RefineableQDPVDElement.h
Go to the documentation of this file.
1 // This file is part of the MercuryDPM project (https://www.mercurydpm.org).
2 // Copyright (c), The MercuryDPM Developers Team. All rights reserved.
3 // License: BSD 3-Clause License; see the LICENSE file in the root directory.
4 
5 //
6 // Created by Thomas Weinhart on 29/04/2022.
7 //
8 
9 #ifndef MERCURYDPM_REFINEABLEQDPVDELEMENT_H
10 #define MERCURYDPM_REFINEABLEQDPVDELEMENT_H
12 
13 namespace oomph
14 {
15 
21 template<unsigned DIM, unsigned NNODE_1D>
22 class RefineableQDPVDElement : public RefineableQPVDElement<DIM,NNODE_1D>
23 {
24 public:
25 
27 
29  Vector<double>& residuals,
30  DenseMatrix<double>& jacobian,
31  const unsigned& flag )
32 
33  {
34 #ifdef PARANOID
35  // Check if the constitutive equation requires the explicit imposition of an
36  // incompressibility constraint
38  {
39  throw OomphLibError("RefineablePVDEquations cannot be used with "
40  "incompressible constitutive laws.",
43  }
44 #endif
45 
46  // Simply set up initial condition?
47  if (this->Solid_ic_pt != 0)
48  {
49  this->get_residuals_for_solid_ic(residuals);
50  return;
51  }
52 
53  // Find out how many nodes there are
54  const unsigned n_node = this->nnode();
55 
56  // Find out how many positional dofs there are
57  const unsigned n_position_type = this->nnodal_position_type();
58 
59  // Integers to store local equation numbers
60  int local_eqn = 0;
61 
62  // Timescale ratio (non-dim density)
63  double lambda_sq = this->lambda_sq();
64 
65  // Time factor
66  double time_factor = 0.0;
67  double time_factor1 = 0.0;
68  if(lambda_sq>0)
69  {
70  time_factor = this->node_pt(0)->position_time_stepper_pt()->weight(2, 0);
71  time_factor1 = this->node_pt(0)->position_time_stepper_pt()->weight(1, 0);
72  }
73 
74  // Set up memory for the shape functions
75  Shape psi(n_node, n_position_type);
76  DShape dpsidxi(n_node, n_position_type, DIM);
77 
78  // Set the value of n_intpt -- the number of integration points
79  const unsigned n_intpt = this->integral_pt()->nweight();
80 
81  // Set the vector to hold the local coordinates in the element
83 
84  // Loop over the integration points
85  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
86  {
87  // Assign the values of s
88  for (unsigned i = 0; i < DIM; ++i)
89  {
90  s[i] = this->integral_pt()->knot(ipt, i);
91  }
92 
93  // Get the integral weight
94  double w = this->integral_pt()->weight(ipt);
95 
96  // Call the derivatives of the shape functions (and get Jacobian)
97  double J = this->dshape_lagrangian_at_knot(ipt, psi, dpsidxi);
98 
99  // Calculate interpolated values of the derivative of global position
100  // wrt lagrangian coordinates
101  DenseMatrix<double> interpolated_G(DIM, DIM, 0.0);
102 
103  // Setup memory for accelerations
104  Vector<double> accel(DIM, 0.0);
105 
106  // Storage for Lagrangian coordinates (initialised to zero)
108 
109  // Calculate displacements and derivatives and lagrangian coordinates
110  for (unsigned l = 0; l < n_node; l++)
111  {
112  // Loop over positional dofs
113  for (unsigned k = 0; k < n_position_type; k++)
114  {
115  double psi_ = psi(l, k);
116  // Loop over displacement components (deformed position)
117  for (unsigned i = 0; i < DIM; i++)
118  {
119  // Calculate the Lagrangian coordinates and the accelerations
120  interpolated_xi[i] += this->lagrangian_position_gen(l, k, i) * psi_;
121 
122  // Only compute accelerations if inertia is switched on
123  // otherwise the timestepper might not be able to
124  // work out dx_gen_dt(2,...)
125  if ((lambda_sq > 0.0) && (this->Unsteady))
126  {
127  accel[i] += this->dnodal_position_gen_dt(2, l, k, i) * psi_;
128  accel[i] += this->dissipation_ *
129  this->dnodal_position_gen_dt(1, l, k, i) * psi_; //TW
130  }
131 
132  // Loop over derivative directions
133  for (unsigned j = 0; j < DIM; j++)
134  {
135  interpolated_G(j, i) +=
136  this->nodal_position_gen(l, k, i) * dpsidxi(l, k, j);
137  }
138  }
139  }
140  }
141 
142  // Get isotropic growth factor
143  double gamma = 1.0;
145 
146  // Get body force at current time
148  this->body_force(interpolated_xi, b);
149 
150  // We use Cartesian coordinates as the reference coordinate
151  // system. In this case the undeformed metric tensor is always
152  // the identity matrix -- stretched by the isotropic growth
153  double diag_entry = pow(gamma, 2.0 / double(DIM));
155  for (unsigned i = 0; i < DIM; i++)
156  {
157  for (unsigned j = 0; j < DIM; j++)
158  {
159  if (i == j)
160  {
161  g(i, j) = diag_entry;
162  }
163  else
164  {
165  g(i, j) = 0.0;
166  }
167  }
168  }
169 
170  // Premultiply the undeformed volume ratio (from the isotropic
171  // growth), the weights and the Jacobian
172  double W = gamma * w * J;
173 
174  // Declare and calculate the deformed metric tensor
176 
177  // Assign values of G
178  for (unsigned i = 0; i < DIM; i++)
179  {
180  // Do upper half of matrix
181  for (unsigned j = i; j < DIM; j++)
182  {
183  // Initialise G(i,j) to zero
184  G(i, j) = 0.0;
185  // Now calculate the dot product
186  for (unsigned k = 0; k < DIM; k++)
187  {
188  G(i, j) += interpolated_G(i, k) * interpolated_G(j, k);
189  }
190  }
191  // Matrix is symmetric so just copy lower half
192  for (unsigned j = 0; j < i; j++)
193  {
194  G(i, j) = G(j, i);
195  }
196  }
197 
198  // Now calculate the stress tensor from the constitutive law
200  this->get_stress(g, G, sigma);
201 
202  // Get stress derivative by FD only needed for Jacobian
203  //-----------------------------------------------------
204 
205  // Stress derivative
206  RankFourTensor<double> d_stress_dG(DIM, DIM, DIM, DIM, 0.0);
207  // Derivative of metric tensor w.r.t. to nodal coords
208  RankFiveTensor<double> d_G_dX(
209  n_node, n_position_type, DIM, DIM, DIM, 0.0);
210 
211  // Get Jacobian too?
212  if (flag == 1)
213  {
214  // Derivative of metric tensor w.r.t. to discrete positional dofs
215  // NOTE: Since G is symmetric we only compute the upper triangle
216  // and DO NOT copy the entries across. Subsequent computations
217  // must (and, in fact, do) therefore only operate with upper
218  // triangular entries
219  for (unsigned ll = 0; ll < n_node; ll++)
220  {
221  for (unsigned kk = 0; kk < n_position_type; kk++)
222  {
223  for (unsigned ii = 0; ii < DIM; ii++)
224  {
225  for (unsigned aa = 0; aa < DIM; aa++)
226  {
227  for (unsigned bb = aa; bb < DIM; bb++)
228  {
229  d_G_dX(ll, kk, ii, aa, bb) =
230  interpolated_G(aa, ii) * dpsidxi(ll, kk, bb) +
231  interpolated_G(bb, ii) * dpsidxi(ll, kk, aa);
232  }
233  }
234  }
235  }
236  }
237 
238  // Get the "upper triangular"
239  // entries of the derivatives of the stress tensor with
240  // respect to G
241  this->get_d_stress_dG_upper(g, G, sigma, d_stress_dG);
242  }
243 
244 
245  // Add pre-stress
246  for (unsigned i = 0; i < DIM; i++)
247  {
248  for (unsigned j = 0; j < DIM; j++)
249  {
250  sigma(i, j) += this->prestress(i, j, interpolated_xi);
251  }
252  }
253 
254  //=====EQUATIONS OF ELASTICITY FROM PRINCIPLE OF VIRTUAL
255  // DISPLACEMENTS========
256 
257 
258  // Default setting for non-hanging node
259  unsigned n_master = 1;
260  double hang_weight = 1.0;
261 
262  // Loop over the test functions, nodes of the element
263  for (unsigned l = 0; l < n_node; l++)
264  {
265  // Get pointer to local node l
266  Node* local_node_pt = this->node_pt(l);
267 
268  // Cache hang status
269  bool is_hanging = local_node_pt->is_hanging();
270 
271  // If the node is a hanging node
272  if (is_hanging)
273  {
274  n_master = local_node_pt->hanging_pt()->nmaster();
275  }
276  // Otherwise the node is its own master
277  else
278  {
279  n_master = 1;
280  }
281 
282 
283  // Storage for local equation numbers at node indexed by
284  // type and direction
285  DenseMatrix<int> position_local_eqn_at_node(n_position_type, DIM);
286 
287  // Loop over the master nodes
288  for (unsigned m = 0; m < n_master; m++)
289  {
290  if (is_hanging)
291  {
292  // Find the equation numbers
293  position_local_eqn_at_node = this->local_position_hang_eqn(
294  local_node_pt->hanging_pt()->master_node_pt(m));
295 
296  // Find the hanging node weight
297  hang_weight = local_node_pt->hanging_pt()->master_weight(m);
298  }
299  else
300  {
301  // Loop of types of dofs
302  for (unsigned k = 0; k < n_position_type; k++)
303  {
304  // Loop over the displacement components
305  for (unsigned i = 0; i < DIM; i++)
306  {
307  position_local_eqn_at_node(k, i) = this->position_local_eqn(l, k, i);
308  }
309  }
310 
311  // Hang weight is one
312  hang_weight = 1.0;
313  }
314 
315  // Loop of types of dofs
316  for (unsigned k = 0; k < n_position_type; k++)
317  {
318  // Offset for faster access
319  const unsigned offset5 = dpsidxi.offset(l, k);
320 
321  // Loop over the displacement components
322  for (unsigned i = 0; i < DIM; i++)
323  {
324  local_eqn = position_local_eqn_at_node(k, i);
325 
326  /*IF it's not a boundary condition*/
327  if (local_eqn >= 0)
328  {
329  // Initialise the contribution
330  double sum = 0.0;
331 
332  // Acceleration and body force
333  sum += (lambda_sq * accel[i] - b[i]) * psi(l, k);
334 
335  // Stress term
336  for (unsigned a = 0; a < DIM; a++)
337  {
338  unsigned count = offset5;
339  for (unsigned b = 0; b < DIM; b++)
340  {
341  // Add the stress terms to the residuals
342  sum += sigma(a, b) * interpolated_G(a, i) *
343  dpsidxi.raw_direct_access(count);
344  ++count;
345  }
346  }
347  residuals[local_eqn] += W * sum * hang_weight;
348 
349 
350  // Get Jacobian too?
351  if (flag == 1)
352  {
353  // Offset for faster access in general stress loop
354  const unsigned offset1 = d_G_dX.offset(l, k, i);
355 
356  // Default setting for non-hanging node
357  unsigned nn_master = 1;
358  double hhang_weight = 1.0;
359 
360  // Loop over the nodes of the element again
361  for (unsigned ll = 0; ll < n_node; ll++)
362  {
363  // Get pointer to local node ll
364  Node* llocal_node_pt = this->node_pt(ll);
365 
366  // Cache hang status
367  bool iis_hanging = llocal_node_pt->is_hanging();
368 
369  // If the node is a hanging node
370  if (iis_hanging)
371  {
372  nn_master = llocal_node_pt->hanging_pt()->nmaster();
373  }
374  // Otherwise the node is its own master
375  else
376  {
377  nn_master = 1;
378  }
379 
380 
381  // Storage for local unknown numbers at node indexed by
382  // type and direction
383  DenseMatrix<int> position_local_unk_at_node(n_position_type,
384  DIM);
385 
386  // Loop over the master nodes
387  for (unsigned mm = 0; mm < nn_master; mm++)
388  {
389  if (iis_hanging)
390  {
391  // Find the unknown numbers
392  position_local_unk_at_node = this->local_position_hang_eqn(
393  llocal_node_pt->hanging_pt()->master_node_pt(mm));
394 
395  // Find the hanging node weight
396  hhang_weight =
397  llocal_node_pt->hanging_pt()->master_weight(mm);
398  }
399  else
400  {
401  // Loop of types of dofs
402  for (unsigned kk = 0; kk < n_position_type; kk++)
403  {
404  // Loop over the displacement components
405  for (unsigned ii = 0; ii < DIM; ii++)
406  {
407  position_local_unk_at_node(kk, ii) =
408  this->position_local_eqn(ll, kk, ii);
409  }
410  }
411 
412  // Hang weight is one
413  hhang_weight = 1.0;
414  }
415 
416 
417  // Loop of types of dofs again
418  for (unsigned kk = 0; kk < n_position_type; kk++)
419  {
420  // Loop over the displacement components again
421  for (unsigned ii = 0; ii < DIM; ii++)
422  {
423  // Get the number of the unknown
424  int local_unknown =
425  position_local_unk_at_node(kk, ii);
426 
427 
428  /*IF it's not a boundary condition*/
429  if (local_unknown >= 0)
430  {
431  // Offset for faster access in general stress loop
432  const unsigned offset2 = d_G_dX.offset(ll, kk, ii);
433  const unsigned offset4 = dpsidxi.offset(ll, kk);
434 
435 
436  // General stress term
437  //--------------------
438  double sum = 0.0;
439  unsigned count1 = offset1;
440  for (unsigned a = 0; a < DIM; a++)
441  {
442  // Bump up direct access because we're only
443  // accessing upper triangle
444  count1 += a;
445  for (unsigned b = a; b < DIM; b++)
446  {
447  double factor =
448  d_G_dX.raw_direct_access(count1);
449  if (a == b) factor *= 0.5;
450 
451  // Offset for faster access
452  unsigned offset3 = d_stress_dG.offset(a, b);
453  unsigned count2 = offset2;
454  unsigned count3 = offset3;
455 
456  for (unsigned aa = 0; aa < DIM; aa++)
457  {
458  // Bump up direct access because we're only
459  // accessing upper triangle
460  count2 += aa;
461  count3 += aa;
462 
463  // Only upper half of derivatives w.r.t.
464  // symm tensor
465  for (unsigned bb = aa; bb < DIM; bb++)
466  {
467  sum +=
468  factor *
469  d_stress_dG.raw_direct_access(count3) *
470  d_G_dX.raw_direct_access(count2);
471  ++count2;
472  ++count3;
473  }
474  }
475  ++count1;
476  }
477  }
478 
479  // Multiply by weight and add contribution
480  // (Add directly because this bit is nonsymmetric)
481  jacobian(local_eqn, local_unknown) +=
482  sum * W * hang_weight * hhang_weight;
483 
484  // Only upper triangle (no separate test for bc as
485  // local_eqn is already nonnegative)
486  if ((i == ii) && (local_unknown >= local_eqn))
487  {
488  // Initialise the contribution
489  double sum = 0.0;
490 
491  // Inertia term
492  sum += lambda_sq * time_factor * psi(ll, kk) *
493  psi(l, k);
494  sum += lambda_sq * this->dissipation_
495  * time_factor1 * psi(ll,kk) * psi(l,k); //TW
496 
497  // Stress term
498  unsigned count4 = offset4;
499  for (unsigned a = 0; a < DIM; a++)
500  {
501  // Cache term
502  const double factor =
503  dpsidxi.raw_direct_access(count4); // ll ,kk
504  ++count4;
505 
506  unsigned count5 = offset5;
507  for (unsigned b = 0; b < DIM; b++)
508  {
509  sum +=
510  sigma(a, b) * factor *
511  dpsidxi.raw_direct_access(count5); // l ,k
512  ++count5;
513  }
514  }
515 
516  // Multiply by weights to form contribution
517  double sym_entry =
518  sum * W * hang_weight * hhang_weight;
519  // Add contribution to jacobian
520  jacobian(local_eqn, local_unknown) += sym_entry;
521  // Add to lower triangular entries
522  if (local_eqn != local_unknown)
523  {
524  jacobian(local_unknown, local_eqn) += sym_entry;
525  }
526  }
527  } // End of if not boundary condition
528  }
529  }
530  }
531  }
532  }
533 
534  } // End of if not boundary condition
535 
536  } // End of loop over coordinate directions
537  } // End of loop over type of dof
538  } // End of loop over master nodes
539  } // End of loop over nodes
540  } // End of loop over integration points
541  }
542 
544  void further_build() override
545  {
547 
548  RefineableQDPVDElement<DIM, NNODE_1D> *cast_father_element_pt =
550  this->father_element_pt());
551 
552  if (cast_father_element_pt)
553  {
554  dissipation_ = cast_father_element_pt->getDissipation();
555  }
556  else
557  {
558  throw OomphLibError("Could not cast father_element_pt to RefineableQDPVDElement.",
561  }
562  }
563 
564  double dissipation_ = 0.0; //TW
565 
566 public:
567 
568  void setDissipation(double dissipation) {
569  dissipation_ = dissipation;
570  }
571 
572  double getDissipation(){
573  return dissipation_;
574  }
575 }; // end class
576 
577 //==============================================================
579 //==============================================================
580 template<unsigned NNODE_1D>
582  : public virtual SolidQElement<1, NNODE_1D>
583 {
584 public:
585  // Make sure that we call the constructor of the SolidQElement
586  // Only the Intel compiler seems to need this!
587  FaceGeometry() : SolidQElement<1, NNODE_1D>() {}
588 };
589 
590 //==============================================================
592 //==============================================================
593 template<unsigned NNODE_1D>
595  : public virtual PointElement
596 {
597 public:
598  // Make sure that we call the constructor of the SolidQElement
599  // Only the Intel compiler seems to need this!
601 };
602 
603 
604 //==============================================================
606 //==============================================================
607 template<unsigned NNODE_1D>
609  : public virtual SolidQElement<2, NNODE_1D>
610 {
611 public:
612  // Make sure that we call the constructor of the SolidQElement
613  // Only the Intel compiler seems to need this!
614  FaceGeometry() : SolidQElement<2, NNODE_1D>() {}
615 };
616 
617 //==============================================================
619 //==============================================================
620 template<unsigned NNODE_1D>
622  : public virtual SolidQElement<1, NNODE_1D>
623 {
624 public:
625  // Make sure that we call the constructor of the SolidQElement
626  // Only the Intel compiler seems to need this!
627  FaceGeometry() : SolidQElement<1, NNODE_1D>() {}
628 };
629 
630 } // end namespace oomph
631 
632 #endif//MERCURYDPM_REFINEABLEQDPVDELEMENT_H
int i
Definition: BiCGSTAB_step_by_step.cpp:9
JacobiRotation< float > G
Definition: Jacobi_makeGivens.cpp:2
JacobiRotation< float > J
Definition: Jacobi_makeJacobi.cpp:3
RowVector3d w
Definition: Matrix_resize_int.cpp:3
Scalar * b
Definition: benchVecAdd.cpp:17
virtual bool requires_incompressibility_constraint()=0
Definition: shape.h:278
unsigned offset(const unsigned long &i, const unsigned long &j) const
Definition: shape.h:487
double & raw_direct_access(const unsigned long &i)
Definition: shape.h:469
FaceGeometry()
Definition: RefineableQDPVDElement.h:587
FaceGeometry()
Definition: RefineableQDPVDElement.h:614
Definition: elements.h:4998
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
unsigned nnodal_position_type() const
Definition: elements.h:2463
double dnodal_position_gen_dt(const unsigned &n, const unsigned &k, const unsigned &i) const
Definition: elements.h:2369
double nodal_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Definition: elements.h:2349
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
double const & master_weight(const unsigned &i) const
Return weight for dofs on i-th master node.
Definition: nodes.h:808
Node *const & master_node_pt(const unsigned &i) const
Return a pointer to the i-th master node.
Definition: nodes.h:791
unsigned nmaster() const
Return the number of master nodes.
Definition: nodes.h:785
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
Definition: nodes.h:906
HangInfo *const & hanging_pt() const
Definition: nodes.h:1228
TimeStepper *& position_time_stepper_pt()
Return a pointer to the position timestepper.
Definition: nodes.h:1022
bool is_hanging() const
Test whether the node is geometrically hanging.
Definition: nodes.h:1285
Definition: oomph_definitions.h:222
bool Unsteady
Flag that switches inertia on/off.
Definition: solid_elements.h:421
ConstitutiveLaw * Constitutive_law_pt
Pointer to the constitutive law.
Definition: solid_elements.h:415
double prestress(const unsigned &i, const unsigned &j, const Vector< double > xi)
Definition: solid_elements.h:393
virtual void get_isotropic_growth(const unsigned &ipt, const Vector< double > &s, const Vector< double > &xi, double &gamma) const
Definition: solid_elements.h:267
void body_force(const Vector< double > &xi, Vector< double > &b) const
Definition: solid_elements.h:287
const double & lambda_sq() const
Access function for timescale ratio (nondim density)
Definition: solid_elements.h:108
void get_d_stress_dG_upper(const DenseMatrix< double > &g, const DenseMatrix< double > &G, const DenseMatrix< double > &sigma, RankFourTensor< double > &d_sigma_dG)
Definition: solid_elements.h:569
void get_stress(const Vector< double > &s, DenseMatrix< double > &sigma)
Definition: solid_elements.cc:951
Definition: elements.h:3439
A Rank 5 Tensor class.
Definition: matrices.h:2113
T & raw_direct_access(const unsigned long &i)
Definition: matrices.h:2545
unsigned offset(const unsigned long &i, const unsigned long &j, const unsigned long &k) const
Definition: matrices.h:2564
A Rank 4 Tensor class.
Definition: matrices.h:1701
T & raw_direct_access(const unsigned long &i)
Definition: matrices.h:2078
unsigned offset(const unsigned long &i, const unsigned long &j) const
Definition: matrices.h:2096
virtual RefineableElement * father_element_pt() const
Return a pointer to the father element.
Definition: refineable_elements.h:539
void further_build()
Further build function, pass the pointers down to the sons.
Definition: refineable_solid_elements.h:144
Definition: RefineableQDPVDElement.h:23
void further_build() override
Pass the dissipation down to sons.
Definition: RefineableQDPVDElement.h:544
void setDissipation(double dissipation)
Definition: RefineableQDPVDElement.h:568
RefineableQDPVDElement()
Definition: RefineableQDPVDElement.h:26
double getDissipation()
Definition: RefineableQDPVDElement.h:572
double dissipation_
Definition: RefineableQDPVDElement.h:564
void fill_in_generic_contribution_to_residuals_pvd(Vector< double > &residuals, DenseMatrix< double > &jacobian, const unsigned &flag)
Definition: RefineableQDPVDElement.h:28
Class for refineable QPVDElement elements.
Definition: refineable_solid_elements.h:181
DenseMatrix< int > & local_position_hang_eqn(Node *const &node_pt)
Definition: refineable_elements.h:1005
Definition: shape.h:76
double lagrangian_position_gen(const unsigned &n, const unsigned &k, const unsigned &i) const
Definition: elements.h:3912
SolidInitialCondition * Solid_ic_pt
Pointer to object that specifies the initial condition.
Definition: elements.h:4131
int position_local_eqn(const unsigned &n, const unsigned &k, const unsigned &j) const
Definition: elements.h:4137
virtual void get_residuals_for_solid_ic(Vector< double > &residuals)
Definition: elements.h:4003
virtual double interpolated_xi(const Vector< double > &s, const unsigned &i) const
Definition: elements.cc:7104
virtual double dshape_lagrangian_at_knot(const unsigned &ipt, Shape &psi, DShape &dpsidxi) const
Definition: elements.cc:6737
Definition: Qelements.h:1742
virtual double weight(const unsigned &i, const unsigned &j) const
Access function for j-th weight for the i-th derivative.
Definition: timesteppers.h:594
RealScalar s
Definition: level1_cplx_impl.h:130
const Scalar * a
Definition: level2_cplx_impl.h:32
int * m
Definition: level2_cplx_impl.h:294
char char char int int * k
Definition: level2_impl.h:374
#define DIM
Definition: linearised_navier_stokes_elements.h:44
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
int sigma
Definition: calibrate.py:179
Mdouble gamma(Mdouble gamma_in)
This is the gamma function returns the true value for the half integer value.
Definition: ExtendedMath.cc:116
@ W
Definition: quadtree.h:63
DRAIG: Change all instances of (SPATIAL_DIM) to (DIM-1).
Definition: AnisotropicHookean.h:10
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2