Eigen::IDRSTABL< MatrixType_, Preconditioner_ > Class Template Reference

The IDR(s)STAB(l) is a combination of IDR(s) and BiCGSTAB(l). It is a short-recurrences Krylov method for sparse square problems. It can outperform both IDR(s) and BiCGSTAB(l). IDR(s)STAB(l) generally closely follows the optimal GMRES convergence in terms of the number of Matrix-Vector products. However, without the increasing cost per iteration of GMRES. IDR(s)STAB(l) is suitable for both indefinite systems and systems with complex eigenvalues. More...

#include <IDRSTABL.h>

+ Inheritance diagram for Eigen::IDRSTABL< MatrixType_, Preconditioner_ >:

Public Types

typedef MatrixType_ MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef MatrixType::RealScalar RealScalar
 
typedef Preconditioner_ Preconditioner
 
- Public Types inherited from Eigen::IterativeSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > >
enum  
 
typedef internal::traits< IDRSTABL< MatrixType_, Preconditioner_ > >::MatrixType MatrixType
 
typedef internal::traits< IDRSTABL< MatrixType_, Preconditioner_ > >::Preconditioner Preconditioner
 
typedef MatrixType::Scalar Scalar
 
typedef MatrixType::StorageIndex StorageIndex
 
typedef MatrixType::RealScalar RealScalar
 

Public Member Functions

 IDRSTABL ()
 
template<typename MatrixDerived >
 IDRSTABL (const EigenBase< MatrixDerived > &A)
 
template<typename Rhs , typename Dest >
void _solve_vector_with_guess_impl (const Rhs &b, Dest &x) const
 
void setL (Index L)
 
void setS (Index S)
 
- Public Member Functions inherited from Eigen::IterativeSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > >
 IterativeSolverBase ()
 
 IterativeSolverBase (const EigenBase< MatrixDerived > &A)
 
 IterativeSolverBase (IterativeSolverBase &&)=default
 
 ~IterativeSolverBase ()
 
IDRSTABL< MatrixType_, Preconditioner_ > & analyzePattern (const EigenBase< MatrixDerived > &A)
 
IDRSTABL< MatrixType_, Preconditioner_ > & factorize (const EigenBase< MatrixDerived > &A)
 
IDRSTABL< MatrixType_, Preconditioner_ > & compute (const EigenBase< MatrixDerived > &A)
 
EIGEN_CONSTEXPR Index rows () const EIGEN_NOEXCEPT
 
EIGEN_CONSTEXPR Index cols () const EIGEN_NOEXCEPT
 
RealScalar tolerance () const
 
IDRSTABL< MatrixType_, Preconditioner_ > & setTolerance (const RealScalar &tolerance)
 
Preconditionerpreconditioner ()
 
const Preconditionerpreconditioner () const
 
Index maxIterations () const
 
IDRSTABL< MatrixType_, Preconditioner_ > & setMaxIterations (Index maxIters)
 
Index iterations () const
 
RealScalar error () const
 
const SolveWithGuess< IDRSTABL< MatrixType_, Preconditioner_ >, Rhs, Guess > solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const
 
ComputationInfo info () const
 
void _solve_with_guess_impl (const Rhs &b, SparseMatrixBase< DestDerived > &aDest) const
 
std::enable_if_t< Rhs::ColsAtCompileTime !=1 &&DestDerived::ColsAtCompileTime !=1 > _solve_with_guess_impl (const Rhs &b, MatrixBase< DestDerived > &aDest) const
 
std::enable_if_t< Rhs::ColsAtCompileTime==1||DestDerived::ColsAtCompileTime==1 > _solve_with_guess_impl (const Rhs &b, MatrixBase< DestDerived > &dest) const
 
void _solve_impl (const Rhs &b, Dest &x) const
 
IDRSTABL< MatrixType_, Preconditioner_ > & derived ()
 
const IDRSTABL< MatrixType_, Preconditioner_ > & derived () const
 
- Public Member Functions inherited from Eigen::SparseSolverBase< Derived >
 SparseSolverBase ()
 
 SparseSolverBase (SparseSolverBase &&other)
 
 ~SparseSolverBase ()
 
Derived & derived ()
 
const Derived & derived () const
 
template<typename Rhs >
const Solve< Derived, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename Rhs >
const Solve< Derived, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
 
template<typename Rhs , typename Dest >
void _solve_impl (const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const
 

Private Types

typedef IterativeSolverBase< IDRSTABLBase
 

Private Member Functions

const ActualMatrixTypematrix () const
 

Private Attributes

Index m_L
 
Index m_S
 
RealScalar m_error
 
ComputationInfo m_info
 
bool m_isInitialized
 
Index m_iterations
 

Additional Inherited Members

- Protected Types inherited from Eigen::IterativeSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > >
typedef SparseSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > > Base
 
typedef internal::generic_matrix_wrapper< MatrixTypeMatrixWrapper
 
typedef MatrixWrapper::ActualMatrixType ActualMatrixType
 
- Protected Member Functions inherited from Eigen::IterativeSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > >
void init ()
 
const ActualMatrixTypematrix () const
 
void grab (const InputType &A)
 
- Protected Attributes inherited from Eigen::IterativeSolverBase< IDRSTABL< MatrixType_, Preconditioner_ > >
MatrixWrapper m_matrixWrapper
 
Preconditioner m_preconditioner
 
Index m_maxIterations
 
RealScalar m_tolerance
 
RealScalar m_error
 
Index m_iterations
 
ComputationInfo m_info
 
bool m_analysisIsOk
 
bool m_factorizationIsOk
 
bool m_isInitialized
 
- Protected Attributes inherited from Eigen::SparseSolverBase< Derived >
bool m_isInitialized
 

Detailed Description

template<typename MatrixType_, typename Preconditioner_>
class Eigen::IDRSTABL< MatrixType_, Preconditioner_ >

The IDR(s)STAB(l) is a combination of IDR(s) and BiCGSTAB(l). It is a short-recurrences Krylov method for sparse square problems. It can outperform both IDR(s) and BiCGSTAB(l). IDR(s)STAB(l) generally closely follows the optimal GMRES convergence in terms of the number of Matrix-Vector products. However, without the increasing cost per iteration of GMRES. IDR(s)STAB(l) is suitable for both indefinite systems and systems with complex eigenvalues.

This class allows solving for A.x = b sparse linear problems. The vectors x and b can be either dense or sparse.

Template Parameters
MatrixType_the type of the sparse matrix A, can be a dense or a sparse matrix.
Preconditioner_the type of the preconditioner. Default is DiagonalPreconditioner

\implsparsesolverconcept

The maximum number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximum number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.

The tolerance is the maximum relative residual error: |Ax-b|/|b| for which the linear system is considered solved.

Performance: When using sparse matrices, best performance is achieved for a row-major sparse matrix format. Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. See Eigen and multi-threading for details.

By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.

IDR(s)STAB(l) can also be used in a matrix-free context, see the following example .

See also
class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner

Member Typedef Documentation

◆ Base

template<typename MatrixType_ , typename Preconditioner_ >
typedef IterativeSolverBase<IDRSTABL> Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::Base
private

◆ MatrixType

template<typename MatrixType_ , typename Preconditioner_ >
typedef MatrixType_ Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::MatrixType

◆ Preconditioner

template<typename MatrixType_ , typename Preconditioner_ >
typedef Preconditioner_ Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::Preconditioner

◆ RealScalar

template<typename MatrixType_ , typename Preconditioner_ >
typedef MatrixType::RealScalar Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::RealScalar

◆ Scalar

template<typename MatrixType_ , typename Preconditioner_ >
typedef MatrixType::Scalar Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::Scalar

Constructor & Destructor Documentation

◆ IDRSTABL() [1/2]

template<typename MatrixType_ , typename Preconditioner_ >
Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::IDRSTABL ( )
inline

Default constructor.

430 : m_L(2), m_S(4) {}
Index m_S
Definition: IDRSTABL.h:420
Index m_L
Definition: IDRSTABL.h:419

◆ IDRSTABL() [2/2]

template<typename MatrixType_ , typename Preconditioner_ >
template<typename MatrixDerived >
Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::IDRSTABL ( const EigenBase< MatrixDerived > &  A)
inlineexplicit

Initialize the solver with matrix A for further Ax=b solving.

This constructor is a shortcut for the default constructor followed by a call to compute().

Warning
this class stores a reference to the matrix A as well as some precomputed values that depend on it. Therefore, if A is changed this class becomes invalid. Call compute() to update it with the new matrix A, or modify a copy of A.
443 : Base(A.derived()), m_L(2), m_S(4) {}
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47
IterativeSolverBase< IDRSTABL > Base
Definition: IDRSTABL.h:413

Member Function Documentation

◆ _solve_vector_with_guess_impl()

template<typename MatrixType_ , typename Preconditioner_ >
template<typename Rhs , typename Dest >
void Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::_solve_vector_with_guess_impl ( const Rhs &  b,
Dest &  x 
) const
inline

Loops over the number of columns of b and does the following:

  1. sets the tolerance and maxIterations
  2. Calls the function that has the core solver routine
452  {
456 
458  }
Scalar * b
Definition: benchVecAdd.cpp:17
ComputationInfo m_info
Definition: IterativeSolverBase.h:389
RealScalar m_error
Definition: IterativeSolverBase.h:387
Index m_iterations
Definition: IterativeSolverBase.h:388
const ActualMatrixType & matrix() const
Definition: IterativeSolverBase.h:374
Index maxIterations() const
Definition: IterativeSolverBase.h:251
Preconditioner m_preconditioner
Definition: IterativeSolverBase.h:382
RealScalar m_tolerance
Definition: IterativeSolverBase.h:385
@ NumericalIssue
Definition: Constants.h:442
@ Success
Definition: Constants.h:440
@ NoConvergence
Definition: Constants.h:444
Eigen::DenseIndex ret
Definition: level1_cplx_impl.h:43
bool idrstabl(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond, Index &iters, typename Dest::RealScalar &tol_error, Index L, Index S)
Definition: IDRSTABL.h:46
list x
Definition: plotDoE.py:28

References b, Eigen::internal::idrstabl(), Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_error, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_info, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_iterations, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_L, Eigen::IterativeSolverBase< Derived >::m_preconditioner, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_S, Eigen::IterativeSolverBase< Derived >::m_tolerance, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::matrix(), Eigen::IterativeSolverBase< Derived >::maxIterations(), Eigen::NoConvergence, Eigen::NumericalIssue, ret, Eigen::Success, and plotDoE::x.

◆ matrix()

template<typename MatrixType_ , typename Preconditioner_ >
const ActualMatrixType& Eigen::IterativeSolverBase< Derived >::matrix
inlineprivate

◆ setL()

template<typename MatrixType_ , typename Preconditioner_ >
void Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::setL ( Index  L)
inline

Sets the parameter L, indicating the amount of minimize residual steps are used.

462  {
463  eigen_assert(L >= 1 && "L needs to be positive");
464  m_L = L;
465  }
MatrixXd L
Definition: LLT_example.cpp:6
#define eigen_assert(x)
Definition: Macros.h:910

References eigen_assert, L, and Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_L.

◆ setS()

template<typename MatrixType_ , typename Preconditioner_ >
void Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::setS ( Index  S)
inline

Sets the parameter S, indicating the dimension of the shadow residual space..

468  {
469  eigen_assert(S >= 1 && "S needs to be positive");
470  m_S = S;
471  }
@ S
Definition: quadtree.h:62

References eigen_assert, Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_S, and oomph::QuadTreeNames::S.

Member Data Documentation

◆ m_error

template<typename MatrixType_ , typename Preconditioner_ >
RealScalar Eigen::IterativeSolverBase< Derived >::m_error
mutableprivate

◆ m_info

template<typename MatrixType_ , typename Preconditioner_ >
ComputationInfo Eigen::IterativeSolverBase< Derived >::m_info
mutableprivate

◆ m_isInitialized

template<typename MatrixType_ , typename Preconditioner_ >
bool Eigen::SparseSolverBase< Derived >::m_isInitialized
mutableprivate

◆ m_iterations

template<typename MatrixType_ , typename Preconditioner_ >
Index Eigen::IterativeSolverBase< Derived >::m_iterations
mutableprivate

◆ m_L

template<typename MatrixType_ , typename Preconditioner_ >
Index Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_L
private

◆ m_S

template<typename MatrixType_ , typename Preconditioner_ >
Index Eigen::IDRSTABL< MatrixType_, Preconditioner_ >::m_S
private

The documentation for this class was generated from the following file: