volume_constraint_mesh_pt, plotDoE::x, oomph::Node::x(), and y.

◆ ~FreeSurfaceRotationProblem() [2/2]

template<class ELEMENT >
FreeSurfaceRotationProblem< ELEMENT >::~FreeSurfaceRotationProblem ( )
inline

Destructor to clean up memory (empty)

354 {}

Member Function Documentation

◆ actions_after_newton_solve() [1/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Doc the solution after solve.

Reimplemented from oomph::Problem.

402  {
403  // Doc solution after solving
404  doc_solution();
405 
406  // Increment label for output files
407  Doc_info.number()++;
408  }
void doc_solution()
Doc the solution.
Definition: free_surface_rotation.cc:633
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554

References GlobalParameters::Doc_info, and oomph::DocInfo::number().

◆ actions_after_newton_solve() [2/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Doc the solution after solve.

Reimplemented from oomph::Problem.

358  {
359  // Doc solution after solving
360  doc_solution();
361 
362  // Increment label for output files
363  Doc_info.number()++;
364  }

References GlobalParameters::Doc_info, and oomph::DocInfo::number().

◆ actions_before_newton_convergence_check() [1/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_before_newton_convergence_check ( )
inlinevirtual

Spine heights/lengths are unknowns in the problem so their values get corrected during each Newton step. However, changing their value does not automatically change the nodal positions, so we need to update all of them

Reimplemented from oomph::Problem.

418  {
419  mesh_pt()->node_update();
420  }

◆ actions_before_newton_convergence_check() [2/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_before_newton_convergence_check ( )
inlinevirtual

Spine heights/lengths are unknowns in the problem so their values get corrected during each Newton step. However, changing their value does not automatically change the nodal positions, so we need to update all of them

Reimplemented from oomph::Problem.

374  {
375  Bulk_mesh_pt->node_update();
376  }

◆ actions_before_newton_solve() [1/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve.

Reimplemented from oomph::Problem.

411 {}

◆ actions_before_newton_solve() [2/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve.

Reimplemented from oomph::Problem.

367 {}

◆ create_volume_constraint_elements()

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::create_volume_constraint_elements

Create the volume constraint elements.

Create the volume constraint elements on all boundaries surrounding the volume

656 {
657  //The single volume constraint element
659  VolumeConstraintElement* vol_constraint_element =
661  Volume_constraint_mesh_pt->add_element_pt(vol_constraint_element);
662 
663  //Now create the volume computation elements
665 
666  //Loop over all boundaries (or a subset why?)
667  for(unsigned b=0;b<5;b++)
668  {
669  // How many bulk fluid elements are adjacent to boundary b?
670  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
671 
672  // Loop over the bulk fluid elements adjacent to boundary b?
673  for(unsigned e=0;e<n_element;e++)
674  {
675  // Get pointer to the bulk fluid element that is
676  // adjacent to boundary b
677  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
678  Bulk_mesh_pt->boundary_element_pt(b,e));
679 
680  //Find the index of the face of element e along boundary b
681  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
682 
683  // Create new element
686  bulk_elem_pt,face_index);
687 
688  //Set the "master" volume control element
689  el_pt->set_volume_constraint_element(vol_constraint_element);
690 
691  // Add it to the mesh
693  }
694  }
695 }
Definition: mesh.h:67
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
Definition: constrained_volume_elements.h:816
void set_volume_constraint_element(VolumeConstraintElement *const &vol_constraint_el_pt, const bool &check_nodal_data=true)
Definition: constrained_volume_elements.h:261
Definition: constrained_volume_elements.h:66

References oomph::Mesh::add_element_pt(), b, FreeSurfaceRotationProblem< ELEMENT >::Bulk_mesh_pt, e(), oomph::VolumeConstraintBoundingElement::set_volume_constraint_element(), FreeSurfaceRotationProblem< ELEMENT >::Traded_pressure_data_pt, FreeSurfaceRotationProblem< ELEMENT >::Volume, FreeSurfaceRotationProblem< ELEMENT >::Volume_computation_mesh_pt, and FreeSurfaceRotationProblem< ELEMENT >::Volume_constraint_mesh_pt.

Referenced by FreeSurfaceRotationProblem< ELEMENT >::FreeSurfaceRotationProblem().

◆ doc_solution() [1/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::doc_solution

Doc the solution.

634 {
635 
636  ofstream some_file;
637  char filename[100];
638 
639  // Number of plot points
640  unsigned npts;
641  npts=5;
642 
643  // Output solution
644  sprintf(filename,"%s/soln%i.dat",Doc_info.directory().c_str(),
645  Doc_info.number());
646  some_file.open(filename);
647  mesh_pt()->output(some_file,npts);
648  some_file.close();
649 
650 } // end_of_doc_solution
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524

References oomph::DocInfo::directory(), FreeSurfaceRotationProblem< ELEMENT >::Doc_info, MergeRestartFiles::filename, FreeSurfaceRotationProblem< ELEMENT >::mesh_pt(), and oomph::DocInfo::number().

◆ doc_solution() [2/2]

template<class ELEMENT >
void FreeSurfaceRotationProblem< ELEMENT >::doc_solution ( )

Doc the solution.

◆ mesh_pt()

template<class ELEMENT >
AxialSpineQuarterTubeMesh<ELEMENT,SpineSurfaceFluidInterfaceElement<ELEMENT> >* FreeSurfaceRotationProblem< ELEMENT >::mesh_pt ( )
inline

Overload generic access function by one that returns a pointer to the specific mesh

429  {
430  return
431  dynamic_cast<AxialSpineQuarterTubeMesh<ELEMENT,
433  (Problem::mesh_pt());
434  }

Referenced by FreeSurfaceRotationProblem< ELEMENT >::doc_solution(), and FreeSurfaceRotationProblem< ELEMENT >::FreeSurfaceRotationProblem().

Member Data Documentation

◆ Bulk_mesh_pt

template<class ELEMENT >
AxialSpineQuarterTubeMesh< ELEMENT, SpineSurfaceFluidInterfaceElement<ELEMENT> >* FreeSurfaceRotationProblem< ELEMENT >::Bulk_mesh_pt

Overload generic access function by one that returns a pointer to the specific mesh

Referenced by FreeSurfaceRotationProblem< ELEMENT >::create_volume_constraint_elements(), and FreeSurfaceRotationProblem< ELEMENT >::FreeSurfaceRotationProblem().

◆ Doc_info

template<class ELEMENT >
DocInfo FreeSurfaceRotationProblem< ELEMENT >::Doc_info
private

◆ Pext_pt

template<class ELEMENT >
Data* FreeSurfaceRotationProblem< ELEMENT >::Pext_pt
private

◆ Traded_pressure_data_pt

template<class ELEMENT >
Data* FreeSurfaceRotationProblem< ELEMENT >::Traded_pressure_data_pt
private

◆ Volume

template<class ELEMENT >
double FreeSurfaceRotationProblem< ELEMENT >::Volume
private

◆ Volume_computation_mesh_pt

template<class ELEMENT >
Mesh* FreeSurfaceRotationProblem< ELEMENT >::Volume_computation_mesh_pt

◆ Volume_constraint_mesh_pt

template<class ELEMENT >
Mesh* FreeSurfaceRotationProblem< ELEMENT >::Volume_constraint_mesh_pt

The documentation for this class was generated from the following files: