Eigen::numext Namespace Reference

Classes

struct  signbit_impl
 
struct  signbit_impl< Scalar, false, true >
 
struct  signbit_impl< Scalar, true, true >
 
struct  signbit_impl< Scalar, true, false >
 
struct  get_integer_by_size
 
struct  get_integer_by_size< 1 >
 
struct  get_integer_by_size< 2 >
 
struct  get_integer_by_size< 4 >
 
struct  get_integer_by_size< 8 >
 
struct  equal_strict_impl
 
struct  equal_strict_impl< X, Y, true, false, true, true >
 
struct  equal_strict_impl< X, Y, true, true, true, false >
 

Typedefs

typedef std::uint8_t uint8_t
 
typedef std::int8_t int8_t
 
typedef std::uint16_t uint16_t
 
typedef std::int16_t int16_t
 
typedef std::uint32_t uint32_t
 
typedef std::int32_t int32_t
 
typedef std::uint64_t uint64_t
 
typedef std::int64_t int64_t
 

Functions

template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::bfloat16 bit_cast< Eigen::bfloat16, uint16_t > (const uint16_t &src)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast< uint16_t, Eigen::bfloat16 > (const Eigen::bfloat16 &src)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isnan (const Eigen::bfloat16 &h)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isinf (const Eigen::bfloat16 &h)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite (const Eigen::bfloat16 &h)
 
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 nextafter (const bfloat16 &from, const bfloat16 &to)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast< Eigen::half, uint16_t > (const uint16_t &src)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast< uint16_t, Eigen::half > (const Eigen::half &src)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sqrt (const float &x)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double sqrt (const double &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini (const T &x, const T &y)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi (const T &x, const T &y)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (real, Scalar) real(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)> real_ref (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (real_ref, Scalar) real_ref(Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (imag, Scalar) imag(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (arg, Scalar) arg(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar)> imag_ref (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (imag_ref, Scalar) imag_ref(Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (conj, Scalar) conj(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (sign, Scalar) sign(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (negate, Scalar) negate(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (abs2, Scalar) abs2(const Scalar &x)
 
EIGEN_DEVICE_FUNC bool abs2 (bool x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T absdiff (const T &x, const T &y)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float absdiff (const float &x, const float &y)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double absdiff (const double &x, const double &y)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double absdiff (const long double &x, const long double &y)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (norm1, Scalar) norm1(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (hypot, Scalar) hypot(const Scalar &x
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (log1p, Scalar) log1p(const Scalar &x)
 
template<typename ScalarX , typename ScalarY >
EIGEN_DEVICE_FUNC internal::pow_impl< ScalarX, ScalarY >::result_type pow (const ScalarX &x, const ScalarY &y)
 
template<typename T >
EIGEN_DEVICE_FUNC bool() isnan (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC bool() isinf (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC bool() isfinite (const T &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar rint (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar round (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar() floor (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar() ceil (const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar() trunc (const Scalar &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T div_ceil (T a, T b)
 
template<typename T , typename U >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T round_down (T a, U b)
 
EIGEN_CONSTEXPR int log2 (int x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_MATHFUNC_RETVAL (sqrt, Scalar) sqrt(const Scalar &x)
 
template<>
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC bool sqrt< bool > (const bool &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cbrt (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T rsqrt (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T log (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::enable_if_t< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Realabs (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::enable_if_t<!(NumTraits< T >::IsSigned||NumTraits< T >::IsComplex), typename NumTraits< T >::Realabs (const T &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC static constexpr EIGEN_ALWAYS_INLINE Scalar signbit (const Scalar &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp2 (const T &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (expm1, Scalar) expm1(const Scalar &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acos (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acosh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asinh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan (const T &x)
 
template<typename T , std::enable_if_t<!NumTraits< T >::IsComplex, int > = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan2 (const T &y, const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atanh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh (const T &x)
 
template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod (const T &a, const T &b)
 
template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar logical_shift_left (const Scalar &a, int n)
 
template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar logical_shift_right (const Scalar &a, int n)
 
template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar arithmetic_shift_right (const Scalar &a, int n)
 
template<typename Tgt , typename Src >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast (const Src &src)
 
template<typename T >
EIGEN_STRONG_INLINE void swap (T &a, T &b)
 
template<typename X , typename Y >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict (const X &x, const Y &y)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict (const float &x, const float &y)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict (const double &x, const double &y)
 
template<typename X >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool is_exactly_zero (const X &x)
 
template<typename X >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool is_exactly_one (const X &x)
 
template<typename X , typename Y >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict (const X &x, const Y &y)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict (const float &x, const float &y)
 
template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool not_equal_strict (const double &x, const double &y)
 
template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite (const AnnoyingScalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_i0, Scalar) bessel_i0(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_i0e, Scalar) bessel_i0e(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_i1, Scalar) bessel_i1(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_i1e, Scalar) bessel_i1e(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_k0, Scalar) bessel_k0(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_k0e, Scalar) bessel_k0e(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_k1, Scalar) bessel_k1(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_k1e, Scalar) bessel_k1e(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_j0, Scalar) bessel_j0(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_y0, Scalar) bessel_y0(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_j1, Scalar) bessel_j1(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (bessel_y1, Scalar) bessel_y1(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (lgamma, Scalar) lgamma(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (digamma, Scalar) digamma(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (zeta, Scalar) zeta(const Scalar &x
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (polygamma, Scalar) polygamma(const Scalar &n
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (erf, Scalar) erf(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (erfc, Scalar) erfc(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (ndtri, Scalar) ndtri(const Scalar &x)
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (igamma, Scalar) igamma(const Scalar &a
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (igamma_der_a, Scalar) igamma_der_a(const Scalar &a
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (gamma_sample_der_alpha, Scalar) gamma_sample_der_alpha(const Scalar &a
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (igammac, Scalar) igammac(const Scalar &a
 
template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL (betainc, Scalar) betainc(const Scalar &a
 

Variables

EIGEN_DEVICE_FUNC const Scalary
 
EIGEN_DEVICE_FUNC const Scalarq
 
EIGEN_DEVICE_FUNC const Scalarx
 
EIGEN_DEVICE_FUNC const Scalarb
 

Typedef Documentation

◆ int16_t

typedef std::int16_t Eigen::numext::int16_t

◆ int32_t

typedef std::int32_t Eigen::numext::int32_t

◆ int64_t

typedef std::int64_t Eigen::numext::int64_t

◆ int8_t

typedef std::int8_t Eigen::numext::int8_t

◆ uint16_t

typedef std::uint16_t Eigen::numext::uint16_t

◆ uint32_t

typedef std::uint32_t Eigen::numext::uint32_t

◆ uint64_t

typedef std::uint64_t Eigen::numext::uint64_t

◆ uint8_t

typedef std::uint8_t Eigen::numext::uint8_t

Function Documentation

◆ abs() [1/2]

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::enable_if_t<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex, typename NumTraits<T>::Real> Eigen::numext::abs ( const T x)
1355  {
1357  return abs(x);
1358 }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
#define EIGEN_USING_STD(FUNC)
Definition: Macros.h:1090
list x
Definition: plotDoE.py:28

References abs(), EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::Hyperplane< Scalar_, AmbientDim_, Options_ >::absDistance(), Eigen::QuaternionBase< Derived >::angularDistance(), Eigen::internal::bicgstabl(), Eigen::TensorEvaluator< const TensorPaddingOp< PaddingDimensions, ArgType >, Device >::block(), Eigen::TensorEvaluator< const TensorReverseOp< ReverseDimensions, ArgType >, Device >::block(), Eigen::internal::complex_log(), Eigen::internal::complex_rsqrt(), Eigen::internal::complex_sqrt(), Eigen::PolynomialSolver< Scalar_, Deg_ >::compute(), Eigen::internal::computeFromTridiagonal_impl(), Eigen::MatrixBase< Derived >::hypotNorm(), Eigen::internal::idrstabl(), Eigen::Hyperplane< Scalar_, AmbientDim_, Options_ >::intersection(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, false, false >::isApprox(), Eigen::MatrixBase< Derived >::isDiagonal(), Eigen::MatrixBase< Derived >::isLowerTriangular(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, false, false >::isMuchSmallerThan(), Eigen::MatrixBase< Derived >::isUpperTriangular(), Eigen::internal::omega(), Eigen::internal::scalar_abs_op< Scalar >::operator()(), Eigen::internal::abs_knowing_score< Scalar, typename >::operator()(), Eigen::internal::pabs(), Eigen::BDCSVD< MatrixType_, Options_ >::perturbCol0(), Eigen::internal::RandomToTypeNormal(), Eigen::internal::compute_inverse_and_det_with_check< MatrixType, ResultType, 3 >::run(), Eigen::internal::zeta_impl_series< double >::run(), Eigen::internal::zeta_impl_series< float >::run(), Eigen::internal::igammac_cf_impl< Scalar, mode >::run(), Eigen::internal::igamma_series_impl< Scalar, mode >::run(), Eigen::internal::zeta_impl< Scalar >::run(), Eigen::internal::unary_pow::exponent_helper< ScalarExponent, IsInteger >::safe_abs(), Eigen::QuaternionBase< Derived >::slerp(), test_cwise_complex(), test_cwise_real(), test_sum_accuracy(), and Eigen::internal::tridiagonal_qr_step().

◆ abs() [2/2]

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::enable_if_t<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex), typename NumTraits<T>::Real> Eigen::numext::abs ( const T x)
1363  {
1364  return x;
1365 }

References plotDoE::x.

◆ abs2()

EIGEN_DEVICE_FUNC bool Eigen::numext::abs2 ( bool  x)
inline
1102 { return x; }

Referenced by array_complex(), array_real(), Eigen::internal::blueNorm_impl(), check_abs(), check_abs< bool >(), Eigen::RealSchur< MatrixType_ >::computeFromHessenberg(), Eigen::ColPivHouseholderQR< MatrixType_, PermutationIndex_ >::computeInPlace(), Eigen::internal::direct_selfadjoint_eigenvalues< SolverType, 2, false >::computeRoots(), Eigen::SimplicialLLT< MatrixType_, UpLo_, Ordering_ >::determinant(), Eigen::SimplicialCholesky< MatrixType_, UpLo_, Ordering_ >::determinant(), dif_rmse(), Eigen::internal::dogleg(), eigen2support(), Eigen::SparseQR< MatrixType_, OrderingType_ >::factorize(), Eigen::IncompleteLUT< Scalar_, StorageIndex_ >::factorize(), Eigen::IncompleteCholesky< Scalar, UpLo_, OrderingType_ >::factorize(), Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::factorize(), fft_rmse(), hyperplane(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, true, false >::isApprox(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, true, false >::isMuchSmallerThan(), Eigen::MatrixBase< Derived >::isOrthogonal(), lapackNorm(), Eigen::internal::llt_rank_update_lower(), Eigen::JacobiRotation< Scalar >::makeGivens(), Eigen::MatrixBase< Derived >::makeHouseholder(), Eigen::JacobiRotation< Scalar >::makeJacobi(), Eigen::LevenbergMarquardt< FunctorType_ >::minimizeOneStep(), Eigen::LevenbergMarquardt< FunctorType_ >::minimizeOptimumStorageOneStep(), Eigen::internal::scalar_abs2_op< Scalar >::operator()(), packetmath_real(), pblueNorm(), Eigen::poly_eval(), Eigen::internal::real_2x2_jacobi_svd(), rotg(), Eigen::internal::isMuchSmallerThan_object_selector< Derived, OtherDerived, is_integer >::run(), Eigen::internal::isMuchSmallerThan_scalar_selector< Derived, is_integer >::run(), Eigen::internal::tridiagonalization_inplace_selector< MatrixType, 3, false >::run(), Eigen::internal::direct_selfadjoint_eigenvalues< SolverType, 2, false >::run(), Eigen::internal::svd_precondition_2x2_block_to_be_real< MatrixType, Options, true >::run(), Eigen::PolynomialSolverBase< Scalar_, Deg_ >::selectComplexRoot_withRespectToNorm(), Eigen::PolynomialSolverBase< Scalar_, Deg_ >::selectRealRoot_withRespectToAbsRealPart(), Eigen::HybridNonLinearSolver< FunctorType, Scalar >::solveNumericalDiffOneStep(), Eigen::HybridNonLinearSolver< FunctorType, Scalar >::solveOneStep(), stable_norm(), Eigen::internal::stable_norm_kernel(), test_abs(), test_cwise_complex(), test_cwise_real(), test_fft_real_input_energy(), test_hypot(), boost::multiprecision::test_relative_error(), Eigen::test_relative_error(), triangular_square(), Eigen::internal::tridiagonal_qr_step(), and Eigen::internal::ldlt_inplace< Lower >::updateInPlace().

◆ absdiff() [1/4]

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double Eigen::numext::absdiff ( const double x,
const double y 
)
1113  {
1114  return fabs(x - y);
1115 }
EIGEN_DEVICE_FUNC const Scalar & y
Definition: MathFunctions.h:1131
Real fabs(const Real &a)
Definition: boostmultiprec.cpp:117

◆ absdiff() [2/4]

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float Eigen::numext::absdiff ( const float &  x,
const float &  y 
)
1109  {
1110  return fabsf(x - y);
1111 }

◆ absdiff() [3/4]

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE long double Eigen::numext::absdiff ( const long double x,
const long double y 
)
1120  {
1121  return fabsl(x - y);
1122 }

◆ absdiff() [4/4]

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::absdiff ( const T x,
const T y 
)
1105  {
1106  return x > y ? x - y : y - x;
1107 }

Referenced by Eigen::internal::scalar_absolute_difference_op< LhsScalar, RhsScalar >::operator()().

◆ acos()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::acos ( const T x)
1625  {
1627  return acos(x);
1628 }
AnnoyingScalar acos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:138

References acos(), EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_acos_op< Scalar >::operator()().

◆ acosh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::acosh ( const T x)
1631  {
1633  return static_cast<T>(acosh(x));
1634 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acosh(const T &x)
Definition: MathFunctions.h:1631

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_acosh_op< Scalar >::operator()().

◆ arithmetic_shift_right()

template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar Eigen::numext::arithmetic_shift_right ( const Scalar a,
int  n 
)
1838  {
1839  using SignedScalar = typename numext::get_integer_by_size<sizeof(Scalar)>::signed_type;
1840  return bit_cast<Scalar, SignedScalar>(bit_cast<SignedScalar, Scalar>(a) >> n);
1841 }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
SCALAR Scalar
Definition: bench_gemm.cpp:45
const Scalar * a
Definition: level2_cplx_impl.h:32

References a, and n.

Referenced by check_shift(), Eigen::internal::scalar_shift_right_op< Scalar, N >::operator()(), arithmetic_right_shift_op< N, Scalar >::operator()(), Eigen::internal::parithmetic_shift_right(), and shift_test_impl< ArrayType >::run().

◆ asin()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::asin ( const T x)
1654  {
1656  return asin(x);
1657 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin(const T &x)
Definition: MathFunctions.h:1654

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_asin_op< Scalar >::operator()().

◆ asinh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::asinh ( const T x)
1660  {
1662  return static_cast<T>(asinh(x));
1663 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asinh(const T &x)
Definition: MathFunctions.h:1660

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_asinh_op< Scalar >::operator()().

◆ atan()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::atan ( const T x)
1683  {
1685  return static_cast<T>(atan(x));
1686 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T &x)
Definition: MathFunctions.h:1683

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_atan_op< Scalar >::operator()().

◆ atan2()

template<typename T , std::enable_if_t<!NumTraits< T >::IsComplex, int > = 0>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::atan2 ( const T y,
const T x 
)
1689  {
1691  return static_cast<T>(atan2(y, x));
1692 }
AnnoyingScalar atan2(const AnnoyingScalar &y, const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:139

References Eigen::atan2(), EIGEN_USING_STD, plotDoE::x, and Eigen::internal::y.

Referenced by Eigen::MatrixBase< Derived >::canonicalEulerAngles(), Eigen::MatrixBase< Derived >::eulerAngles(), Eigen::internal::scalar_atan2_op< LhsScalar, RhsScalar >::operator()(), and Eigen::internal::patan2().

◆ atanh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::atanh ( const T x)
1695  {
1697  return static_cast<T>(atanh(x));
1698 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atanh(const T &x)
Definition: MathFunctions.h:1695

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_atanh_op< Scalar >::operator()().

◆ bit_cast()

template<typename Tgt , typename Src >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt Eigen::numext::bit_cast ( const Src &  src)

bit-wise cast without changing the underlying bit representation.

102  {
103  // The behaviour of memcpy is not specified for non-trivially copyable types
106  THIS_TYPE_IS_NOT_SUPPORTED)
107  EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED)
108 
109  Tgt tgt;
110  // Load src into registers first. This allows the memcpy to be elided by CUDA.
111  const Src staged = src;
112  EIGEN_USING_STD(memcpy)
113  memcpy(static_cast<void*>(&tgt), static_cast<const void*>(&staged), sizeof(Tgt));
114  return tgt;
115 }
#define EIGEN_STATIC_ASSERT(X, MSG)
Definition: StaticAssert.h:26
squared absolute value
Definition: GlobalFunctions.h:87

References EIGEN_STATIC_ASSERT, EIGEN_USING_STD, and Eigen::value.

◆ bit_cast< Eigen::bfloat16, uint16_t >()

757  {
759 }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __bfloat16_raw raw_uint16_to_bfloat16(unsigned short value)

References Eigen::bfloat16_impl::raw_uint16_to_bfloat16().

◆ bit_cast< Eigen::half, uint16_t >()

853  {
855 }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x)
Definition: Half.h:496
Definition: Half.h:139

References Eigen::half_impl::raw_uint16_to_half().

◆ bit_cast< uint16_t, Eigen::bfloat16 >()

762  {
764 }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR numext::uint16_t raw_bfloat16_as_uint16(const __bfloat16_raw &bf)
Definition: BFloat16.h:379

References Eigen::bfloat16_impl::raw_bfloat16_as_uint16().

◆ bit_cast< uint16_t, Eigen::half >()

858  {
860 }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw &h)
Definition: Half.h:512

References Eigen::half_impl::raw_half_as_uint16().

◆ cbrt()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::cbrt ( const T x)
Returns
the cube root of x.
1320  {
1322  return static_cast<T>(cbrt(x));
1323 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cbrt(const T &x)
Definition: MathFunctions.h:1320

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Thermal< Particle >::actionsAfterTimeStep(), Membrane::adjustVertexParticleSize(), array_generic(), array_real(), ClosedCSCWalls::ClosedCSCWalls(), BaseCluster::computeInternalStructure(), HertzianSinterInteraction::computeSinterForce(), HertzianSinterNormalSpecies::computeTimeStep(), CSCInit::CSCInit(), CSCWalls::CSCWalls(), HertzianViscoelasticInteraction::getElasticEnergyAtEquilibrium(), LiquidMigrationLSInteraction::getFieldVTK(), LiquidMigrationWilletInteraction::getFieldVTK(), SolidifyingLiquidMigrationWilletInteraction::getFieldVTK(), MeltableNormalSpecies::getRelativeSolidRadius(), LiquidMigrationLSInteraction::getRuptureDistance(), LiquidMigrationWilletInteraction::getRuptureDistance(), main(), LiquidBridgeBagheriSpecies::mix(), LiquidBridgeClassicalWilletSpecies::mix(), LiquidBridgeWilletSpecies::mix(), Eigen::internal::scalar_cbrt_op< Scalar >::operator()(), BaseCluster::particleInsertionSuccessful(), Eigen::internal::pcbrt(), FileReader::read(), LiquidBridgeBagheriSpecies::read(), LiquidBridgeClassicalWilletSpecies::read(), LiquidBridgeWilletSpecies::read(), PSD::scaleParticleSizeAuto(), BaseCluster::setDomainLimits(), LiquidMigrationLSSpecies::setInteractionDistance(), LiquidMigrationWilletSpecies::setInteractionDistance(), LiquidBridgeBagheriSpecies::setLiquidBridgeVolume(), LiquidBridgeClassicalWilletSpecies::setLiquidBridgeVolume(), LiquidBridgeWilletSpecies::setLiquidBridgeVolume(), ClosedCSCWalls::setupInitialConditions(), CSCInit::setupInitialConditions(), CSCWalls::setupInitialConditions(), RotatingDrumWet::setupInitialConditions(), ParticleCreation::setupInitialConditions(), HertzianSinterForceUnitTest::setupInitialConditions(), BaseCluster::setupInitialConditions(), DPMBase::splitDomain(), test_cwise_real(), unary_ops_test(), and MindlinInteraction::updateK_t().

◆ ceil()

◆ cos()

◆ cosh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::cosh ( const T x)
1718  {
1720  return static_cast<T>(cosh(x));
1721 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh(const T &x)
Definition: MathFunctions.h:1718

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_cosh_op< Scalar >::operator()().

◆ div_ceil()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T Eigen::numext::div_ceil ( T  a,
T  b 
)
1251  {
1252  using UnsignedT = typename internal::make_unsigned<T>::type;
1253  EIGEN_STATIC_ASSERT((NumTraits<T>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES)
1254  eigen_assert(a >= 0);
1255  eigen_assert(b > 0);
1256  // Note: explicitly declaring a and b as non-negative values allows the compiler to use better optimizations
1257  const UnsignedT ua = UnsignedT(a);
1258  const UnsignedT ub = UnsignedT(b);
1259  // Note: This form is used because it cannot overflow.
1260  return ua == 0 ? 0 : (ua - 1) / ub + 1;
1261 }
#define eigen_assert(x)
Definition: Macros.h:910
Scalar * b
Definition: benchVecAdd.cpp:17
type
Definition: compute_granudrum_aor.py:141

Referenced by Eigen::internal::gemm_class< Scalar, is_unit_inc >::c_update_1count(), Eigen::divup(), Eigen::internal::evaluateProductBlockingSizesHeuristic(), Eigen::internal::TensorBlockMapper< NumDims, Layout, IndexType >::InitializeBlockDimensions(), Eigen::internal::gemm_class< Scalar, is_unit_inc >::innerkernel_1uk(), Eigen::internal::gemm_class< Scalar, is_unit_inc >::kloop(), Eigen::internal::InnerMostDimReducer< Self, Op, true, true >::reduce(), cast_test_impl< SrcType, DstType, RowsAtCompileTime, ColsAtCompileTime >::run(), and Eigen::ForkJoinScheduler::RunParallelForAsync().

◆ EIGEN_MATHFUNC_RETVAL() [1/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( abs2  ,
Scalar   
) const &
inline
1098  {
1099  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
1100 }
#define EIGEN_MATHFUNC_IMPL(func, scalar)
Definition: MathFunctions.h:64
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1102
void run(const string &dir_name, LinearSolver *linear_solver_pt, const unsigned nel_1d, bool mess_up_order)
Definition: two_d_poisson_compare_solvers.cc:317

◆ EIGEN_MATHFUNC_RETVAL() [2/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( arg  ,
Scalar   
) const &
inline
1067  {
1068  return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
1069 }

◆ EIGEN_MATHFUNC_RETVAL() [3/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_i0  ,
Scalar   
) const &
inline
1575  {
1577 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op< typename Derived::Scalar >, const Derived > bessel_i0(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:34

References Eigen::bessel_i0(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [4/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_i0e  ,
Scalar   
) const &
inline
1580  {
1582 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op< typename Derived::Scalar >, const Derived > bessel_i0e(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:56

References Eigen::bessel_i0e(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [5/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_i1  ,
Scalar   
) const &
inline
1585  {
1587 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op< typename Derived::Scalar >, const Derived > bessel_i1(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:77

References Eigen::bessel_i1(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [6/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_i1e  ,
Scalar   
) const &
inline
1590  {
1592 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op< typename Derived::Scalar >, const Derived > bessel_i1e(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:99

References Eigen::bessel_i1e(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [7/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_j0  ,
Scalar   
) const &
inline
1615  {
1617 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op< typename Derived::Scalar >, const Derived > bessel_j0(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:206

References Eigen::bessel_j0(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [8/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_j1  ,
Scalar   
) const &
inline
1625  {
1627 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op< typename Derived::Scalar >, const Derived > bessel_j1(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:248

References Eigen::bessel_j1(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [9/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_k0  ,
Scalar   
) const &
inline
1595  {
1597 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op< typename Derived::Scalar >, const Derived > bessel_k0(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:120

References Eigen::bessel_k0(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [10/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_k0e  ,
Scalar   
) const &
inline
1600  {
1602 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op< typename Derived::Scalar >, const Derived > bessel_k0e(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:142

References Eigen::bessel_k0e(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [11/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_k1  ,
Scalar   
) const &
inline
1605  {
1607 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op< typename Derived::Scalar >, const Derived > bessel_k1(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:163

References Eigen::bessel_k1(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [12/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_k1e  ,
Scalar   
) const &
inline
1610  {
1612 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op< typename Derived::Scalar >, const Derived > bessel_k1e(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:185

References Eigen::bessel_k1e(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [13/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_y0  ,
Scalar   
) const &
inline
1620  {
1622 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op< typename Derived::Scalar >, const Derived > bessel_y0(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:227

References Eigen::bessel_y0(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [14/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( bessel_y1  ,
Scalar   
) const &
inline
1630  {
1632 }
EIGEN_STRONG_INLINE const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op< typename Derived::Scalar >, const Derived > bessel_y1(const Eigen::ArrayBase< Derived > &x)
Definition: BesselFunctionsArrayAPI.h:269

References Eigen::bessel_y1(), EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [15/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( betainc  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [16/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( conj  ,
Scalar   
) const &
inline
1083  {
1084  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
1085 }
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:133

◆ EIGEN_MATHFUNC_RETVAL() [17/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( digamma  ,
Scalar   
) const &
inline
2014  {
2015  return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
2016 }
EIGEN_DEVICE_FUNC const Scalar & x
Definition: SpecialFunctionsImpl.h:2024

References EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [18/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( erf  ,
Scalar   
) const &
inline
2029  {
2030  return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
2031 }

References EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [19/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( erfc  ,
Scalar   
) const &
inline
2034  {
2035  return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
2036 }

References EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [20/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( expm1  ,
Scalar   
) const &
inline
1538  {
1539  return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x);
1540 }
EIGEN_DEVICE_FUNC Scalar expm1(const Scalar &x)
Definition: MathFunctions.h:433

References EIGEN_MATHFUNC_IMPL, Eigen::internal::std_fallback::expm1(), Eigen::run(), and plotDoE::x.

◆ EIGEN_MATHFUNC_RETVAL() [21/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( gamma_sample_der_alpha  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [22/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( hypot  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [23/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( igamma  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [24/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( igamma_der_a  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [25/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( igammac  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [26/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( imag  ,
Scalar   
) const &
inline
1062  {
1063  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
1064 }
Definition: main.h:116

◆ EIGEN_MATHFUNC_RETVAL() [27/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( imag_ref  ,
Scalar   
) &
inline
1078  {
1080 }
EIGEN_DEVICE_FUNC internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar)> imag_ref(const Scalar &x)
Definition: MathFunctions.h:1072

◆ EIGEN_MATHFUNC_RETVAL() [28/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( lgamma  ,
Scalar   
) const &
inline
2009  {
2010  return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
2011 }

References EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [29/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( log1p  ,
Scalar   
) const &
inline
1140  {
1141  return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
1142 }
EIGEN_DEVICE_FUNC Scalar log1p(const Scalar &x)
Definition: MathFunctions.h:496

◆ EIGEN_MATHFUNC_RETVAL() [30/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( ndtri  ,
Scalar   
) const &
inline
2039  {
2040  return EIGEN_MATHFUNC_IMPL(ndtri, Scalar)::run(x);
2041 }

References EIGEN_MATHFUNC_IMPL, Eigen::run(), and x.

◆ EIGEN_MATHFUNC_RETVAL() [31/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( negate  ,
Scalar   
) const &
inline
1093  {
1094  return EIGEN_MATHFUNC_IMPL(negate, Scalar)::run(x);
1095 }
T negate(const T &x)
Definition: packetmath_test_shared.h:26

◆ EIGEN_MATHFUNC_RETVAL() [32/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( norm1  ,
Scalar   
) const &
inline
1126  {
1127  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
1128 }

◆ EIGEN_MATHFUNC_RETVAL() [33/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( polygamma  ,
Scalar   
) const &
inline

◆ EIGEN_MATHFUNC_RETVAL() [34/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( real  ,
Scalar   
) const &
inline
1046  {
1047  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
1048 }
Definition: main.h:115

◆ EIGEN_MATHFUNC_RETVAL() [35/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( real_ref  ,
Scalar   
) &
inline
1057  {
1059 }
EIGEN_DEVICE_FUNC internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar)> real_ref(const Scalar &x)
Definition: MathFunctions.h:1051

◆ EIGEN_MATHFUNC_RETVAL() [36/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( sign  ,
Scalar   
) const &
inline
1088  {
1089  return EIGEN_MATHFUNC_IMPL(sign, Scalar)::run(x);
1090 }
T sign(T x)
Definition: cxx11_tensor_builtins_sycl.cpp:172

◆ EIGEN_MATHFUNC_RETVAL() [37/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Eigen::numext::EIGEN_MATHFUNC_RETVAL ( sqrt  ,
Scalar   
) const &
Returns
the square root of x.

It is essentially equivalent to

using std::sqrt; return sqrt(x);
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sqrt(const float &x)
Definition: arch/SSE/MathFunctions.h:69

but slightly faster for float/double and some compilers (e.g., gcc), thanks to specializations when SSE is enabled.

It's usage is justified in performance critical functions, like norm/normalize.

1304  {
1305  return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
1306 }

References EIGEN_MATHFUNC_IMPL, Eigen::run(), sqrt(), and plotDoE::x.

◆ EIGEN_MATHFUNC_RETVAL() [38/38]

template<typename Scalar >
EIGEN_DEVICE_FUNC Eigen::numext::EIGEN_MATHFUNC_RETVAL ( zeta  ,
Scalar   
) const &
inline

◆ equal_strict() [1/3]

template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::equal_strict ( const double x,
const double y 
)
582  {
583  return std::equal_to<double>()(x, y);
584 }
Scalar * y
Definition: level1_cplx_impl.h:128

References plotDoE::x, and Eigen::internal::y.

Referenced by is_exactly_one(), and is_exactly_zero().

◆ equal_strict() [2/3]

template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::equal_strict ( const float &  x,
const float &  y 
)
577  {
578  return std::equal_to<float>()(x, y);
579 }

References plotDoE::x, and Eigen::internal::y.

◆ equal_strict() [3/3]

◆ exp()

◆ exp2()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::exp2 ( const T x)
1481  {
1483  return exp2(x);
1484 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp2(const T &x)
Definition: MathFunctions.h:1481

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::pexp2().

◆ floor()

◆ fmod()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::fmod ( const T a,
const T b 
)
1788  {
1790  return fmod(a, b);
1791 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T &a, const T &b)
Definition: MathFunctions.h:1788

References a, b, and EIGEN_USING_STD.

Referenced by Eigen::internal::scalar_fmod_op< Scalar >::operator()(), Eigen::Rotation2D< Scalar_ >::smallestAngle(), and Eigen::Rotation2D< Scalar_ >::smallestPositiveAngle().

◆ imag_ref()

◆ is_exactly_one()

template<typename X >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::is_exactly_one ( const X x)

Performs an exact comparison of x to one, e.g. to decide whether a factor needs to be multiplied. Use this to to bypass -Wfloat-equal warnings when exact one is what needs to be tested.

601  {
602  return equal_strict(x, typename NumTraits<X>::Literal{1});
603 }
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const double &x, const double &y)
Definition: Meta.h:582

References equal_strict(), and plotDoE::x.

Referenced by Eigen::internal::apply_rotation_in_the_plane(), Eigen::internal::generic_product_impl< Lhs, Rhs, DenseShape, DenseShape, CoeffBasedProductMode >::eval_dynamic_impl(), Eigen::internal::trmv_selector< Mode, ColMajor >::run(), Eigen::internal::trmv_selector< Mode, RowMajor >::run(), and Eigen::internal::triangular_product_impl< Mode, LhsIsTriangular, Lhs, false, Rhs, false >::run().

◆ is_exactly_zero()

template<typename X >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::is_exactly_zero ( const X x)

Performs an exact comparison of x to zero, e.g. to decide whether a term can be ignored. Use this to to bypass -Wfloat-equal warnings when exact zero is what needs to be tested.

592  {
593  return equal_strict(x, typename NumTraits<X>::Literal{0});
594 }

References equal_strict(), and plotDoE::x.

Referenced by Eigen::internal::apply_rotation_in_the_plane(), Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft(), Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight(), Eigen::internal::complex_rsqrt(), Eigen::internal::complex_sqrt(), Eigen::SelfAdjointEigenSolver< MatrixType_ >::compute(), Eigen::RealQZ< MatrixType_ >::compute(), Eigen::SPQR< MatrixType_ >::compute(), Eigen::BDCSVD< MatrixType_, Options_ >::compute_impl(), Eigen::JacobiSVD< MatrixType_, Options_ >::compute_impl(), Eigen::RealSchur< MatrixType_ >::computeFromHessenberg(), Eigen::internal::computeFromTridiagonal_impl(), Eigen::FullPivLU< MatrixType_, PermutationIndex_ >::computeInPlace(), Eigen::ColPivHouseholderQR< MatrixType_, PermutationIndex_ >::computeInPlace(), Eigen::ComplexSchur< MatrixType_ >::computeShift(), Eigen::BDCSVD< MatrixType_, Options_ >::computeSingVals(), Eigen::BDCSVD< MatrixType_, Options_ >::computeSingVecs(), Eigen::BDCSVD< MatrixType_, Options_ >::computeSVDofM(), Eigen::BDCSVD< MatrixType_, Options_ >::deflation43(), Eigen::BDCSVD< MatrixType_, Options_ >::deflation44(), equalsIdentity(), Eigen::RealQZ< MatrixType_ >::findSmallSubdiagEntry(), Eigen::RealQZ< MatrixType_ >::hessenbergTriangular(), initSparse(), Eigen::internal::llt_rank_update_lower(), Eigen::JacobiRotation< Scalar >::makeGivens(), Eigen::RealSchur< MatrixType_ >::performFrancisQRStep(), Eigen::BDCSVD< MatrixType_, Options_ >::perturbCol0(), Eigen::internal::positive_real_hypot(), Eigen::internal::rcond_estimate_helper(), real_qz(), Eigen::internal::is_identically_zero_impl< AutoDiffScalar< DerivativeType > >::run(), Eigen::internal::gemv_dense_selector< OnTheRight, ColMajor, true >::run(), Eigen::internal::trmv_selector< Mode, ColMajor >::run(), Eigen::internal::sparse_solve_triangular_selector< Lhs, Rhs, Mode, Lower, ColMajor >::run(), Eigen::internal::sparse_solve_triangular_selector< Lhs, Rhs, Mode, Upper, ColMajor >::run(), Eigen::internal::sparse_solve_triangular_sparse_selector< Lhs, Rhs, Mode, UpLo, ColMajor >::run(), Eigen::internal::is_identically_zero_impl< Scalar >::run(), adjoint_specific< false >::run(), Eigen::internal::svd_precondition_2x2_block_to_be_real< MatrixType, Options, true >::run(), sparse_block(), Eigen::RealQZ< MatrixType_ >::splitOffTwoRows(), Eigen::internal::tridiagonal_qr_step(), Eigen::internal::partial_lu_impl< Scalar, StorageOrder, PivIndex, SizeAtCompileTime >::unblocked_lu(), Eigen::internal::ldlt_inplace< Lower >::updateInPlace(), and verifyIsQuasiTriangular().

◆ isfinite() [1/3]

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() Eigen::numext::isfinite ( const AnnoyingScalar x)
172  {
173  return (numext::isfinite)(*x.v);
174 }
#define isfinite(X)
Definition: main.h:111

References isfinite(), and x.

◆ isfinite() [2/3]

◆ isfinite() [3/3]

template<typename T >
EIGEN_DEVICE_FUNC bool() Eigen::numext::isfinite ( const T x)
1179  {
1180  return internal::isfinite_impl(x);
1181 }
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex< T > &x)
Definition: MathFunctions.h:1848

◆ isinf() [1/2]

◆ isinf() [2/2]

template<typename T >
EIGEN_DEVICE_FUNC bool() Eigen::numext::isinf ( const T x)
1175  {
1176  return internal::isinf_impl(x);
1177 }
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex< T > &x)
Definition: MathFunctions.h:1858

◆ isnan() [1/2]

◆ isnan() [2/2]

template<typename T >
EIGEN_DEVICE_FUNC bool() Eigen::numext::isnan ( const T x)
1171  {
1172  return internal::isnan_impl(x);
1173 }
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex< T > &x)
Definition: MathFunctions.h:1853

◆ log()

◆ log2()

EIGEN_CONSTEXPR int Eigen::numext::log2 ( int  x)
inline

Log base 2 for 32 bits positive integers. Conveniently returns 0 for x==0.

1281  {
1282  eigen_assert(x >= 0);
1283  unsigned int v(x);
1284  constexpr int table[32] = {0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
1285  8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31};
1286  v |= v >> 1;
1287  v |= v >> 2;
1288  v |= v >> 4;
1289  v |= v >> 8;
1290  v |= v >> 16;
1291  return table[(v * 0x07C4ACDDU) >> 27];
1292 }
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
ArrayXXf table(10, 4)

Referenced by Eigen::internal::conservative_sparse_sparse_product_impl().

◆ logical_shift_left()

template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar Eigen::numext::logical_shift_left ( const Scalar a,
int  n 
)

◆ logical_shift_right()

template<typename Scalar , typename Enable = std::enable_if_t<std::is_integral<Scalar>::value>>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar Eigen::numext::logical_shift_right ( const Scalar a,
int  n 
)
1832  {
1833  using UnsignedScalar = typename numext::get_integer_by_size<sizeof(Scalar)>::unsigned_type;
1834  return bit_cast<Scalar, UnsignedScalar>(bit_cast<UnsignedScalar, Scalar>(a) >> n);
1835 }

References a, and n.

Referenced by check_shift(), logical_right_shift_op< N, Scalar >::operator()(), Eigen::internal::plogical_shift_right(), and shift_test_impl< ArrayType >::run().

◆ maxi()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::maxi ( const T x,
const T y 
)
926  {
928  return max EIGEN_NOT_A_MACRO(x, y);
929 }
#define EIGEN_NOT_A_MACRO
Definition: Macros.h:813
#define max(a, b)
Definition: datatypes.h:23

Referenced by aux_evalSolver(), Eigen::internal::bicgstabl(), Eigen::TensorEvaluator< const TensorPaddingOp< PaddingDimensions, ArgType >, Device >::block(), Eigen::internal::blueNorm_impl(), Eigen::CoreThreadPoolDevice::calculateLevels(), Eigen::TensorEvaluator< const TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >::clamp(), Eigen::SPQR< MatrixType_ >::compute(), Eigen::internal::TensorContractionBlockMemAllocator< LhsScalar, RhsScalar >::ComputeLhsRhsBlockSizes(), Eigen::internal::direct_selfadjoint_eigenvalues< SolverType, 3, false >::computeRoots(), Eigen::internal::conjugate_gradient(), Eigen::TensorEvaluator< const TensorAssignOp< LeftArgType, RightArgType >, Device >::costPerCoeff(), Eigen::TensorOpCost::cwiseMax(), Eigen::ComplexEigenSolver< MatrixType_ >::doComputeEigenvectors(), Eigen::internal::evaluateProductBlockingSizesHeuristic(), Eigen::SparseQR< MatrixType_, OrderingType_ >::factorize(), Eigen::IncompleteCholesky< Scalar, UpLo_, OrderingType_ >::factorize(), internal::Colamd::find_ordering(), internal::Colamd::init_scoring(), Eigen::internal::TensorBlockMapper< NumDims, Layout, IndexType >::InitializeBlockDimensions(), Eigen::SparseMatrix< Scalar_, Options_, StorageIndex_ >::insertCompressedAtByOuterInner(), Eigen::MatrixBase< Derived >::isLowerTriangular(), Eigen::MatrixBase< Derived >::isUpperTriangular(), Eigen::internal::TensorBlockResourceRequirements::merge(), Eigen::internal::scalar_clamp_op< Scalar >::operator()(), Eigen::internal::maybe_coherent_pad_helper< DerivativeType, OtherDerivativeType, EnableIf >::pad(), Eigen::internal::pmax(), Eigen::internal::positive_real_hypot(), propagate_nan_max(), propagate_number_max(), qr(), qr_invertible(), Eigen::internal::rcond_invmatrix_L1_norm_estimate(), Eigen::SparseMatrix< Scalar_, Options_, StorageIndex_ >::reserveInnerVectors(), Eigen::internal::unitOrthogonal_selector< Derived, Size >::run(), Eigen::internal::selfadjoint_matrix_vector_product< Scalar, Index, StorageOrder, UpLo, ConjugateLhs, ConjugateRhs, Version >::run(), Eigen::internal::random_longdouble_impl< Specialize >::run(), Eigen::internal::triangular_assignment_loop< Kernel, Mode, Dynamic, SetOpposite >::run(), Eigen::internal::set_from_triplets(), Eigen::QuaternionBase< Derived >::setFromTwoVectors(), test_argmax_pair_reducer(), test_clip(), test_cwise_real(), test_sum_accuracy(), test_threaded_assignment(), verify_is_approx_upto_permutation(), and Eigen::internal::TensorBlockResourceRequirements::withShapeAndSize().

◆ mini()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::mini ( const T x,
const T y 
)
920  {
922  return min EIGEN_NOT_A_MACRO(x, y);
923 }
#define min(a, b)
Definition: datatypes.h:22

Referenced by Eigen::SVDBase< Derived >::allocate(), array_generic(), basicStuff(), Eigen::TensorEvaluator< const TensorPaddingOp< PaddingDimensions, ArgType >, Device >::block(), Eigen::internal::TensorBlockMapper< NumDims, Layout, IndexType >::blockDescriptor(), Eigen::internal::blueNorm_impl(), calc_overflow_threshold(), Eigen::CoreThreadPoolDevice::calculateLevels(), Eigen::TensorEvaluator< const TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >::clamp(), Eigen::TensorOpCost::cwiseMin(), Eigen::MatrixBase< Derived >::diagonalSize(), Eigen::TensorContractionEvaluatorBase< Derived >::evalGemmPartial(), Eigen::SparseQR_QProduct< SparseQRType, Derived >::evalTo(), Eigen::IncompleteCholesky< Scalar, UpLo_, OrderingType_ >::factorize(), internal::Colamd::find_ordering(), gemv_bfloat16_col(), gemv_col(), gemv_complex_col(), Eigen::internal::gemvMMA_bfloat16_col(), Eigen::ColPivHouseholderQR< MatrixType_, PermutationIndex_ >::init(), internal::Colamd::init_scoring(), Eigen::internal::TensorBlockMapper< NumDims, Layout, IndexType >::InitializeBlockDimensions(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, false, false >::isApprox(), Eigen::internal::scalar_fuzzy_default_impl< Scalar, true, false >::isApprox(), Eigen::SparseMatrixBase< Derived >::isApprox(), Eigen::MatrixBase< Derived >::isLowerTriangular(), Eigen::MatrixBase< Derived >::isUpperTriangular(), Eigen::internal::random_float_impl< Scalar, false >::mantissaBits(), Eigen::TensorCostModel< Device >::numThreads(), Eigen::internal::scalar_logistic_op< float >::operator()(), Eigen::internal::scalar_clamp_op< Scalar >::operator()(), packetmath_real(), Eigen::internal::pgather_partial(), Eigen::internal::pload_partial(), Eigen::internal::ploadu_partial(), Eigen::internal::pmin(), Eigen::internal::positive_real_hypot(), propagate_nan_min(), propagate_number_min(), Eigen::internal::pscatter_partial(), Eigen::internal::pstore_partial(), Eigen::internal::pstoreu_partial(), qr_invertible(), RandomBlock(), Eigen::internal::InnerMostDimReducer< Self, Op, true, true >::reduce(), Eigen::internal::isApprox_selector< Derived, OtherDerived, is_integer >::run(), Eigen::internal::conservative_resize_like_impl< Derived, OtherDerived, IsVector >::run(), Eigen::internal::setIdentity_impl< Derived, true >::run(), Eigen::internal::general_matrix_vector_product< Index, LhsScalar, LhsMapper, ColMajor, ConjugateLhs, RhsScalar, RhsMapper, ConjugateRhs, Version >::run(), Eigen::internal::random_longdouble_impl< Specialize >::run(), Eigen::internal::dense_assignment_loop< Kernel, SliceVectorizedTraversal, NoUnrolling >::run(), Eigen::internal::triangular_assignment_loop< Kernel, Mode, Dynamic, SetOpposite >::run(), Eigen::internal::sparse_reserve_op< StorageIndex >::sparse_reserve_op(), Eigen::internal::swap_plain_array(), test_argmin_pair_reducer(), test_assign_to_tensor_slice(), test_clip(), test_cwise_real(), test_eval_tensor_slice(), test_execute_slice_lvalue(), test_execute_slice_rvalue(), test_exponent(), and Eigen::test_relative_error().

◆ nextafter()

EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 Eigen::numext::nextafter ( const bfloat16 from,
const bfloat16 to 
)
766  {
767  if (numext::isnan EIGEN_NOT_A_MACRO(from)) {
768  return from;
769  }
771  return to;
772  }
773  if (from == to) {
774  return to;
775  }
776  uint16_t from_bits = numext::bit_cast<uint16_t>(from);
777  bool from_sign = from_bits >> 15;
778  // Whether we are adjusting toward the infinity with the same sign as from.
779  bool toward_inf = (to > from) == !from_sign;
780  if (toward_inf) {
781  ++from_bits;
782  } else if ((from_bits & 0x7fff) == 0) {
783  // Adjusting away from inf, but from is zero, so just toggle the sign.
784  from_bits ^= 0x8000;
785  } else {
786  --from_bits;
787  }
788  return numext::bit_cast<bfloat16>(from_bits);
789 }
std::uint16_t uint16_t
Definition: Meta.h:38

References EIGEN_NOT_A_MACRO, and isnan().

Referenced by MercuryBase::hGridRebuild(), HGridOptimiser::initialise(), HGridOptimiser::initialisePolyFunc(), and test_nextafter().

◆ not_equal_strict() [1/3]

template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::not_equal_strict ( const double x,
const double y 
)
617  {
618  return std::not_equal_to<double>()(x, y);
619 }

References plotDoE::x, and Eigen::internal::y.

◆ not_equal_strict() [2/3]

template<>
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::not_equal_strict ( const float &  x,
const float &  y 
)
612  {
613  return std::not_equal_to<float>()(x, y);
614 }

References plotDoE::x, and Eigen::internal::y.

◆ not_equal_strict() [3/3]

template<typename X , typename Y >
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool Eigen::numext::not_equal_strict ( const X x,
const Y y 
)

◆ pow()

◆ real_ref()

◆ rint()

template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar Eigen::numext::rint ( const Scalar x)
1190  {
1191  return internal::nearest_integer_impl<Scalar>::run_rint(x);
1192 }

Referenced by Eigen::internal::scalar_rint_op< Scalar >::operator()(), and Eigen::internal::nearest_integer_packetop_impl< Packet, IsScalar, IsInteger >::run_rint().

◆ round()

◆ round_down()

template<typename T , typename U >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE EIGEN_CONSTEXPR T Eigen::numext::round_down ( T  a,
b 
)
1266  {
1267  using UnsignedT = typename internal::make_unsigned<T>::type;
1268  using UnsignedU = typename internal::make_unsigned<U>::type;
1269  EIGEN_STATIC_ASSERT((NumTraits<T>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES)
1270  EIGEN_STATIC_ASSERT((NumTraits<U>::IsInteger), THIS FUNCTION IS FOR INTEGER TYPES)
1271  eigen_assert(a >= 0);
1272  eigen_assert(b > 0);
1273  // Note: explicitly declaring a and b as non-negative values allows the compiler to use better optimizations
1274  const UnsignedT ua = UnsignedT(a);
1275  const UnsignedU ub = UnsignedU(b);
1276  return ub * (ua / ub);
1277 }

Referenced by Eigen::internal::dense_assignment_loop_with_device< Kernel, CoreThreadPoolDevice, SliceVectorizedTraversal, NoUnrolling >::ScalarAssignmentFunctor::operator()(), Eigen::CoreThreadPoolDevice::parallelForImpl(), Eigen::internal::inner_product_impl< Evaluator, true >::run(), Eigen::internal::dense_assignment_loop_with_device< Kernel, CoreThreadPoolDevice, SliceVectorizedTraversal, NoUnrolling >::run(), Eigen::internal::dense_assignment_loop_with_device< Kernel, CoreThreadPoolDevice, LinearVectorizedTraversal, NoUnrolling >::run(), and Eigen::internal::stable_norm_impl_inner_step().

◆ rsqrt()

◆ signbit()

◆ sin()

◆ sinh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::sinh ( const T x)
1740  {
1742  return static_cast<T>(sinh(x));
1743 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh(const T &x)
Definition: MathFunctions.h:1740

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_sinh_op< Scalar >::operator()().

◆ sqrt() [1/2]

template<>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE double Eigen::numext::sqrt ( const double x)
74  {
75 #if EIGEN_COMP_GNUC_STRICT
76  // This works around a GCC bug generating poor code for _mm_sqrt_pd
77  // See https://gitlab.com/libeigen/eigen/commit/8dca9f97e38970
78  return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x))));
79 #else
80  return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x))));
81 #endif
82 }
__m128d Packet2d
Definition: LSX/PacketMath.h:36
EIGEN_STRONG_INLINE bfloat16 pfirst(const Packet8bf &a)
Definition: AltiVec/PacketMath.h:2418

References Eigen::internal::pfirst(), and x.

◆ sqrt() [2/2]

◆ sqrt< bool >()

1310  {
1311  return x;
1312 }

References plotDoE::x.

◆ swap()

template<typename T >
EIGEN_STRONG_INLINE void Eigen::numext::swap ( T a,
T b 
)

◆ tan()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::tan ( const T x)
1603  {
1605  return tan(x);
1606 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan(const T &x)
Definition: MathFunctions.h:1603

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_tan_op< Scalar >::operator()(), and Eigen::internal::digamma_impl< Scalar >::run().

◆ tanh()

template<typename T >
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T Eigen::numext::tanh ( const T x)
1762  {
1764  return tanh(x);
1765 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh(const T &x)
Definition: MathFunctions.h:1762

References EIGEN_USING_STD, and plotDoE::x.

Referenced by Eigen::internal::scalar_tanh_op< Scalar >::operator()().

◆ trunc()

template<typename Scalar >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar() Eigen::numext::trunc ( const Scalar x)
1210  {
1211  return internal::nearest_integer_impl<Scalar>::run_trunc(x);
1212 }

Referenced by Eigen::internal::scalar_trunc_op< Scalar >::operator()(), and Eigen::internal::nearest_integer_packetop_impl< Packet, IsScalar, IsInteger >::run_trunc().

Variable Documentation

◆ b

◆ q

EIGEN_DEVICE_FUNC const Scalar& Eigen::numext::q
Initial value:
{
EIGEN_DEVICE_FUNC const Scalar & q
Definition: SpecialFunctionsImpl.h:2019
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > zeta(const Eigen::ArrayBase< DerivedX > &x, const Eigen::ArrayBase< DerivedQ > &q)
Definition: SpecialFunctionsArrayAPI.h:152

Referenced by Eigen::AngleAxis< Scalar_ >::AngleAxis(), Quaternion::applyCInverse(), array_special_functions(), Eigen::internal::companion< Scalar_, Deg_ >::balancedR(), Eigen::internal::kiss_cpx_fft< Scalar_ >::bfly_generic(), check_slerp(), DropletBoundary::checkBoundaryAfterParticlesMove(), Mercury3Dclump::checkClumpForInteraction(), Mercury3Dclump::checkClumpForInteractionPeriodic(), DPMBase::checkParticleForInteractionLocal(), DPMBase::checkParticleForInteractionLocalPeriodic(), cod(), oomph::PoissonEquations< 1 >::compute_error(), Eigen::JacobiSVD< MatrixType_, Options_ >::compute_impl(), DPMBase::computeAllForces(), computeRoots(), Eigen::internal::direct_selfadjoint_eigenvalues< SolverType, 3, false >::computeRoots(), oomph::AxisymmetricPoroelasticityTractionElement< ELEMENT >::contribution_to_total_porous_flux(), oomph::LinearisedAxisymPoroelasticBJS_FSIElement< FLUID_BULK_ELEMENT, POROELASTICITY_BULK_ELEMENT >::contribution_to_total_porous_flux(), AxisymmetricIntersectionOfWalls::convertLimits(), HorizontalBaseScrew::convertLimits(), ScrewsymmetricIntersectionOfWalls::convertLimits(), oomph::FiniteElement::d_dshape_eulerian_dnodal_coordinates_templated_helper(), Eigen::EigenSolver< MatrixType_ >::doComputeEigenvectors(), oomph::LinearisedAxisymmetricQCrouzeixRaviartElement::dshape_and_dtest_eulerian_and_dnodal_coordinates_at_knot_lin_axi_nst(), oomph::LinearisedAxisymmetricQTaylorHoodElement::dshape_and_dtest_eulerian_and_dnodal_coordinates_at_knot_lin_axi_nst(), oomph::AxisymmetricQCrouzeixRaviartElement::dshape_and_dtest_eulerian_at_knot_axi_nst(), oomph::AxisymmetricQTaylorHoodElement::dshape_and_dtest_eulerian_at_knot_axi_nst(), oomph::GeneralisedNewtonianAxisymmetricQCrouzeixRaviartElement::dshape_and_dtest_eulerian_at_knot_axi_nst(), oomph::GeneralisedNewtonianAxisymmetricQTaylorHoodElement::dshape_and_dtest_eulerian_at_knot_axi_nst(), oomph::GeneralisedNewtonianQCrouzeixRaviartElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::GeneralisedNewtonianQTaylorHoodElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::GeneralisedNewtonianTCrouzeixRaviartElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::GeneralisedNewtonianTTaylorHoodElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::QCrouzeixRaviartElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::QTaylorHoodElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::TCrouzeixRaviartElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::TTaylorHoodElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), oomph::QTaylorHoodSpaceTimeElement< DIM >::dshape_and_dtest_eulerian_at_knot_nst(), Eigen::internal::eigen_lsx_shuffle_mask(), EIGEN_MATHFUNC_RETVAL(), Eigen::internal::eigen_neon_shuffle_mask(), EulerAngles< Scalar_ >::EulerAngles(), FancySpheres::FancySpheres(), oomph::FSIAxisymmetricLinearElasticityTractionElement< ELASTICITY_BULK_ELEMENT, NAVIER_STOKES_BULK_ELEMENT >::fill_in_contribution_to_residuals_axisym_fsi_traction(), oomph::FourierDecomposedTimeHarmonicLinElastLoadedByHelmholtzPressureBCElement< ELASTICITY_BULK_ELEMENT, HELMHOLTZ_BULK_ELEMENT >::fill_in_contribution_to_residuals_helmholtz_traction(), oomph::TimeHarmonicLinElastLoadedByHelmholtzPressureBCElement< ELASTICITY_BULK_ELEMENT, HELMHOLTZ_BULK_ELEMENT >::fill_in_contribution_to_residuals_helmholtz_traction(), oomph::TimeHarmonicLinElastLoadedByPMLHelmholtzPressureBCElement< ELASTICITY_BULK_ELEMENT, HELMHOLTZ_BULK_ELEMENT >::fill_in_contribution_to_residuals_helmholtz_traction(), oomph::LinearisedAxisymPoroelasticBJS_FSIElement< FLUID_BULK_ELEMENT, POROELASTICITY_BULK_ELEMENT >::fill_in_generic_residual_contribution_axisym_poroelastic_fsi(), oomph::LinearisedAxisymmetricNavierStokesEquations::get_base_flow_d_dudx_dX(), oomph::AxisymmetricNavierStokesEquations::get_dresidual_dnodal_coordinates(), oomph::RefineableAxisymmetricNavierStokesEquations::get_dresidual_dnodal_coordinates(), oomph::GeneralisedNewtonianAxisymmetricNavierStokesEquations::get_dresidual_dnodal_coordinates(), oomph::RefineableGeneralisedNewtonianAxisymmetricNavierStokesEquations::get_dresidual_dnodal_coordinates(), oomph::GeneralisedNewtonianNavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::RefineableGeneralisedNewtonianNavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::NavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::RefineableNavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::RefineablePoissonEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::SpaceTimeNavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), oomph::RefineableSpaceTimeNavierStokesEquations< DIM >::get_dresidual_dnodal_coordinates(), HorizontalScrew::getDistanceAndNormal(), Coil::getDistanceAndNormal(), ParabolaChute::getDistanceAndNormal(), SineWall::getDistanceAndNormal(), VChute::getDistanceAndNormal(), Screw::getDistanceAndNormalLabCoordinates(), Sintering::getMeanPlasticOverlap(), oomph::QTaylorHoodElement< 2 >::identify_load_data(), Eigen::internal::idrstabl(), oomph::AxisymmetricNavierStokesEquations::interpolated_d_dudx_dX_axi_nst(), oomph::GeneralisedNewtonianAxisymmetricNavierStokesEquations::interpolated_d_dudx_dX_axi_nst(), oomph::AxisymmetricPoroelasticityEquations::interpolated_q(), oomph::DarcyEquations< DIM >::interpolated_q(), Domain::isInNewBoundaryParticleList(), jacobi(), LaserOnLayer::LaserOnLayer(), Camera::localRotate(), main(), Eigen::JacobiRotation< Scalar >::makeGivens(), Eigen::JacobiRotation< Scalar >::makeJacobi(), Eigen::ThreadPoolTempl< Environment >::MaybeGetTask(), Eigen::internal::minimum_degree_ordering(), RenderingWidget::mouseMoveEvent(), Quaternion::multiplyQuaternions(), objectivenessTest(), oomph::PRefineableQElement< 3, INITIAL_NNODE_1D >::oc_hang_helper(), BaseParticle::oldRead(), Eigen::internal::accurate_log2< double >::operator()(), Eigen::internal::scalar_zeta_op< Scalar >::operator()(), Eigen::AngleAxis< Scalar_ >::operator=(), EulerAngles< Scalar_ >::operator=(), oomph::RankFiveTensor< T >::operator=(), oomph::RankFourTensor< T >::operator=(), oomph::LinearisedAxisymPoroelasticBJS_FSIElement< FLUID_BULK_ELEMENT, POROELASTICITY_BULK_ELEMENT >::output(), oomph::AxisymmetricPoroelasticityTractionElement< ELEMENT >::output(), oomph::PoissonEquations< 1 >::output_fct(), Eigen::internal::scalar_zeta_op< Scalar >::packetOp(), Eigen::internal::patanh_double(), oomph::TAxisymmetricPoroelasticityElement< ORDER >::pin_q_internal_value(), Eigen::internal::plog_impl_float(), LaserOnLayer::printTime(), MeltableForceLaw2SelfTest::printTime(), MeltableForceLawSelfTest::printTime(), OneParticleHeatingSelfTest::printTime(), OneParticleCoolingSelfTest::printTime(), ThermalConductionSelfTest::printTime(), Eigen::internal::psincos_double(), Eigen::internal::ptanh< Packet4f >(), Eigen::internal::ptanh_double(), Eigen::internal::ptanh_float(), Eigen::internal::ptranspose(), Eigen::internal::pzeta(), qr(), oomph::PRefineableQElement< 2, INITIAL_NNODE_1D >::quad_hang_helper(), quaternion(), randomRotationMatrix(), Eigen::internal::RandomToTypeNormal(), DPMBase::readNextDataFile(), Eigen::internal::real_2x2_jacobi_svd(), DPMBase::removeOldFiles(), Camera::rotateAroundTarget(), Eigen::internal::patan_reduced< Scalar >::run(), Eigen::internal::quat_conj< Architecture::Target, Derived, float >::run(), Eigen::internal::quat_conj< Arch, Derived, Scalar >::run(), Eigen::internal::generic_j0< T, float >::run(), Eigen::internal::generic_j0< T, double >::run(), Eigen::internal::generic_y0< T, float >::run(), Eigen::internal::generic_y0< T, double >::run(), Eigen::internal::generic_j1< T, float >::run(), Eigen::internal::generic_j1< T, double >::run(), Eigen::internal::generic_y1< T, float >::run(), Eigen::internal::generic_y1< T, double >::run(), Eigen::internal::generic_fast_erf< Scalar >::run(), Eigen::internal::tridiagonalization_inplace_selector< MatrixType, 3, false >::run(), Eigen::internal::quaternionbase_assign_impl< Other, 3, 3 >::run(), Eigen::internal::quaternionbase_assign_impl< Other, 4, 1 >::run(), Eigen::internal::digamma_impl< Scalar >::run(), Eigen::internal::zeta_impl< Scalar >::run(), Eigen::internal::svd_precondition_2x2_block_to_be_real< MatrixType, Options, true >::run(), Eigen::ThreadPoolTempl< Environment >::ScheduleWithHint(), RNG::setLaggedFibonacciGeneratorParameters(), Camera::setOrientation(), oomph::FourierDecomposedHelmholtzDtNMesh< ELEMENT >::setup_gamma(), oomph::HelmholtzDtNMesh< ELEMENT >::setup_gamma(), CubicCell::setupInitialConditions(), DPM::setupInitialConditions(), SeparateFilesSelfTest::setupInitialConditions(), Eigen::RealQZ< MatrixType_ >::splitOffTwoRows(), Eigen::RealSchur< MatrixType_ >::splitOffTwoRows(), oomph::AxisymmetricPoroelasticityEquations::switch_off_darcy(), test_basic_runqueue(), test_empty_runqueue(), test_stress_eventcount(), test_stress_runqueue(), transform_associativity2(), transform_associativity_left(), Eigen::internal::tridiagonal_qr_step(), Eigen::internal::trig_reduce_huge(), Eigen::internal::trig_reduce_small_double(), Camera::updateViewMatrix(), Eigen::internal::vec4f_swizzle1(), Eigen::internal::vec4f_swizzle2(), verify_euler(), HorizontalScrew::writeVTK(), Screw::writeVTK(), and Eigen::zeta().

◆ x

◆ y

EIGEN_DEVICE_FUNC const Scalar& Eigen::numext::y
Initial value:
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y)