20 template <
typename Scalar_>
42 for (;
i * 8 < nfft; ++
i) {
48 for (;
i * 4 < nfft; ++
i) {
54 for (;
i * 8 < 3 * nfft; ++
i) {
60 for (;
i * 2 < nfft; ++
i) {
94 template <
typename Src_>
95 inline void work(
int stage,
Complex *xout,
const Src_ *xin,
size_t fstride,
size_t in_stride) {
107 work(stage + 1, xout, xin, fstride *
p, in_stride);
108 xin += fstride * in_stride;
109 }
while ((xout +=
m) != Fout_end);
113 xin += fstride * in_stride;
114 }
while (++xout != Fout_end);
139 for (
int k = 0;
k <
m; ++
k) {
141 Fout[
m +
k] = Fout[
k] -
t;
148 int negative_if_inverse =
m_inverse * -2 + 1;
149 for (
size_t k = 0;
k <
m; ++
k) {
153 scratch[5] = Fout[
k] - scratch[1];
155 Fout[
k] += scratch[1];
156 scratch[3] = scratch[0] + scratch[2];
157 scratch[4] = scratch[0] - scratch[2];
158 scratch[4] =
Complex(scratch[4].
imag() * negative_if_inverse, -scratch[4].
real() * negative_if_inverse);
160 Fout[
k + 2 *
m] = Fout[
k] - scratch[3];
161 Fout[
k] += scratch[3];
162 Fout[
k +
m] = scratch[5] + scratch[4];
163 Fout[
k + 3 *
m] = scratch[5] - scratch[4];
169 const size_t m2 = 2 *
m;
178 scratch[1] = Fout[
m] * *tw1;
179 scratch[2] = Fout[
m2] * *tw2;
181 scratch[3] = scratch[1] + scratch[2];
182 scratch[0] = scratch[1] - scratch[2];
186 scratch[0] *= epi3.imag();
195 Complex *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
201 ya = twiddles[fstride *
m];
202 yb = twiddles[fstride * 2 *
m];
206 Fout2 = Fout0 + 2 *
m;
207 Fout3 = Fout0 + 3 *
m;
208 Fout4 = Fout0 + 4 *
m;
211 for (u = 0; u <
m; ++u) {
214 scratch[1] = *Fout1 * tw[u * fstride];
215 scratch[2] = *Fout2 * tw[2 * u * fstride];
216 scratch[3] = *Fout3 * tw[3 * u * fstride];
217 scratch[4] = *Fout4 * tw[4 * u * fstride];
219 scratch[7] = scratch[1] + scratch[4];
220 scratch[10] = scratch[1] - scratch[4];
221 scratch[8] = scratch[2] + scratch[3];
222 scratch[9] = scratch[2] - scratch[3];
224 *Fout0 += scratch[7];
225 *Fout0 += scratch[8];
227 scratch[5] = scratch[0] +
Complex((scratch[7].
real() * ya.real()) + (scratch[8].real() * yb.real()),
228 (scratch[7].imag() * ya.real()) + (scratch[8].imag() * yb.real()));
230 scratch[6] =
Complex((scratch[10].
imag() * ya.imag()) + (scratch[9].imag() * yb.imag()),
231 -(scratch[10].real() * ya.imag()) - (scratch[9].real() * yb.imag()));
233 *Fout1 = scratch[5] - scratch[6];
234 *Fout4 = scratch[5] + scratch[6];
236 scratch[11] = scratch[0] +
Complex((scratch[7].
real() * yb.real()) + (scratch[8].real() * ya.real()),
237 (scratch[7].imag() * yb.real()) + (scratch[8].imag() * ya.real()));
239 scratch[12] =
Complex(-(scratch[10].
imag() * yb.imag()) + (scratch[9].imag() * ya.imag()),
240 (scratch[10].real() * yb.imag()) - (scratch[9].real() * ya.imag()));
242 *Fout2 = scratch[11] + scratch[12];
243 *Fout3 = scratch[11] - scratch[12];
258 int Norig =
static_cast<int>(
m_twiddles.size());
261 for (u = 0; u <
m; ++u) {
263 for (q1 = 0; q1 <
p; ++q1) {
264 scratchbuf[q1] = Fout[
k];
269 for (q1 = 0; q1 <
p; ++q1) {
271 Fout[
k] = scratchbuf[0];
272 for (
q = 1;
q <
p; ++
q) {
273 twidx +=
static_cast<int>(fstride) *
k;
274 if (twidx >= Norig) twidx -= Norig;
275 t = scratchbuf[
q] * twiddles[twidx];
284 template <
typename _Scalar>
288 template <
typename Scalar_>
325 int ncfft = nfft >> 1;
326 int ncfft2 = nfft >> 2;
330 fwd(dst,
reinterpret_cast<const Complex *
>(src), ncfft);
334 for (
k = 1;
k <= ncfft2; ++
k) {
340 dst[
k] = (f1k + tw) *
Scalar(.5);
344 dst[ncfft] = nyquist;
362 int ncfft = nfft >> 1;
363 int ncfft2 = nfft >> 2;
367 for (
int k = 1;
k <= ncfft / 2; ++
k) {
389 inline int PlanKey(
int nfft,
bool isinverse)
const {
return (nfft << 1) |
int(isinverse); }
404 if ((
int)twidref.size() != ncfft2) {
405 twidref.resize(ncfft2);
406 int ncfft = ncfft2 << 1;
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar acos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:138
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
int i
Definition: BiCGSTAB_step_by_step.cpp:9
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
#define EIGEN_UNUSED_VARIABLE(var)
Definition: Macros.h:966
float * p
Definition: Tutorial_Map_using.cpp:9
void inverse(const MatrixType &m)
Definition: inverse.cpp:64
RealScalar s
Definition: level1_cplx_impl.h:130
EIGEN_BLAS_FUNC() copy(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
Definition: level1_impl.h:32
int * m
Definition: level2_cplx_impl.h:294
char char char int int * k
Definition: level2_impl.h:374
Eigen::Matrix< Scalar, Dynamic, Dynamic, ColMajor > tmp
Definition: level3_impl.h:365
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 exp(const bfloat16 &a)
Definition: BFloat16.h:615
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos(const T &x)
Definition: MathFunctions.h:1559
EIGEN_DEVICE_FUNC const Scalar & q
Definition: SpecialFunctionsImpl.h:2019
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T &x)
Definition: MathFunctions.h:1683
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin(const T &x)
Definition: MathFunctions.h:1581
Namespace containing all symbols from the Eigen library.
Definition: bench_norm.cpp:70
const AutoDiffScalar< DerType > & real(const AutoDiffScalar< DerType > &x)
Definition: AutoDiffScalar.h:486
DerType::Scalar imag(const AutoDiffScalar< DerType > &)
Definition: AutoDiffScalar.h:490
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
Definition: AutoDiffScalar.h:482
int c
Definition: calibrate.py:100
const Mdouble pi
Definition: ExtendedMath.h:23
Definition: Eigen_Colamd.h:49
t
Definition: plotPSD.py:36
Definition: ei_kissfft_impl.h:21
static const Scalar m_pi4
Definition: ei_kissfft_impl.h:30
std::vector< Complex > m_scratchBuf
Definition: ei_kissfft_impl.h:27
bool m_inverse
Definition: ei_kissfft_impl.h:28
std::vector< int > m_stageRadix
Definition: ei_kissfft_impl.h:25
void factorize(int nfft)
Definition: ei_kissfft_impl.h:68
void bfly2(Complex *Fout, const size_t fstride, int m)
Definition: ei_kissfft_impl.h:138
Scalar_ Scalar
Definition: ei_kissfft_impl.h:22
std::vector< Complex > m_twiddles
Definition: ei_kissfft_impl.h:24
void bfly4(Complex *Fout, const size_t fstride, const size_t m)
Definition: ei_kissfft_impl.h:146
void bfly5(Complex *Fout, const size_t fstride, const size_t m)
Definition: ei_kissfft_impl.h:194
void bfly3(Complex *Fout, const size_t fstride, const size_t m)
Definition: ei_kissfft_impl.h:167
void work(int stage, Complex *xout, const Src_ *xin, size_t fstride, size_t in_stride)
Definition: ei_kissfft_impl.h:95
void make_twiddles(int nfft, bool inverse)
Definition: ei_kissfft_impl.h:32
void bfly_generic(Complex *Fout, const size_t fstride, int m, int p)
Definition: ei_kissfft_impl.h:254
std::complex< Scalar > Complex
Definition: ei_kissfft_impl.h:23
std::vector< int > m_stageRemainder
Definition: ei_kissfft_impl.h:26
Definition: ei_kissfft_impl.h:289
Complex * real_twiddles(int ncfft2)
Definition: ei_kissfft_impl.h:401
Scalar_ Scalar
Definition: ei_kissfft_impl.h:290
void fwd(Complex *dst, const Scalar *src, int nfft)
Definition: ei_kissfft_impl.h:318
PlanMap m_plans
Definition: ei_kissfft_impl.h:384
std::vector< Complex > m_tmpBuf2
Definition: ei_kissfft_impl.h:387
int PlanKey(int nfft, bool isinverse) const
Definition: ei_kissfft_impl.h:389
void fwd(Complex *dst, const Complex *src, int nfft)
Definition: ei_kissfft_impl.h:298
void fwd2(Complex *dst, const Complex *src, int n0, int n1)
Definition: ei_kissfft_impl.h:300
void inv(Complex *dst, const Complex *src, int nfft)
Definition: ei_kissfft_impl.h:349
std::map< int, PlanData > PlanMap
Definition: ei_kissfft_impl.h:382
void inv2(Complex *dst, const Complex *src, int n0, int n1)
Definition: ei_kissfft_impl.h:307
std::map< int, std::vector< Complex > > m_realTwiddles
Definition: ei_kissfft_impl.h:385
void inv(Scalar *dst, const Complex *src, int nfft)
Definition: ei_kissfft_impl.h:352
void clear()
Definition: ei_kissfft_impl.h:293
PlanData & get_plan(int nfft, bool inverse)
Definition: ei_kissfft_impl.h:391
std::vector< Complex > m_tmpBuf1
Definition: ei_kissfft_impl.h:386
std::complex< Scalar > Complex
Definition: ei_kissfft_impl.h:291
kiss_cpx_fft< Scalar > PlanData
Definition: ei_kissfft_impl.h:381