RefineableYoungLaplaceProblem< ELEMENT > Class Template Reference
+ Inheritance diagram for RefineableYoungLaplaceProblem< ELEMENT >:

Public Member Functions

 RefineableYoungLaplaceProblem ()
 Constructor: More...
 
 ~RefineableYoungLaplaceProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve: Empty. More...
 
void actions_after_newton_solve ()
 Update the problem after solve: Empty. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of contact angle elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of contact angle elements. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution: doc_info contains labels/output directory etc. More...
 
 RefineableYoungLaplaceProblem ()
 Constructor: More...
 
 ~RefineableYoungLaplaceProblem ()
 Destructor (empty) More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve: Empty. More...
 
void actions_after_newton_solve ()
 Update the problem after solve: Empty. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of contact angle elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of contact angle elements. More...
 
void increment_parameters ()
 Increase the problem parameters before each solve. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 
 RefineableYoungLaplaceProblem ()
 Constructor: More...
 
 ~RefineableYoungLaplaceProblem ()
 Destructor (empty) More...
 
void actions_before_solve ()
 Update the problem specs before solve: Empty. More...
 
void actions_after_solve ()
 Update the problem after solve: Empty. More...
 
void increment_parameters ()
 Increment problem parameters. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Member Functions

void create_contact_angle_elements (const unsigned &b)
 
void delete_contact_angle_elements ()
 Delete contact angle elements. More...
 
void create_contact_angle_elements (const unsigned &b)
 
void delete_contact_angle_elements ()
 Delete contact angle elements. More...
 

Private Attributes

RefineableRectangularQuadMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 
MeshContact_angle_mesh_pt
 Pointer to the contact angle mesh. More...
 
MeshHeight_control_mesh_pt
 Pointer to mesh containing the height control element. More...
 
NodeControl_node_pt
 Node at which the height (displacement along spine) is controlled/doced. More...
 
DataKappa_pt
 Pointer to Data object that stores the prescribed curvature. More...
 
HeightControlElementHeight_control_element_pt
 Pointer to height control element. More...
 
GeomObjectBoundary_pt
 Pointer to GeomObject that specifies the domain bondary. More...
 
RefineableQuarterCircleSectorMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class RefineableYoungLaplaceProblem< ELEMENT >

2D RefineableYoungLaplace problem on rectangular domain, discretised with 2D QRefineableYoungLaplace elements. The specific type of element is specified via the template parameter.

2D RefineableYoungLaplace problem on a circle sector, discretised with 2D QRefineableYoungLaplace elements. The specific type of element is specified via the template parameter.

Constructor & Destructor Documentation

◆ RefineableYoungLaplaceProblem() [1/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::RefineableYoungLaplaceProblem

Constructor:

Constructor for RefineableYoungLaplace problem.

227 {
228 
229  // Setup bulk mesh
230  //----------------
231 
232  // # of elements in x-direction
233  unsigned n_x=8;
234 
235  // # of elements in y-direction
236  unsigned n_y=8;
237 
238  // Domain length in x-direction
239  double l_x=GlobalParameters::L_x;
240 
241  // Domain length in y-direction
242  double l_y=GlobalParameters::L_y;
243 
244  // Build and assign mesh
246 
247  // Create/set error estimator
248  Bulk_mesh_pt->spatial_error_estimator_pt()=new Z2ErrorEstimator;
249 
250  // Set targets for spatial adaptivity
251  Bulk_mesh_pt->max_permitted_error()=1.0e-4;
252  Bulk_mesh_pt->min_permitted_error()=1.0e-6;
253 
254  // Check that we've got an even number of elements otherwise
255  // out counting doesn't work...
256  if ((n_x%2!=0)||(n_y%2!=0))
257  {
258  cout << "n_x n_y should be even" << endl;
259  abort();
260  }
261 
262  // This is the element that contains the central node:
263  ELEMENT* prescribed_height_element_pt= dynamic_cast<ELEMENT*>(
264  Bulk_mesh_pt->element_pt(n_y*n_x/2+n_x/2));
265 
266  // The central node is node 0 in that element
267  Control_node_pt= static_cast<Node*>(prescribed_height_element_pt->node_pt(0));
268 
269  std::cout << "Controlling height at (x,y) : (" << Control_node_pt->x(0)
270  << "," << Control_node_pt->x(1) << ")" << "\n" << endl;
271 
272  // Create a height control element and store the
273  // pointer to the Kappa Data created by this object
274  HeightControlElement* height_control_element_pt=new HeightControlElement(
276 
277  // Add to mesh
279  Height_control_mesh_pt->add_element_pt(height_control_element_pt);
280 
281  // Store curvature data
282  Kappa_pt=height_control_element_pt->kappa_pt();
283 
284 
285  // Contact angle elements
286  //-----------------------
287 
288  // Create prescribed-contact-angle elements from all elements that are
289  // adjacent to boundary 1 and 3 and add them to their own mesh
290 
291  // set up new mesh
293 
294  // creation of contact angle elements
297 
298 
299  // Add various meshes and build the global mesh
300  //----------------------------------------------
305 
306 
307  // Boundary conditions
308  //--------------------
309 
310  // Set the boundary conditions for this problem: All nodes are
311  // free by default -- only need to pin the ones that have Dirichlet conditions
312  // here.
313  unsigned n_bound = Bulk_mesh_pt->nboundary();
314  for(unsigned b=0;b<n_bound;b++)
315  {
316  // Pin all boundaries for three cases and only boundaries
317  // 0 and 2 in all others:
318  if ((b==0)||(b==2))
319  {
320  unsigned n_node = Bulk_mesh_pt->nboundary_node(b);
321  for (unsigned n=0;n<n_node;n++)
322  {
323  Bulk_mesh_pt->boundary_node_pt(b,n)->pin(0);
324  }
325  }
326  } // end bcs
327 
328  // Complete build of elements
329  //---------------------------
330 
331  // Complete the build of all elements so they are fully functional
332  unsigned n_bulk=Bulk_mesh_pt->nelement();
333  for(unsigned i=0;i<n_bulk;i++)
334  {
335  // Upcast from GeneralsedElement to the present element
336  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(i));
337 
338  //Set the spine function pointers
339  el_pt->spine_base_fct_pt() = GlobalParameters::spine_base_function;
340  el_pt->spine_fct_pt() = GlobalParameters::spine_function;
341 
342  // Set the curvature data for the element
343  el_pt->set_kappa(Kappa_pt);
344  }
345 
346  // Set function pointers for contact-angle elements
347  unsigned nel=Contact_angle_mesh_pt->nelement();
348  for (unsigned e=0;e<nel;e++)
349  {
350  // Upcast from GeneralisedElement to YoungLaplace contact angle
351  // element
355 
356  // Set the pointer to the prescribed contact angle
358  }
359 
360 
361  // Setup equation numbering scheme
362  cout <<"\nNumber of equations: " << assign_eqn_numbers() << endl;
363  cout << "\n********************************************\n" << endl;
364 
365 } // end of constructor
int i
Definition: BiCGSTAB_step_by_step.cpp:9
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Scalar * b
Definition: benchVecAdd.cpp:17
void create_contact_angle_elements(const unsigned &b)
Definition: refineable_t_junction.cc:373
Data * Kappa_pt
Pointer to Data object that stores the prescribed curvature.
Definition: refineable_t_junction.cc:217
RefineableRectangularQuadMesh< ELEMENT > * Bulk_mesh_pt
Pointer to the "bulk" mesh.
Definition: refineable_t_junction.cc:205
Mesh * Contact_angle_mesh_pt
Pointer to the contact angle mesh.
Definition: refineable_t_junction.cc:208
Mesh * Height_control_mesh_pt
Pointer to mesh containing the height control element.
Definition: refineable_t_junction.cc:211
Node * Control_node_pt
Node at which the height (displacement along spine) is controlled/doced.
Definition: refineable_t_junction.cc:214
Definition: young_laplace_elements.h:556
Data *& kappa_pt()
Definition: young_laplace_elements.h:582
Definition: mesh.h:67
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: rectangular_quadmesh.template.h:326
Definition: young_laplace_contact_angle_elements.h:53
double * prescribed_cos_gamma_pt() const
Definition: young_laplace_contact_angle_elements.h:78
Definition: error_estimator.h:266
double L_x
------------------—Unsteady Heat Parameters---------------------—
Definition: test_equal_order_galerkin.cc:62
double Controlled_height
Height control value.
Definition: barrel.cc:51
void spine_function(const Vector< double > &x, Vector< double > &spine, Vector< Vector< double > > &dspine)
Definition: barrel.cc:104
void spine_base_function(const Vector< double > &x, Vector< double > &spine_B, Vector< Vector< double > > &dspine_B)
Definition: barrel.cc:72
double L_y
Length of the mesh in the y-direction.
Definition: test_equal_order_galerkin.cc:65
double Cos_gamma
Cos of contact angle.
Definition: common_young_laplace_stuff.h:61

References oomph::Mesh::add_element_pt(), b, GlobalParameters::Controlled_height, GlobalParameters::Cos_gamma, e(), i, GlobalParameters::Kappa_pt, oomph::HeightControlElement::kappa_pt(), GlobalParameters::L_x, GlobalParameters::L_y, n, oomph::YoungLaplaceContactAngleElement< ELEMENT >::prescribed_cos_gamma_pt(), GlobalParameters::spine_base_function(), GlobalParameters::spine_function(), and oomph::Node::x().

◆ ~RefineableYoungLaplaceProblem() [1/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::~RefineableYoungLaplaceProblem ( )
inline

Destructor (empty)

147 {};

◆ RefineableYoungLaplaceProblem() [2/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::RefineableYoungLaplaceProblem ( )

Constructor:

◆ ~RefineableYoungLaplaceProblem() [2/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::~RefineableYoungLaplaceProblem ( )
inline

Destructor (empty)

59 {};

◆ RefineableYoungLaplaceProblem() [3/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::RefineableYoungLaplaceProblem ( )

Constructor:

◆ ~RefineableYoungLaplaceProblem() [3/3]

template<class ELEMENT >
RefineableYoungLaplaceProblem< ELEMENT >::~RefineableYoungLaplaceProblem ( )
inline

Destructor (empty)

62 {};

Member Function Documentation

◆ actions_after_adapt() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

Actions after adapt: Rebuild the mesh of contact angle elements.

Reimplemented from oomph::Problem.

168  {
171 
172  // Set function pointers for contact-angle elements
173  unsigned nel=Contact_angle_mesh_pt->nelement();
174  for (unsigned e=0;e<nel;e++)
175  {
176  // Upcast from GeneralisedElement to YoungLaplace contact angle
177  // element
181 
182  // Set the pointer to the prescribed contact angle
184  }
185 
186  // Rebuild the Problem's global mesh from its various sub-meshes
188 
189  }
void rebuild_global_mesh()
Definition: problem.cc:1533

References GlobalParameters::Cos_gamma, e(), and oomph::YoungLaplaceContactAngleElement< ELEMENT >::prescribed_cos_gamma_pt().

◆ actions_after_adapt() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

Actions after adapt: Rebuild the mesh of contact angle elements.

Reimplemented from oomph::Problem.

80  {
81  // Create contact angle elements on boundaries 1 and 3 of bulk mesh
84  {
87 
88  // Set function pointers for contact-angle elements
89  unsigned nel=Contact_angle_mesh_pt->nelement();
90  for (unsigned e=0;e<nel;e++)
91  {
92  // Upcast from GeneralisedElement to YoungLaplace contact angle
93  // element
97 
98  // Set the pointer to the prescribed contact angle
100  }
101  }
102 
103  // Rebuild the Problem's global mesh from its various sub-meshes
105 
106  }
@ T_junction_with_nonzero_contact_angle
Definition: common_young_laplace_stuff.h:49
int Case
What case are we considering: Choose one from the enumeration Cases.
Definition: common_young_laplace_stuff.h:53

References GlobalParameters::Case, GlobalParameters::Cos_gamma, e(), oomph::YoungLaplaceContactAngleElement< ELEMENT >::prescribed_cos_gamma_pt(), and GlobalParameters::T_junction_with_nonzero_contact_angle.

◆ actions_after_newton_solve() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve: Empty.

Reimplemented from oomph::Problem.

153 {};

◆ actions_after_newton_solve() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve: Empty.

Reimplemented from oomph::Problem.

65 {};

◆ actions_after_solve()

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_after_solve ( )
inline

Update the problem after solve: Empty.

68 {};

◆ actions_before_adapt() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_before_adapt ( )
inlinevirtual

Actions before adapt: Wipe the mesh of contact angle elements.

Reimplemented from oomph::Problem.

157  {
158  // Kill the contact angle elements and wipe contact angle mesh
160 
161  // Rebuild the Problem's global mesh from its various sub-meshes
163  }
void delete_contact_angle_elements()
Delete contact angle elements.
Definition: refineable_t_junction.cc:405

◆ actions_before_adapt() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_before_adapt ( )
inlinevirtual

Actions before adapt: Wipe the mesh of contact angle elements.

Reimplemented from oomph::Problem.

69  {
70  // Kill the contact angle elements and wipe contact angle mesh
72 
73  // Rebuild the Problem's global mesh from its various sub-meshes
75  }

◆ actions_before_newton_solve() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve: Empty.

Reimplemented from oomph::Problem.

150 {};

◆ actions_before_newton_solve() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve: Empty.

Reimplemented from oomph::Problem.

62 {};

◆ actions_before_solve()

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::actions_before_solve ( )
inline

Update the problem specs before solve: Empty.

65 {};

◆ create_contact_angle_elements() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::create_contact_angle_elements ( const unsigned b)
private

Create YoungLaplace contact angle elements on the b-th boundary of the bulk mesh and add them to contact angle mesh

Create YoungLaplace contact angle elements on the b-th boundary of the bulk mesh and add them to the contact angle mesh

375 {
376  // How many bulk elements are adjacent to boundary b?
377  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
378 
379  // Loop over the bulk elements adjacent to boundary b?
380  for(unsigned e=0;e<n_element;e++)
381  {
382  // Get pointer to the bulk element that is adjacent to boundary b
383  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
384  Bulk_mesh_pt->boundary_element_pt(b,e));
385 
386  // What is the index of the face of the bulk element at the boundary
387  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
388 
389  // Build the corresponding contact angle element
390  YoungLaplaceContactAngleElement<ELEMENT>* contact_angle_element_pt = new
391  YoungLaplaceContactAngleElement<ELEMENT>(bulk_elem_pt,face_index);
392 
393  //Add the contact angle element to the contact angle mesh
394  Contact_angle_mesh_pt->add_element_pt(contact_angle_element_pt);
395 
396  } //end of loop over bulk elements adjacent to boundary b
397 
398 } // end of create_contact_angle_elements

References b, and e().

◆ create_contact_angle_elements() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::create_contact_angle_elements ( const unsigned b)
private

Create YoungLaplace contact angle elements on the b-th boundary of the bulk mesh and add them to contact angle mesh

◆ delete_contact_angle_elements() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::delete_contact_angle_elements
private

Delete contact angle elements.

Delete YoungLaplace contact angle elements.

406 {
407 
408  // How many contact angle elements are there?
409  unsigned n_element = Contact_angle_mesh_pt->nelement();
410 
411  // Loop over the surface elements
412  for(unsigned e=0;e<n_element;e++)
413  {
414  // Kill surface element
416  }
417 
418  // Wipe the mesh
420 
421 
422 } // end of delete_contact_angle_elements
void flush_element_and_node_storage()
Definition: mesh.h:407

References e().

◆ delete_contact_angle_elements() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::delete_contact_angle_elements ( )
private

Delete contact angle elements.

◆ doc_solution() [1/3]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution: doc_info contains labels/output directory etc.

Doc the solution. DocInfo object stores flags/labels for where the output gets written to and the trace file

432 {
433 
434  // Output kappa vs height
435  //-----------------------
436  trace_file << -1.0*Kappa_pt->value(0) << " ";
437  trace_file << Control_node_pt->value(0) ;
438  trace_file << endl;
439 
440  // Number of plot points: npts x npts
441  unsigned npts=5;
442 
443  // Output full solution
444  //---------------------
445  ofstream some_file;
446  char filename[100];
447  //YoungLaplaceEquations::Output_meniscus_and_spines=false;
448  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
449  doc_info.number());
450  some_file.open(filename);
451  Bulk_mesh_pt->output(some_file,npts);
452  some_file.close();
453 
454  // Output contact angle
455  //---------------------
456 
457  ofstream tangent_file;
458  sprintf(filename,"%s/tangent_to_contact_line%i.dat",
459  doc_info.directory().c_str(),
460  doc_info.number());
461  tangent_file.open(filename);
462 
463  ofstream normal_file;
464  sprintf(filename,"%s/normal_to_contact_line%i.dat",
465  doc_info.directory().c_str(),
466  doc_info.number());
467  normal_file.open(filename);
468 
469 
470  ofstream contact_angle_file;
471  sprintf(filename,"%s/contact_angle%i.dat",
472  doc_info.directory().c_str(),
473  doc_info.number());
474  contact_angle_file.open(filename);
475 
476  // Tangent and normal vectors to contact line
477  Vector<double> tangent(3);
479  Vector<double> r_contact(3);
480 
481  // How many contact angle elements are there?
482  unsigned n_element = Contact_angle_mesh_pt->nelement();
483 
484  // Loop over the surface elements
485  for(unsigned e=0;e<n_element;e++)
486  {
487 
488  tangent_file << "ZONE" << std::endl;
489  normal_file << "ZONE" << std::endl;
490  contact_angle_file << "ZONE" << std::endl;
491 
492  // Upcast from GeneralisedElement to YoungLaplace contact angle element
496 
497  // Loop over a few points in the contact angle element
498  Vector<double> s(1);
499  for (unsigned i=0;i<npts;i++)
500  {
501  s[0]=-1.0+2.0*double(i)/double(npts-1);
502 
503  dynamic_cast<ELEMENT*>(el_pt->bulk_element_pt())->
504  position(el_pt->local_coordinate_in_bulk(s),r_contact);
505 
506  el_pt->contact_line_vectors(s,tangent,normal);
507  tangent_file << r_contact[0] << " "
508  << r_contact[1] << " "
509  << r_contact[2] << " "
510  << tangent[0] << " "
511  << tangent[1] << " "
512  << tangent[2] << " " << std::endl;
513 
514  normal_file << r_contact[0] << " "
515  << r_contact[1] << " "
516  << r_contact[2] << " "
517  << normal[0] << " "
518  << normal[1] << " "
519  << normal[2] << " " << std::endl;
520 
521  contact_angle_file << r_contact[1] << " "
522  << el_pt->actual_cos_contact_angle(s)
523  << std::endl;
524  }
525 
526 
527  } // end of loop over both boundaries
528 
529  tangent_file.close();
530  normal_file.close();
531  contact_angle_file.close();
532 
533 
534 cout << "\n********************************************" << endl << endl;
535 
536 } // end of doc
double value(const unsigned &i) const
Definition: nodes.h:293
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
Vector< double > local_coordinate_in_bulk(const Vector< double > &s) const
Definition: elements.cc:6353
FiniteElement *& bulk_element_pt()
Pointer to higher-dimensional "bulk" element.
Definition: elements.h:4735
double value(const unsigned &i) const
Definition: nodes.cc:2408
double actual_cos_contact_angle(const Vector< double > &s)
Compute cosinus of actual contact angle.
Definition: young_laplace_contact_angle_elements.cc:154
void contact_line_vectors(const Vector< double > &s, Vector< double > &tangent, Vector< double > &normal)
Get unit tangent and normal vectors to contact line.
Definition: young_laplace_contact_angle_elements.h:149
RealScalar s
Definition: level1_cplx_impl.h:130
string filename
Definition: MergeRestartFiles.py:39
void normal(const Vector< double > &x, Vector< double > &normal)
Definition: free_surface_rotation.cc:65

References oomph::YoungLaplaceContactAngleElement< ELEMENT >::actual_cos_contact_angle(), oomph::FaceElement::bulk_element_pt(), oomph::YoungLaplaceContactAngleElement< ELEMENT >::contact_line_vectors(), oomph::DocInfo::directory(), e(), MergeRestartFiles::filename, i, GlobalParameters::Kappa_pt, oomph::FaceElement::local_coordinate_in_bulk(), WallFunction::normal(), oomph::DocInfo::number(), s, and oomph::Data::value().

◆ doc_solution() [2/3]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution. DocInfo object stores flags/labels for where the output gets written to and the trace file

◆ doc_solution() [3/3]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution. DocInfo object stores flags/labels for where the output gets written to and the trace file

◆ increment_parameters() [1/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::increment_parameters

Increase the problem parameters before each solve.

Update (increase/decrease) parameters.

392 {
393 
394  // Increment kappa or height value
396  {
397  double kappa=GlobalParameters::Kappa_pt->value(0);
400 
401  cout << "Solving for Prescribed KAPPA Value = " ;
402  cout << GlobalParameters::Kappa_pt->value(0) << "\n" << endl;
403  }
404  else
405  {
408 
409  cout << "Solving for Prescribed HEIGHT Value = " ;
410  cout << GlobalParameters::Controlled_height << "\n" << endl;
411  }
412 
413 }
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
bool Use_height_control
Use height control (true) or not (false)?
Definition: common_young_laplace_stuff.h:43
double Controlled_height_increment
Increment for height control.
Definition: common_young_laplace_stuff.h:85
double Kappa_increment
Increment for prescribed curvature.
Definition: common_young_laplace_stuff.h:82
Data * Kappa_pt
Pointer to Data object that stores the prescribed curvature.
Definition: common_young_laplace_stuff.h:64

References GlobalParameters::Controlled_height, GlobalParameters::Controlled_height_increment, GlobalParameters::Kappa_increment, GlobalParameters::Kappa_pt, oomph::Data::set_value(), GlobalParameters::Use_height_control, and oomph::Data::value().

◆ increment_parameters() [2/2]

template<class ELEMENT >
void RefineableYoungLaplaceProblem< ELEMENT >::increment_parameters ( )

Increment problem parameters.

Member Data Documentation

◆ Boundary_pt

template<class ELEMENT >
GeomObject* RefineableYoungLaplaceProblem< ELEMENT >::Boundary_pt
private

Pointer to GeomObject that specifies the domain bondary.

◆ Bulk_mesh_pt [1/2]

template<class ELEMENT >
RefineableRectangularQuadMesh< ELEMENT > * RefineableYoungLaplaceProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ Bulk_mesh_pt [2/2]

template<class ELEMENT >
RefineableQuarterCircleSectorMesh<ELEMENT>* RefineableYoungLaplaceProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ Contact_angle_mesh_pt

template<class ELEMENT >
Mesh * RefineableYoungLaplaceProblem< ELEMENT >::Contact_angle_mesh_pt
private

Pointer to the contact angle mesh.

◆ Control_node_pt

template<class ELEMENT >
Node * RefineableYoungLaplaceProblem< ELEMENT >::Control_node_pt
private

Node at which the height (displacement along spine) is controlled/doced.

◆ Height_control_element_pt

template<class ELEMENT >
HeightControlElement * RefineableYoungLaplaceProblem< ELEMENT >::Height_control_element_pt
private

Pointer to height control element.

◆ Height_control_mesh_pt

template<class ELEMENT >
Mesh * RefineableYoungLaplaceProblem< ELEMENT >::Height_control_mesh_pt
private

Pointer to mesh containing the height control element.

◆ Kappa_pt

template<class ELEMENT >
Data* RefineableYoungLaplaceProblem< ELEMENT >::Kappa_pt
private

Pointer to Data object that stores the prescribed curvature.


The documentation for this class was generated from the following files: