PolynomialUtils.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_POLYNOMIAL_UTILS_H
11 #define EIGEN_POLYNOMIAL_UTILS_H
12 
13 // IWYU pragma: private
14 #include "./InternalHeaderCheck.h"
15 
16 namespace Eigen {
17 
29 template <typename Polynomials, typename T>
30 inline T poly_eval_horner(const Polynomials& poly, const T& x) {
31  T val = poly[poly.size() - 1];
32  for (DenseIndex i = poly.size() - 2; i >= 0; --i) {
33  val = val * x + poly[i];
34  }
35  return val;
36 }
37 
46 template <typename Polynomials, typename T>
47 inline T poly_eval(const Polynomials& poly, const T& x) {
48  typedef typename NumTraits<T>::Real Real;
49 
50  if (numext::abs2(x) <= Real(1)) {
51  return poly_eval_horner(poly, x);
52  } else {
53  T val = poly[0];
54  T inv_x = T(1) / x;
55  for (DenseIndex i = 1; i < poly.size(); ++i) {
56  val = val * inv_x + poly[i];
57  }
58 
59  return numext::pow(x, (T)(poly.size() - 1)) * val;
60  }
61 }
62 
73 template <typename Polynomial>
75  using std::abs;
76  typedef typename Polynomial::Scalar Scalar;
77  typedef typename NumTraits<Scalar>::Real Real;
78 
79  eigen_assert(Scalar(0) != poly[poly.size() - 1]);
80  const Scalar inv_leading_coeff = Scalar(1) / poly[poly.size() - 1];
81  Real cb(0);
82 
83  for (DenseIndex i = 0; i < poly.size() - 1; ++i) {
84  cb += abs(poly[i] * inv_leading_coeff);
85  }
86  return cb + Real(1);
87 }
88 
95 template <typename Polynomial>
97  using std::abs;
98  typedef typename Polynomial::Scalar Scalar;
99  typedef typename NumTraits<Scalar>::Real Real;
100 
101  DenseIndex i = 0;
102  while (i < poly.size() - 1 && Scalar(0) == poly(i)) {
103  ++i;
104  }
105  if (poly.size() - 1 == i) {
106  return Real(1);
107  }
108 
109  const Scalar inv_min_coeff = Scalar(1) / poly[i];
110  Real cb(1);
111  for (DenseIndex j = i + 1; j < poly.size(); ++j) {
112  cb += abs(poly[j] * inv_min_coeff);
113  }
114  return Real(1) / cb;
115 }
116 
127 template <typename RootVector, typename Polynomial>
128 void roots_to_monicPolynomial(const RootVector& rv, Polynomial& poly) {
129  typedef typename Polynomial::Scalar Scalar;
130 
131  poly.setZero(rv.size() + 1);
132  poly[0] = -rv[0];
133  poly[1] = Scalar(1);
134  for (DenseIndex i = 1; i < rv.size(); ++i) {
135  for (DenseIndex j = i + 1; j > 0; --j) {
136  poly[j] = poly[j - 1] - rv[i] * poly[j];
137  }
138  poly[0] = -rv[i] * poly[0];
139  }
140 }
141 
142 } // end namespace Eigen
143 
144 #endif // EIGEN_POLYNOMIAL_UTILS_H
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::Triplet< double > T
Definition: EigenUnitTest.cpp:11
#define eigen_assert(x)
Definition: Macros.h:910
@ Polynomial
Definition: StatisticsPoint.h:11
SCALAR Scalar
Definition: bench_gemm.cpp:45
boost::multiprecision::number< boost::multiprecision::cpp_dec_float< 100 >, boost::multiprecision::et_on > Real
Definition: boostmultiprec.cpp:77
EIGEN_DEVICE_FUNC internal::pow_impl< ScalarX, ScalarY >::result_type pow(const ScalarX &x, const ScalarY &y)
Definition: MathFunctions.h:1161
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1102
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:70
NumTraits< typename Polynomial::Scalar >::Real cauchy_max_bound(const Polynomial &poly)
Definition: PolynomialUtils.h:74
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
Definition: Meta.h:75
T poly_eval_horner(const Polynomials &poly, const T &x)
Definition: PolynomialUtils.h:30
NumTraits< typename Polynomial::Scalar >::Real cauchy_min_bound(const Polynomial &poly)
Definition: PolynomialUtils.h:96
T poly_eval(const Polynomials &poly, const T &x)
Definition: PolynomialUtils.h:47
void roots_to_monicPolynomial(const RootVector &rv, Polynomial &poly)
Definition: PolynomialUtils.h:128
val
Definition: calibrate.py:119
list x
Definition: plotDoE.py:28
T Real
Definition: NumTraits.h:183
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:217
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2