Eigen::MatrixBase< Derived > Class Template Reference

Base class for all dense matrices, vectors, and expressions. More...

#include <MatrixBase.h>

+ Inheritance diagram for Eigen::MatrixBase< Derived >:

Classes

struct  ConstSelfAdjointViewReturnType
 
struct  ConstTriangularViewReturnType
 
struct  SelfAdjointViewReturnType
 
struct  TriangularViewReturnType
 

Public Types

enum  { HomogeneousReturnTypeDirection }
 
enum  { SizeMinusOne = SizeAtCompileTime == Dynamic ? Dynamic : SizeAtCompileTime - 1 }
 
typedef MatrixBase StorageBaseType
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef internal::packet_traits< Scalar >::type PacketScalar
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef DenseBase< Derived > Base
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef Base::ConstTransposeReturnType ConstTransposeReturnType
 
typedef Base::RowXpr RowXpr
 
typedef Base::ColXpr ColXpr
 
typedef Matrix< Scalar, internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime), internal::max_size_prefer_dynamic(RowsAtCompileTime, ColsAtCompileTime)> SquareMatrixType
 
typedef Base::PlainObject PlainObject
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef std::conditional_t< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnTypeAdjointReturnType
 
typedef Matrix< std::complex< RealScalar >, internal::traits< Derived >::ColsAtCompileTime, 1, ColMajorEigenvaluesReturnType
 
typedef CwiseNullaryOp< internal::scalar_identity_op< Scalar >, PlainObjectIdentityReturnType
 
typedef Block< const CwiseNullaryOp< internal::scalar_identity_op< Scalar >, SquareMatrixType >, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTimeBasisReturnType
 
typedef Diagonal< Derived > DiagonalReturnType
 
typedef Diagonal< const Derived > ConstDiagonalReturnType
 
typedef Homogeneous< Derived, HomogeneousReturnTypeDirectionHomogeneousReturnType
 
typedef Block< const Derived, internal::traits< Derived >::ColsAtCompileTime==1 ? SizeMinusOne :1, internal::traits< Derived >::ColsAtCompileTime==1 ? 1 :SizeMinusOneConstStartMinusOne
 
typedef internal::stem_function< Scalar >::type StemFunction
 
- Public Types inherited from Eigen::DenseBase< Derived >
enum  {
  RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime , ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime , SizeAtCompileTime = (internal::size_of_xpr_at_compile_time<Derived>::ret) , MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime , MaxSizeAtCompileTime , IsVectorAtCompileTime , NumDimensions ,
  Flags = internal::traits<Derived>::Flags , IsRowMajor = int(Flags) & RowMajorBit , InnerSizeAtCompileTime , InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret ,
  OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
}
 
enum  { IsPlainObjectBase = 0 }
 
typedef Eigen::InnerIterator< Derived > InnerIterator
 
typedef internal::traits< Derived >::StorageKind StorageKind
 
typedef internal::traits< Derived >::StorageIndex StorageIndex
 The type used to store indices. More...
 
typedef internal::traits< Derived >::Scalar Scalar
 
typedef Scalar value_type
 
typedef NumTraits< Scalar >::Real RealScalar
 
typedef DenseCoeffsBase< Derived, internal::accessors_level< Derived >::valueBase
 
typedef Base::CoeffReturnType CoeffReturnType
 
typedef internal::find_best_packet< Scalar, SizeAtCompileTime >::type PacketScalar
 
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainMatrix
 
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTimePlainArray
 
typedef std::conditional_t< internal::is_same< typename internal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArrayPlainObject
 The plain matrix or array type corresponding to this expression. More...
 
typedef CwiseNullaryOp< internal::scalar_constant_op< Scalar >, PlainObjectConstantReturnType
 
typedef CwiseNullaryOp< internal::scalar_zero_op< Scalar >, PlainObjectZeroReturnType
 
typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectRandomAccessLinSpacedReturnType
 
typedef CwiseNullaryOp< internal::equalspaced_op< Scalar >, PlainObjectRandomAccessEqualSpacedReturnType
 
typedef Matrix< typename NumTraits< typename internal::traits< Derived >::Scalar >::Real, internal::traits< Derived >::ColsAtCompileTime, 1 > EigenvaluesReturnType
 
typedef Transpose< Derived > TransposeReturnType
 
typedef Transpose< const Derived > ConstTransposeReturnType
 
typedef internal::add_const_on_value_type_t< typename internal::eval< Derived >::type > EvalReturnType
 
typedef VectorwiseOp< Derived, HorizontalRowwiseReturnType
 
typedef const VectorwiseOp< const Derived, HorizontalConstRowwiseReturnType
 
typedef VectorwiseOp< Derived, VerticalColwiseReturnType
 
typedef const VectorwiseOp< const Derived, VerticalConstColwiseReturnType
 
typedef CwiseNullaryOp< internal::scalar_random_op< Scalar >, PlainObjectRandomReturnType
 
typedef Reverse< Derived, BothDirectionsReverseReturnType
 
typedef const Reverse< const Derived, BothDirectionsConstReverseReturnType
 
typedef std::conditional_t<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< Derived >, internal::generic_randaccess_stl_iterator< Derived > > iterator_type
 
typedef std::conditional_t<(Flags &DirectAccessBit)==DirectAccessBit, internal::pointer_based_stl_iterator< const Derived >, internal::generic_randaccess_stl_iterator< const Derived > > const_iterator_type
 
typedef std::conditional_t< IsVectorAtCompileTime, iterator_type, void > iterator
 
typedef std::conditional_t< IsVectorAtCompileTime, const_iterator_type, void > const_iterator
 

Public Member Functions

EIGEN_DEVICE_FUNC Index diagonalSize () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const MatrixBase &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator+= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator-= (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
Derived & operator*= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
void applyOnTheLeft (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
void applyOnTheRight (const EigenBase< OtherDerived > &other)
 
template<typename DiagonalDerived >
EIGEN_DEVICE_FUNC const Product< Derived, DiagonalDerived, LazyProductoperator* (const DiagonalBase< DiagonalDerived > &diagonal) const
 
template<typename SkewDerived >
EIGEN_DEVICE_FUNC const Product< Derived, SkewDerived, LazyProductoperator* (const SkewSymmetricBase< SkewDerived > &skew) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
EIGEN_DEVICE_FUNC RealScalar squaredNorm () const
 
EIGEN_DEVICE_FUNC RealScalar norm () const
 
RealScalar stableNorm () const
 
RealScalar blueNorm () const
 
RealScalar hypotNorm () const
 
EIGEN_DEVICE_FUNC const PlainObject normalized () const
 
EIGEN_DEVICE_FUNC const PlainObject stableNormalized () const
 
EIGEN_DEVICE_FUNC void normalize ()
 
EIGEN_DEVICE_FUNC void stableNormalize ()
 
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint () const
 
EIGEN_DEVICE_FUNC void adjointInPlace ()
 
EIGEN_DEVICE_FUNC DiagonalReturnType diagonal ()
 
EIGEN_DEVICE_FUNC const ConstDiagonalReturnType diagonal () const
 
template<int Index>
EIGEN_DEVICE_FUNC Diagonal< Derived, Indexdiagonal ()
 
template<int Index>
EIGEN_DEVICE_FUNC const Diagonal< const Derived, Indexdiagonal () const
 
EIGEN_DEVICE_FUNC Diagonal< Derived, DynamicIndexdiagonal (Index index)
 
EIGEN_DEVICE_FUNC const Diagonal< const Derived, DynamicIndexdiagonal (Index index) const
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
const SparseView< Derived > sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > asDiagonal () const
 
const PermutationWrapper< const Derived > asPermutation () const
 
EIGEN_DEVICE_FUNC const SkewSymmetricWrapper< const Derived > asSkewSymmetric () const
 
EIGEN_DEVICE_FUNC Derived & setIdentity ()
 
EIGEN_DEVICE_FUNC Derived & setIdentity (Index rows, Index cols)
 Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index i)
 Set the coefficients of *this to the i-th unit (basis) vector. More...
 
EIGEN_DEVICE_FUNC Derived & setUnit (Index newSize, Index i)
 Resizes to the given newSize, and writes the i-th unit (basis) vector into *this. More...
 
bool isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isSkewSymmetric (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
bool isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
bool isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator== (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool operator!= (const MatrixBase< OtherDerived > &other) const
 
NoAlias< Derived, Eigen::MatrixBase > EIGEN_DEVICE_FUNC noalias ()
 
const Derived & forceAlignedAccess () const
 
Derived & forceAlignedAccess ()
 
template<bool Enable>
const Derived & forceAlignedAccessIf () const
 
template<bool Enable>
Derived & forceAlignedAccessIf ()
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
template<int p>
EIGEN_DEVICE_FUNC RealScalar lpNorm () const
 
EIGEN_DEVICE_FUNC MatrixBase< Derived > & matrix ()
 
EIGEN_DEVICE_FUNC const MatrixBase< Derived > & matrix () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper< Derived > array ()
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper< const Derived > array () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const FullPivLU< PlainObject, PermutationIndex > fullPivLu () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const PartialPivLU< PlainObject, PermutationIndex > partialPivLu () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const PartialPivLU< PlainObject, PermutationIndex > lu () const
 
EIGEN_DEVICE_FUNC const Inverse< Derived > inverse () const
 
template<typename ResultType >
void computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
template<typename ResultType >
void computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC Scalar determinant () const
 
const LLT< PlainObjectllt () const
 
const LDLT< PlainObjectldlt () const
 
const HouseholderQR< PlainObjecthouseholderQr () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const ColPivHouseholderQR< PlainObject, PermutationIndex > colPivHouseholderQr () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const FullPivHouseholderQR< PlainObject, PermutationIndex > fullPivHouseholderQr () const
 
template<typename PermutationIndex = DefaultPermutationIndex>
const CompleteOrthogonalDecomposition< PlainObject, PermutationIndex > completeOrthogonalDecomposition () const
 
EigenvaluesReturnType eigenvalues () const
 Computes the eigenvalues of a matrix. More...
 
RealScalar operatorNorm () const
 Computes the L2 operator norm. More...
 
template<int Options = 0>
JacobiSVD< PlainObject, Options > jacobiSvd () const
 
template<int Options = 0>
EIGEN_DEPRECATED JacobiSVD< PlainObject, Options > jacobiSvd (unsigned int computationOptions) const
 
template<int Options = 0>
BDCSVD< PlainObject, Options > bdcSvd () const
 
template<int Options = 0>
EIGEN_DEPRECATED BDCSVD< PlainObject, Options > bdcSvd (unsigned int computationOptions) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC internal::cross_impl< Derived, OtherDerived >::return_type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC PlainObject cross3 (const MatrixBase< OtherDerived > &other) const
 
EIGEN_DEVICE_FUNC PlainObject unitOrthogonal (void) const
 
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > eulerAngles (Index a0, Index a1, Index a2) const
 
EIGEN_DEVICE_FUNC Matrix< Scalar, 3, 1 > canonicalEulerAngles (Index a0, Index a1, Index a2) const
 
EIGEN_DEVICE_FUNC HomogeneousReturnType homogeneous () const
 
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE (ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType
 
EIGEN_DEVICE_FUNC const HNormalizedReturnType hnormalized () const
 homogeneous normalization More...
 
EIGEN_DEVICE_FUNC void makeHouseholderInPlace (Scalar &tau, RealScalar &beta)
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace)
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j)
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type cwiseProduct (const SparseMatrixBase< OtherDerived > &other) const
 
const MatrixFunctionReturnValue< Derived > matrixFunction (StemFunction f) const
 Helper function for the unsupported MatrixFunctions module. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot (const MatrixBase< OtherDerived > &other) const
 
template<int p>
EIGEN_DEVICE_FUNC NumTraits< typename internal::traits< Derived >::Scalar >::Real lpNorm () const
 
template<bool Enable>
add_const_on_value_type_t< std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > > forceAlignedAccessIf () const
 
template<bool Enable>
std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > forceAlignedAccessIf ()
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived > operator* (const MatrixBase< OtherDerived > &other) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product< Derived, OtherDerived, LazyProductlazyProduct (const MatrixBase< OtherDerived > &other) const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type selfadjointView () const
 
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type selfadjointView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type triangularView ()
 
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type triangularView () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::cross_impl< Derived, OtherDerived >::return_type cross (const MatrixBase< OtherDerived > &other) const
 
template<typename PermutationIndex >
const FullPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > fullPivLu () const
 
template<typename PermutationIndex >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > partialPivLu () const
 
template<typename PermutationIndex >
const PartialPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > lu () const
 
template<typename PermutationIndexType >
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject, PermutationIndexType > colPivHouseholderQr () const
 
template<typename PermutationIndex >
const CompleteOrthogonalDecomposition< typename MatrixBase< Derived >::PlainObject, PermutationIndex > completeOrthogonalDecomposition () const
 
template<typename PermutationIndex >
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject, PermutationIndex > fullPivHouseholderQr () const
 
template<int Options>
BDCSVD< typename MatrixBase< Derived >::PlainObject, Options > bdcSvd () const
 
template<int Options>
BDCSVD< typename MatrixBase< Derived >::PlainObject, Options > bdcSvd (unsigned int computationOptions) const
 
template<int Options>
JacobiSVD< typename MatrixBase< Derived >::PlainObject, Options > jacobiSvd () const
 
template<int Options>
JacobiSVD< typename MatrixBase< Derived >::PlainObject, Options > jacobiSvd (unsigned int computationOptions) const
 
- Public Member Functions inherited from Eigen::DenseBase< Derived >
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index outerSize () const
 
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index innerSize () const
 
EIGEN_DEVICE_FUNC void resize (Index newSize)
 
EIGEN_DEVICE_FUNC void resize (Index rows, Index cols)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator= (const DenseBase &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const EigenBase< OtherDerived > &other)
 Copies the generic expression other into *this. More...
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator+= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator-= (const EigenBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived & operator= (const ReturnByValue< OtherDerived > &func)
 
template<typename OtherDerived >
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const Scalar &s)
 
template<unsigned int Added, unsigned int Removed>
EIGEN_DEPRECATED const Derived & flagged () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC CommaInitializer< Derived > operator<< (const DenseBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC TransposeReturnType transpose ()
 
EIGEN_DEVICE_FUNC const ConstTransposeReturnType transpose () const
 
EIGEN_DEVICE_FUNC void transposeInPlace ()
 
EIGEN_DEVICE_FUNC void fill (const Scalar &value)
 
EIGEN_DEVICE_FUNC Derived & setConstant (const Scalar &value)
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setLinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
EIGEN_DEVICE_FUNC Derived & setEqualSpaced (Index size, const Scalar &low, const Scalar &step)
 
EIGEN_DEVICE_FUNC Derived & setEqualSpaced (const Scalar &low, const Scalar &step)
 
EIGEN_DEVICE_FUNC Derived & setZero ()
 
EIGEN_DEVICE_FUNC Derived & setOnes ()
 
EIGEN_DEVICE_FUNC Derived & setRandom ()
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const RealScalar &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
 
EIGEN_DEVICE_FUNC bool hasNaN () const
 
EIGEN_DEVICE_FUNC bool allFinite () const
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator*= (const Scalar &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator/= (const Scalar &other)
 
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval () const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (const DenseBase< OtherDerived > &other)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap (PlainObjectBase< OtherDerived > &other)
 
EIGEN_DEVICE_FUNC const NestByValue< Derived > nestByValue () const
 
EIGEN_DEVICE_FUNC const ForceAlignedAccess< Derived > forceAlignedAccess () const
 
EIGEN_DEVICE_FUNC ForceAlignedAccess< Derived > forceAlignedAccess ()
 
template<bool Enable>
EIGEN_DEVICE_FUNC const std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > forceAlignedAccessIf () const
 
template<bool Enable>
EIGEN_DEVICE_FUNC std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > forceAlignedAccessIf ()
 
EIGEN_DEVICE_FUNC Scalar sum () const
 
EIGEN_DEVICE_FUNC Scalar mean () const
 
EIGEN_DEVICE_FUNC Scalar trace () const
 
EIGEN_DEVICE_FUNC Scalar prod () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
template<int NaNPropagation>
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff () const
 
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff () const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<int NaNPropagation, typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *row, IndexType *col) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar minCoeff (IndexType *index) const
 
template<typename IndexType >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar maxCoeff (IndexType *index) const
 
template<typename BinaryOp >
EIGEN_DEVICE_FUNC Scalar redux (const BinaryOp &func) const
 
template<typename Visitor >
EIGEN_DEVICE_FUNC void visit (Visitor &func) const
 
const WithFormat< Derived > format (const IOFormat &fmt) const
 
EIGEN_DEVICE_FUNC CoeffReturnType value () const
 
EIGEN_DEVICE_FUNC bool all () const
 
EIGEN_DEVICE_FUNC bool any () const
 
EIGEN_DEVICE_FUNC Index count () const
 
EIGEN_DEVICE_FUNC ConstRowwiseReturnType rowwise () const
 
EIGEN_DEVICE_FUNC RowwiseReturnType rowwise ()
 
EIGEN_DEVICE_FUNC ConstColwiseReturnType colwise () const
 
EIGEN_DEVICE_FUNC ColwiseReturnType colwise ()
 
template<typename ThenDerived , typename ElseDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, Scalar >, ThenDerived, ElseDerived, Derived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ThenDerived >::Scalar, Scalar >, ThenDerived, typename DenseBase< ThenDerived >::ConstantReturnType, Derived > select (const DenseBase< ThenDerived > &thenMatrix, const typename DenseBase< ThenDerived >::Scalar &elseScalar) const
 
template<typename ElseDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ElseDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, Scalar >, typename DenseBase< ElseDerived >::ConstantReturnType, ElseDerived, Derived > select (const typename DenseBase< ElseDerived >::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 
template<int p>
RealScalar lpNorm () const
 
template<int RowFactor, int ColFactor>
EIGEN_DEVICE_FUNC const Replicate< Derived, RowFactor, ColFactor > replicate () const
 
EIGEN_DEVICE_FUNC const Replicate< Derived, Dynamic, Dynamicreplicate (Index rowFactor, Index colFactor) const
 
EIGEN_DEVICE_FUNC ReverseReturnType reverse ()
 
EIGEN_DEVICE_FUNC ConstReverseReturnType reverse () const
 
EIGEN_DEVICE_FUNC void reverseInPlace ()
 
iterator begin ()
 
const_iterator begin () const
 
const_iterator cbegin () const
 
iterator end ()
 
const_iterator end () const
 
const_iterator cend () const
 
template<typename Dest >
EIGEN_DEVICE_FUNC void evalTo (Dest &) const
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & lazyAssign (const DenseBase< OtherDerived > &other)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseNullaryOp< CustomNullaryOp, typename DenseBase< Derived >::PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
template<typename Derived >
EIGEN_DEVICE_FUNC bool isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const
 
template<typename Func >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar redux (const Func &func) const
 
template<typename ThenDerived , typename ElseDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, typename DenseBase< Derived >::Scalar >, ThenDerived, ElseDerived, Derived > select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const
 
template<typename ThenDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ThenDerived >::Scalar, typename DenseBase< Derived >::Scalar >, ThenDerived, typename DenseBase< ThenDerived >::ConstantReturnType, Derived > select (const DenseBase< ThenDerived > &thenMatrix, const typename DenseBase< ThenDerived >::Scalar &elseScalar) const
 
template<typename ElseDerived >
EIGEN_DEVICE_FUNC CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ElseDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, typename DenseBase< Derived >::Scalar >, typename DenseBase< ElseDerived >::ConstantReturnType, ElseDerived, Derived > select (const typename DenseBase< ElseDerived >::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const
 

Static Public Member Functions

static EIGEN_DEVICE_FUNC const IdentityReturnType Identity ()
 
static EIGEN_DEVICE_FUNC const IdentityReturnType Identity (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const BasisReturnType Unit (Index size, Index i)
 
static EIGEN_DEVICE_FUNC const BasisReturnType Unit (Index i)
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitX ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitY ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitZ ()
 
static EIGEN_DEVICE_FUNC const BasisReturnType UnitW ()
 
- Static Public Member Functions inherited from Eigen::DenseBase< Derived >
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (Index rows, Index cols, const Scalar &value)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (Index size, const Scalar &value)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Constant (const Scalar &value)
 
EIGEN_DEPRECATED static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high)
 
EIGEN_DEPRECATED static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Sequential_t, const Scalar &low, const Scalar &high)
 
static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (Index size, const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
static EIGEN_DEVICE_FUNC const RandomAccessLinSpacedReturnType LinSpaced (const Scalar &low, const Scalar &high)
 Sets a linearly spaced vector. More...
 
static EIGEN_DEVICE_FUNC const RandomAccessEqualSpacedReturnType EqualSpaced (Index size, const Scalar &low, const Scalar &step)
 
static EIGEN_DEVICE_FUNC const RandomAccessEqualSpacedReturnType EqualSpaced (const Scalar &low, const Scalar &step)
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index rows, Index cols, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (Index size, const CustomNullaryOp &func)
 
template<typename CustomNullaryOp >
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObjectNullaryExpr (const CustomNullaryOp &func)
 
static EIGEN_DEVICE_FUNC const ZeroReturnType Zero (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const ZeroReturnType Zero (Index size)
 
static EIGEN_DEVICE_FUNC const ZeroReturnType Zero ()
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones (Index rows, Index cols)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones (Index size)
 
static EIGEN_DEVICE_FUNC const ConstantReturnType Ones ()
 
static const RandomReturnType Random (Index rows, Index cols)
 
static const RandomReturnType Random (Index size)
 
static const RandomReturnType Random ()
 

Protected Member Functions

template<typename OtherDerived >
Derived & operator+= (const ArrayBase< OtherDerived > &)
 
template<typename OtherDerived >
Derived & operator-= (const ArrayBase< OtherDerived > &)
 
- Protected Member Functions inherited from Eigen::DenseBase< Derived >
constexpr EIGEN_DEVICE_FUNC DenseBase ()=default
 

Private Member Functions

EIGEN_DEVICE_FUNC MatrixBase (int)
 
EIGEN_DEVICE_FUNC MatrixBase (int, int)
 
template<typename OtherDerived >
EIGEN_DEVICE_FUNC MatrixBase (const MatrixBase< OtherDerived > &)
 

Additional Inherited Members

- Public Attributes inherited from Eigen::DenseBase< Derived >
EIGEN_DEPRECATED typedef CwiseNullaryOp< internal::linspaced_op< Scalar >, PlainObjectSequentialLinSpacedReturnType
 

Detailed Description

template<typename Derived>
class Eigen::MatrixBase< Derived >

Base class for all dense matrices, vectors, and expressions.

This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.

Note that some methods are defined in other modules such as the LU_Module LU module for all functions related to matrix inversions.

Template Parameters
Derivedis the derived type, e.g. a matrix type, or an expression, etc.

When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.

template<typename Derived>
void printFirstRow(const Eigen::MatrixBase<Derived>& x)
{
cout << x.row(0) << endl;
}
Base class for all dense matrices, vectors, and expressions.
Definition: MatrixBase.h:52
list x
Definition: plotDoE.py:28

This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN.

See also
\blank The class hierarchy

Member Typedef Documentation

◆ AdjointReturnType

the return type of MatrixBase::adjoint()

◆ Base

template<typename Derived >
typedef DenseBase<Derived> Eigen::MatrixBase< Derived >::Base

◆ BasisReturnType

the return type of unit vectors

◆ CoeffReturnType

template<typename Derived >
typedef Base::CoeffReturnType Eigen::MatrixBase< Derived >::CoeffReturnType

◆ ColXpr

template<typename Derived >
typedef Base::ColXpr Eigen::MatrixBase< Derived >::ColXpr

◆ ConstantReturnType

Represents a matrix with all coefficients equal to one another

◆ ConstDiagonalReturnType

template<typename Derived >
typedef Diagonal<const Derived> Eigen::MatrixBase< Derived >::ConstDiagonalReturnType

◆ ConstStartMinusOne

template<typename Derived >
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime == 1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime == 1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne

◆ ConstTransposeReturnType

template<typename Derived >
typedef Base::ConstTransposeReturnType Eigen::MatrixBase< Derived >::ConstTransposeReturnType

◆ DiagonalReturnType

template<typename Derived >
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType

◆ EigenvaluesReturnType

template<typename Derived >
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> Eigen::MatrixBase< Derived >::EigenvaluesReturnType

Return type of eigenvalues()

◆ HomogeneousReturnType

template<typename Derived >
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> Eigen::MatrixBase< Derived >::HomogeneousReturnType

◆ IdentityReturnType

the return type of identity

◆ PacketScalar

template<typename Derived >
typedef internal::packet_traits<Scalar>::type Eigen::MatrixBase< Derived >::PacketScalar

◆ PlainObject

template<typename Derived >
typedef Base::PlainObject Eigen::MatrixBase< Derived >::PlainObject

◆ RealScalar

template<typename Derived >
typedef NumTraits<Scalar>::Real Eigen::MatrixBase< Derived >::RealScalar

◆ RowXpr

template<typename Derived >
typedef Base::RowXpr Eigen::MatrixBase< Derived >::RowXpr

◆ Scalar

template<typename Derived >
typedef internal::traits<Derived>::Scalar Eigen::MatrixBase< Derived >::Scalar

◆ SquareMatrixType

◆ StemFunction

template<typename Derived >
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction

◆ StorageBaseType

template<typename Derived >
typedef MatrixBase Eigen::MatrixBase< Derived >::StorageBaseType

◆ StorageIndex

template<typename Derived >
typedef internal::traits<Derived>::StorageIndex Eigen::MatrixBase< Derived >::StorageIndex

◆ StorageKind

template<typename Derived >
typedef internal::traits<Derived>::StorageKind Eigen::MatrixBase< Derived >::StorageKind

Member Enumeration Documentation

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
HomogeneousReturnTypeDirection 
399  {
402  ? ((internal::traits<Derived>::Flags & RowMajorBit) == RowMajorBit ? Horizontal : Vertical)
403  : ColsAtCompileTime == 1 ? Vertical
404  : Horizontal
405  };
@ ColsAtCompileTime
Definition: DenseBase.h:102
@ RowsAtCompileTime
Definition: DenseBase.h:96
@ HomogeneousReturnTypeDirection
Definition: MatrixBase.h:400
@ Horizontal
Definition: Constants.h:269
@ Vertical
Definition: Constants.h:266
const unsigned int RowMajorBit
Definition: Constants.h:70

◆ anonymous enum

template<typename Derived >
anonymous enum
Enumerator
SizeMinusOne 
@ SizeAtCompileTime
Definition: DenseBase.h:108
@ SizeMinusOne
Definition: MatrixBase.h:409
const int Dynamic
Definition: Constants.h:25

Constructor & Destructor Documentation

◆ MatrixBase() [1/3]

template<typename Derived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( int  )
explicitprivate

◆ MatrixBase() [2/3]

template<typename Derived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( int  ,
int   
)
private

◆ MatrixBase() [3/3]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::MatrixBase ( const MatrixBase< OtherDerived > &  )
explicitprivate

Member Function Documentation

◆ adjoint()

template<typename Derived >
EIGEN_DEVICE_FUNC const MatrixBase< Derived >::AdjointReturnType Eigen::MatrixBase< Derived >::adjoint
inline
Returns
an expression of the adjoint (i.e. conjugate transpose) of *this.

Example:

Matrix2cf m = Matrix2cf::Random();
cout << "Here is the 2x2 complex matrix m:" << endl << m << endl;
cout << "Here is the adjoint of m:" << endl << m.adjoint() << endl;
int * m
Definition: level2_cplx_impl.h:294

Output:

Warning
If you want to replace a matrix by its own adjoint, do NOT do this:
m = m.adjoint(); // bug!!! caused by aliasing effect
Instead, use the adjointInPlace() method:
m.adjointInPlace();
which gives Eigen good opportunities for optimization, or alternatively you can also do:
m = m.adjoint().eval();
See also
adjointInPlace(), transpose(), conjugate(), class Transpose, class internal::scalar_conjugate_op
197  {
198  return AdjointReturnType(this->transpose());
199 }
EIGEN_DEVICE_FUNC TransposeReturnType transpose()
Definition: Transpose.h:162
std::conditional_t< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, ConstTransposeReturnType >, ConstTransposeReturnType > AdjointReturnType
Definition: MatrixBase.h:113

◆ adjointInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::adjointInPlace
inline

This is the "in place" version of adjoint(): it replaces *this by its own transpose. Thus, doing

m.adjointInPlace();

has the same effect on m as doing

m = m.adjoint().eval();

and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.

Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().

Note
if the matrix is not square, then *this must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.
See also
transpose(), adjoint(), transposeInPlace()
350  {
351  derived() = adjoint().eval();
352 }
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const
Definition: Transpose.h:197

References adjoint().

◆ applyHouseholderOnTheLeft()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->cols() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheRight()
107  {
108  if (rows() == 1) {
109  *this *= Scalar(1) - tau;
110  } else if (!numext::is_exactly_zero(tau)) {
112  Block<Derived, EssentialPart::SizeAtCompileTime, Derived::ColsAtCompileTime> bottom(derived(), 1, 0, rows() - 1,
113  cols());
114  tmp.noalias() = essential.adjoint() * bottom;
115  tmp += this->row(0);
116  this->row(0) -= tau * tmp;
117  bottom.noalias() -= tau * essential * tmp;
118  }
119 }
m row(1)
int rows
Definition: Tutorial_commainit_02.cpp:1
int cols
Definition: Tutorial_commainit_02.cpp:1
internal::traits< Derived >::Scalar Scalar
Definition: MatrixBase.h:58
Eigen::Matrix< Scalar, Dynamic, Dynamic, ColMajor > tmp
Definition: level3_impl.h:365
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool is_exactly_zero(const X &x)
Definition: Meta.h:592
type
Definition: compute_granudrum_aor.py:141

References cols, Eigen::numext::is_exactly_zero(), row(), rows, and tmp.

◆ applyHouseholderOnTheRight()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight ( const EssentialPart &  essential,
const Scalar tau,
Scalar workspace 
)

Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix.

On input:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
workspacea pointer to working space with at least this->rows() entries
See also
MatrixBase::makeHouseholder(), MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft()
139  {
140  if (cols() == 1) {
141  *this *= Scalar(1) - tau;
142  } else if (!numext::is_exactly_zero(tau)) {
144  Block<Derived, Derived::RowsAtCompileTime, EssentialPart::SizeAtCompileTime> right(derived(), 0, 1, rows(),
145  cols() - 1);
146  tmp.noalias() = right * essential;
147  tmp += this->col(0);
148  this->col(0) -= tau * tmp;
149  right.noalias() -= tau * tmp * essential.adjoint();
150  }
151 }
m col(1)

References col(), cols, Eigen::numext::is_exactly_zero(), rows, and tmp.

◆ applyOnTheLeft() [1/2]

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheLeft ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by other * *this.

Example:

Matrix3f A = Matrix3f::Random(3, 3), B;
B << 0, 1, 0, 0, 0, 1, 1, 0, 0;
cout << "At start, A = " << endl << A << endl;
A.applyOnTheLeft(B);
cout << "After applyOnTheLeft, A = " << endl << A << endl;
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
Definition: bench_gemm.cpp:48
Definition: matrices.h:74

Output:

 
532  : \verbinclude MatrixBase_applyOnTheLeft.out
533  */
534 template <typename Derived>

◆ applyOnTheLeft() [2/2]

template<typename Derived >
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyOnTheLeft ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
)
inline

\jacobi_module Applies the rotation in the plane j to the rows p and q of *this, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \).

See also
class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
262  {
263  RowXpr x(this->row(p));
264  RowXpr y(this->row(q));
266 }
float * p
Definition: Tutorial_Map_using.cpp:9
Base::RowXpr RowXpr
Definition: MatrixBase.h:89
Scalar * y
Definition: level1_cplx_impl.h:128
EIGEN_DEVICE_FUNC void apply_rotation_in_the_plane(DenseBase< VectorX > &xpr_x, DenseBase< VectorY > &xpr_y, const JacobiRotation< OtherScalar > &j)
Definition: Jacobi.h:400
EIGEN_DEVICE_FUNC const Scalar & q
Definition: SpecialFunctionsImpl.h:2019
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References Eigen::internal::apply_rotation_in_the_plane(), j, row(), plotDoE::x, and y.

◆ applyOnTheRight() [1/2]

template<typename Derived >
template<typename OtherDerived >
void Eigen::MatrixBase< Derived >::applyOnTheRight ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other. It is equivalent to MatrixBase::operator*=().

Example:

Matrix3f A = Matrix3f::Random(3, 3), B;
B << 0, 1, 0, 0, 0, 1, 1, 0, 0;
cout << "At start, A = " << endl << A << endl;
A *= B;
cout << "After A *= B, A = " << endl << A << endl;
A.applyOnTheRight(B); // equivalent to A *= B
cout << "After applyOnTheRight, A = " << endl << A << endl;

Output:

 
521  : \verbinclude MatrixBase_applyOnTheRight.out
522  */
523 template <typename Derived>

◆ applyOnTheRight() [2/2]

template<typename Derived >
template<typename OtherScalar >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::applyOnTheRight ( Index  p,
Index  q,
const JacobiRotation< OtherScalar > &  j 
)
inline

\jacobi_module Applies the rotation in the plane j to the columns p and q of *this, i.e., it computes B = B * J with \( B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \).

See also
class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
277  {
278  ColXpr x(this->col(p));
279  ColXpr y(this->col(q));
281 }
Base::ColXpr ColXpr
Definition: MatrixBase.h:90

References Eigen::internal::apply_rotation_in_the_plane(), col(), j, plotDoE::x, and y.

◆ array() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> Eigen::MatrixBase< Derived >::array ( )
inline
Returns
an Array expression of this matrix
See also
ArrayBase::matrix()
320 { return ArrayWrapper<Derived>(derived()); }

◆ array() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> Eigen::MatrixBase< Derived >::array ( ) const
inline
Returns
a const Array expression of this matrix
See also
ArrayBase::matrix()
323  {
324  return ArrayWrapper<const Derived>(derived());
325  }

◆ asDiagonal()

template<typename Derived >
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > Eigen::MatrixBase< Derived >::asDiagonal
inline
Returns
a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients

\only_for_vectors

Example:

cout << Matrix3i(Vector3i(2, 5, 6).asDiagonal()) << endl;
EIGEN_DEVICE_FUNC const DiagonalWrapper< const Derived > asDiagonal() const
Definition: DiagonalMatrix.h:347

Output:

See also
class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
347  {
348  return DiagonalWrapper<const Derived>(derived());
349 }

Referenced by Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::fromPositionOrientationScale(), Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::prescale(), Eigen::Transform< Scalar_, Dim_, Mode_, Options_ >::scale(), and Eigen::Scaling().

◆ asPermutation()

template<typename Derived >
const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation
537  {
538  return derived();
539 }

◆ asSkewSymmetric()

template<typename Derived >
EIGEN_DEVICE_FUNC const SkewSymmetricWrapper< const Derived > Eigen::MatrixBase< Derived >::asSkewSymmetric
inline
Returns
a pseudo-expression of a skew symmetric matrix with *this as vector of coefficients

\only_for_vectors

See also
class SkewSymmetricWrapper, class SkewSymmetricMatrix3, vector(), isSkewSymmetric()
311  {
312  return SkewSymmetricWrapper<const Derived>(derived());
313 }

◆ bdcSvd() [1/4]

template<typename Derived >
template<int Options = 0>
BDCSVD<PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd ( ) const
inline

◆ bdcSvd() [2/4]

template<typename Derived >
template<int Options>
BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd ( ) const

\svd_module

Returns
the singular value decomposition of *this computed by Divide & Conquer algorithm
See also
class BDCSVD
1434  {
1435  return BDCSVD<PlainObject, Options>(*this);
1436 }

◆ bdcSvd() [3/4]

template<typename Derived >
template<int Options = 0>
EIGEN_DEPRECATED BDCSVD<PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd ( unsigned int  computationOptions) const
inline

◆ bdcSvd() [4/4]

template<typename Derived >
template<int Options>
BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd ( unsigned int  computationOptions) const

\svd_module

Returns
the singular value decomposition of *this computed by Divide & Conquer algorithm
See also
class BDCSVD
1447  {
1448  return BDCSVD<PlainObject, Options>(*this, computationOptions);
1449 }

◆ blueNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::blueNorm
inline
Returns
the l2 norm of *this using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.

For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.

See also
norm(), stableNorm(), hypotNorm()
198  {
199  return internal::blueNorm_impl(*this);
200 }
NumTraits< typename traits< Derived >::Scalar >::Real blueNorm_impl(const EigenBase< Derived > &_vec)
Definition: StableNorm.h:97

References Eigen::internal::blueNorm_impl().

◆ colPivHouseholderQr() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const ColPivHouseholderQR<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::colPivHouseholderQr ( ) const
inline

◆ colPivHouseholderQr() [2/2]

template<typename Derived >
template<typename PermutationIndexType >
const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndexType> Eigen::MatrixBase< Derived >::colPivHouseholderQr ( ) const
Returns
the column-pivoting Householder QR decomposition of *this.
See also
class ColPivHouseholderQR
668  {
669  return ColPivHouseholderQR<PlainObject, PermutationIndexType>(eval());
670 }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval() const
Definition: DenseBase.h:381

References eval().

◆ completeOrthogonalDecomposition() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const CompleteOrthogonalDecomposition<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::completeOrthogonalDecomposition ( ) const
inline

◆ completeOrthogonalDecomposition() [2/2]

template<typename Derived >
template<typename PermutationIndex >
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::completeOrthogonalDecomposition ( ) const
Returns
the complete orthogonal decomposition of *this.
See also
class CompleteOrthogonalDecomposition
642  {
643  return CompleteOrthogonalDecomposition<PlainObject>(eval());
644 }

References eval().

◆ computeInverseAndDetWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseAndDetWithCheck ( ResultType &  inverse,
typename ResultType::Scalar determinant,
bool invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse and determinant, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
determinantReference to the variable in which to store the determinant.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Matrix3d inverse;
bool invertible;
double determinant;
m.computeInverseAndDetWithCheck(inverse, determinant, invertible);
cout << "Its determinant is " << determinant << endl;
if (invertible) {
cout << "It is invertible, and its inverse is:" << endl << inverse << endl;
} else {
cout << "It is not invertible." << endl;
}
EIGEN_DEVICE_FUNC Scalar determinant() const
Definition: Determinant.h:90
EIGEN_DEVICE_FUNC const Inverse< Derived > inverse() const
Definition: InverseImpl.h:279

Output:

See also
inverse(), computeInverseWithCheck()
310  {
311  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
312  eigen_assert(rows() == cols());
313  // for 2x2, it's worth giving a chance to avoid evaluating.
314  // for larger sizes, evaluating has negligible cost and limits code size.
315  typedef std::conditional_t<RowsAtCompileTime == 2,
317  MatrixType;
319  determinant, invertible);
320 }
#define eigen_assert(x)
Definition: Macros.h:910
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
Base::PlainObject PlainObject
Definition: MatrixBase.h:104
void run(const string &dir_name, LinearSolver *linear_solver_pt, const unsigned nel_1d, bool mess_up_order)
Definition: two_d_poisson_compare_solvers.cc:317

References cols, determinant(), eigen_assert, inverse(), rows, and run().

◆ computeInverseWithCheck()

template<typename Derived >
template<typename ResultType >
void Eigen::MatrixBase< Derived >::computeInverseWithCheck ( ResultType &  inverse,
bool invertible,
const RealScalar absDeterminantThreshold = NumTraits<Scalar>::dummy_precision() 
) const
inline

\lu_module

Computation of matrix inverse, with invertibility check.

This is only for fixed-size square matrices of size up to 4x4.

Notice that it will trigger a copy of input matrix when trying to do the inverse in place.

Parameters
inverseReference to the matrix in which to store the inverse.
invertibleReference to the bool variable in which to store whether the matrix is invertible.
absDeterminantThresholdOptional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold.

Example:

Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
Matrix3d inverse;
bool invertible;
m.computeInverseWithCheck(inverse, invertible);
if (invertible) {
cout << "It is invertible, and its inverse is:" << endl << inverse << endl;
} else {
cout << "It is not invertible." << endl;
}

Output:

See also
inverse(), computeInverseAndDetWithCheck()
344  {
346  // i'd love to put some static assertions there, but SFINAE means that they have no effect...
347  eigen_assert(rows() == cols());
348  computeInverseAndDetWithCheck(inverse, determinant, invertible, absDeterminantThreshold);
349 }
SCALAR Scalar
Definition: bench_gemm.cpp:45
void computeInverseAndDetWithCheck(ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const
Definition: InverseImpl.h:307

◆ cross()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC internal::cross_impl<Derived, OtherDerived>::return_type Eigen::MatrixBase< Derived >::cross ( const MatrixBase< OtherDerived > &  other) const
inline

◆ cwiseProduct()

template<typename Derived >
template<typename OtherDerived >
EIGEN_STRONG_INLINE const SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type Eigen::MatrixBase< Derived >::cwiseProduct ( const SparseMatrixBase< OtherDerived > &  other) const
inline
439  {
440  return other.cwiseProduct(derived());
441  }

References Eigen::SparseMatrixBase< Derived >::cwiseProduct().

◆ determinant()

template<typename Derived >
EIGEN_DEVICE_FUNC internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::determinant
inline

\lu_module

Returns
the determinant of this matrix
90  {
91  eigen_assert(rows() == cols());
93  return internal::determinant_impl<internal::remove_all_t<Nested>>::run(derived());
94 }
auto run(Kernel kernel, Args &&... args) -> decltype(kernel(args...))
Definition: gpu_test_helper.h:414
std::conditional_t< Evaluate, PlainObject, typename ref_selector< T >::type > type
Definition: XprHelper.h:549

References cols, eigen_assert, rows, and Eigen::run().

◆ diagonal() [1/6]

template<typename Derived >
EIGEN_DEVICE_FUNC Diagonal< Derived, Index_ > Eigen::MatrixBase< Derived >::diagonal
inline
Returns
an expression of the main diagonal of the matrix *this

*this is not required to be square.

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the main diagonal of m:" << endl << m.diagonal() << endl;

Output:

See also
class Diagonal
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl
<< m.diagonal<1>().transpose() << endl
<< m.diagonal<-2>().transpose() << endl;

Output:

See also
MatrixBase::diagonal(), class Diagonal
162  {
163  return DiagonalReturnType(derived());
164 }
Diagonal< Derived > DiagonalReturnType
Definition: MatrixBase.h:200

◆ diagonal() [2/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC Diagonal<Derived, Index> Eigen::MatrixBase< Derived >::diagonal ( )

◆ diagonal() [3/6]

template<typename Derived >
EIGEN_DEVICE_FUNC const Diagonal< const Derived, Index_ > Eigen::MatrixBase< Derived >::diagonal
inline

This is the const version of diagonal().

This is the const version of diagonal<int>().

169  {
170  return ConstDiagonalReturnType(derived());
171 }
Diagonal< const Derived > ConstDiagonalReturnType
Definition: MatrixBase.h:203

◆ diagonal() [4/6]

template<typename Derived >
template<int Index>
EIGEN_DEVICE_FUNC const Diagonal<const Derived, Index> Eigen::MatrixBase< Derived >::diagonal ( ) const

◆ diagonal() [5/6]

template<typename Derived >
EIGEN_DEVICE_FUNC Diagonal< Derived, DynamicIndex > Eigen::MatrixBase< Derived >::diagonal ( Index  index)
inline
Returns
an expression of the DiagIndex-th sub or super diagonal of the matrix *this

*this is not required to be square.

The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:" << endl
<< m.diagonal(1).transpose() << endl
<< m.diagonal(-2).transpose() << endl;

Output:

See also
MatrixBase::diagonal(), class Diagonal
185  {
186  return Diagonal<Derived, DynamicIndex>(derived(), index);
187 }

◆ diagonal() [6/6]

template<typename Derived >
EIGEN_DEVICE_FUNC const Diagonal< const Derived, DynamicIndex > Eigen::MatrixBase< Derived >::diagonal ( Index  index) const
inline

This is the const version of diagonal(Index).

191  {
192  return Diagonal<const Derived, DynamicIndex>(derived(), index);
193 }

◆ diagonalSize()

template<typename Derived >
EIGEN_DEVICE_FUNC Index Eigen::MatrixBase< Derived >::diagonalSize ( ) const
inline
Returns
the size of the main diagonal, which is min(rows(),cols()).
See also
rows(), cols(), SizeAtCompileTime.
102 { return (numext::mini)(rows(), cols()); }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition: MathFunctions.h:920

References cols, Eigen::numext::mini(), and rows.

◆ dot() [1/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, typename internal::traits<OtherDerived>::Scalar>::ReturnType Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
52  {
53  return internal::dot_impl<Derived, OtherDerived>::run(derived(), other.derived());
54 }
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type run(const MatrixBase< Lhs > &a, const MatrixBase< Rhs > &b)
Definition: InnerProduct.h:238

References Eigen::internal::default_inner_product_impl< Lhs, Rhs, true >::run().

◆ dot() [2/2]

template<typename Derived >
template<typename OtherDerived >
Eigen::MatrixBase< Derived >::dot ( const MatrixBase< OtherDerived > &  other) const
Returns
the dot product of *this with other.

\only_for_vectors

Note
If the scalar type is complex numbers, then this function returns the hermitian (sesquilinear) dot product, conjugate-linear in the first variable and linear in the second variable.
See also
squaredNorm(), norm()

◆ EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE()

template<typename Derived >
typedef Eigen::MatrixBase< Derived >::EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE ( ConstStartMinusOne  ,
Scalar  ,
quotient   
)

◆ eigenvalues()

template<typename Derived >
MatrixBase< Derived >::EigenvaluesReturnType Eigen::MatrixBase< Derived >::eigenvalues
inline

Computes the eigenvalues of a matrix.

Returns
Column vector containing the eigenvalues.

\eigenvalues_module This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).

The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.

The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

MatrixXd ones = MatrixXd::Ones(3, 3);
VectorXcd eivals = ones.eigenvalues();
cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
MatrixXcf ones
Definition: ComplexEigenSolver_eigenvalues.cpp:1
VectorXcd eivals
Definition: MatrixBase_eigenvalues.cpp:2

Output:

See also
EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(), SelfAdjointView::eigenvalues()
63  {
65 }
@ IsComplex
Definition: common.h:73

References Eigen::run().

◆ forceAlignedAccess() [1/2]

template<typename Derived >
ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(), class ForceAlignedAccess
300 { return derived(); }

◆ forceAlignedAccess() [2/2]

template<typename Derived >
const ForceAlignedAccess< Derived > Eigen::MatrixBase< Derived >::forceAlignedAccess
inline
Returns
an expression of *this with forced aligned access
See also
forceAlignedAccessIf(),class ForceAlignedAccess
299 { return derived(); }

◆ forceAlignedAccessIf() [1/4]

template<typename Derived >
template<bool Enable>
std::conditional_t<Enable, ForceAlignedAccess<Derived>, Derived&> Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess
125  {
126  return derived(); // FIXME This should not work but apparently is never used
127 }

◆ forceAlignedAccessIf() [2/4]

template<typename Derived >
template<bool Enable>
Derived& Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( )
inline
306  {
307  return derived();
308  }

◆ forceAlignedAccessIf() [3/4]

template<typename Derived >
template<bool Enable>
add_const_on_value_type_t<std::conditional_t<Enable, ForceAlignedAccess<Derived>, Derived&> > Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline
Returns
an expression of *this with forced aligned access if Enable is true.
See also
forceAlignedAccess(), class ForceAlignedAccess
116  {
117  return derived(); // FIXME This should not work but apparently is never used
118 }

◆ forceAlignedAccessIf() [4/4]

template<typename Derived >
template<bool Enable>
const Derived& Eigen::MatrixBase< Derived >::forceAlignedAccessIf ( ) const
inline
302  {
303  return derived();
304  }

◆ fullPivHouseholderQr() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const FullPivHouseholderQR<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::fullPivHouseholderQr ( ) const
inline

◆ fullPivHouseholderQr() [2/2]

template<typename Derived >
template<typename PermutationIndex >
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::fullPivHouseholderQr ( ) const
Returns
the full-pivoting Householder QR decomposition of *this.
See also
class FullPivHouseholderQR
716  {
717  return FullPivHouseholderQR<PlainObject, PermutationIndex>(eval());
718 }

References eval().

◆ fullPivLu() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const FullPivLU<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::fullPivLu ( ) const
inline

◆ fullPivLu() [2/2]

template<typename Derived >
template<typename PermutationIndex >
const FullPivLU<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::fullPivLu ( ) const
inline

\lu_module

Returns
the full-pivoting LU decomposition of *this.
See also
class FullPivLU
806  {
807  return FullPivLU<PlainObject, PermutationIndex>(eval());
808 }

References eval().

◆ householderQr()

template<typename Derived >
const HouseholderQR< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::householderQr
inline
Returns
the Householder QR decomposition of *this.
See also
class HouseholderQR
526  {
527  return HouseholderQR<PlainObject>(eval());
528 }

References eval().

◆ hypotNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::hypotNorm
inline
Returns
the l2 norm of *this avoiding underflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.
See also
norm(), stableNorm()
208  {
209  if (size() == 1)
210  return numext::abs(coeff(0, 0));
211  else
212  return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
213 }
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::enable_if_t< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real > abs(const T &x)
Definition: MathFunctions.h:1355

References Eigen::numext::abs(), and size.

◆ Identity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity
static
Returns
an expression of the identity matrix (not necessarily square).

This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.

Example:

cout << Matrix<double, 3, 4>::Identity() << endl;

Output:

See also
Identity(Index,Index), setIdentity(), isIdentity()
787  {
789  return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
790 }
#define EIGEN_STATIC_ASSERT_FIXED_SIZE(TYPE)
Definition: StaticAssert.h:40
static EIGEN_DEVICE_FUNC const CwiseNullaryOp< CustomNullaryOp, PlainObject > NullaryExpr(Index rows, Index cols, const CustomNullaryOp &func)

References EIGEN_STATIC_ASSERT_FIXED_SIZE, and Eigen::DenseBase< Derived >::NullaryExpr().

◆ Identity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::IdentityReturnType Eigen::MatrixBase< Derived >::Identity ( Index  rows,
Index  cols 
)
static
Returns
an expression of the identity matrix (not necessarily square).

The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.

This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.

Example:

cout << MatrixXd::Identity(4, 3) << endl;

Output:

See also
Identity(), setIdentity(), isIdentity()
771  {
772  return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
773 }

References cols, Eigen::DenseBase< Derived >::NullaryExpr(), and rows.

◆ inverse()

template<typename Derived >
EIGEN_DEVICE_FUNC const Inverse< Derived > Eigen::MatrixBase< Derived >::inverse
inline

\lu_module

Returns
the matrix inverse of this matrix.

For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.

Note
This matrix must be invertible, otherwise the result is undefined. If you need an invertibility check, do the following:
  • for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
  • for the general case, use class FullPivLU.
Example:
Matrix3d m = Matrix3d::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Its inverse is:" << endl << m.inverse() << endl;
Output:
See also
computeInverseAndDetWithCheck()
279  {
280  EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger, THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
281  eigen_assert(rows() == cols());
282  return Inverse<Derived>(derived());
283 }
#define EIGEN_STATIC_ASSERT(X, MSG)
Definition: StaticAssert.h:26
@ IsInteger
Definition: NumTraits.h:174

References cols, eigen_assert, EIGEN_STATIC_ASSERT, and rows.

◆ isDiagonal()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isDiagonal ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a diagonal matrix, within the precision given by prec.

Example:

Matrix3d m = 10000 * Matrix3d::Identity();
m(0, 2) = 1;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isDiagonal() returns: " << m.isDiagonal() << endl;
cout << "m.isDiagonal(1e-3) returns: " << m.isDiagonal(1e-3) << endl;
Array< double, 1, 3 > e(1./3., 0.5, 2.)

Output:

See also
asDiagonal()
360  {
361  if (cols() != rows()) return false;
362  RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
363  for (Index j = 0; j < cols(); ++j) {
364  RealScalar absOnDiagonal = numext::abs(coeff(j, j));
365  if (absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
366  }
367  for (Index j = 0; j < cols(); ++j)
368  for (Index i = 0; i < j; ++i) {
369  if (!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
370  if (!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
371  }
372  return true;
373 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:46
EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1916
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:83

References Eigen::numext::abs(), cols, i, Eigen::internal::isMuchSmallerThan(), j, and rows.

◆ isIdentity()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isIdentity ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to the identity matrix (not necessarily square), within the precision given by prec.

Example:

Matrix3d m = Matrix3d::Identity();
m(0, 2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isIdentity() returns: " << m.isIdentity() << endl;
cout << "m.isIdentity(1e-3) returns: " << m.isIdentity(1e-3) << endl;

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
802  {
803  typename internal::nested_eval<Derived, 1>::type self(derived());
804  for (Index j = 0; j < cols(); ++j) {
805  for (Index i = 0; i < rows(); ++i) {
806  if (i == j) {
807  if (!internal::isApprox(self.coeff(i, j), static_cast<Scalar>(1), prec)) return false;
808  } else {
809  if (!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<RealScalar>(1), prec)) return false;
810  }
811  }
812  }
813  return true;
814 }
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1923

References cols, i, Eigen::internal::isApprox(), Eigen::internal::isMuchSmallerThan(), j, and rows.

◆ isLowerTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isLowerTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a lower triangular matrix, within the precision given by prec.
See also
isUpperTriangular()
607  {
608  RealScalar maxAbsOnLowerPart = static_cast<RealScalar>(-1);
609  for (Index j = 0; j < cols(); ++j)
610  for (Index i = j; i < rows(); ++i) {
611  RealScalar absValue = numext::abs(coeff(i, j));
612  if (absValue > maxAbsOnLowerPart) maxAbsOnLowerPart = absValue;
613  }
614  RealScalar threshold = maxAbsOnLowerPart * prec;
615  for (Index j = 1; j < cols(); ++j) {
616  Index maxi = numext::mini(j, rows() - 1);
617  for (Index i = 0; i < maxi; ++i)
618  if (numext::abs(coeff(i, j)) > threshold) return false;
619  }
620  return true;
621 }
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: MathFunctions.h:926

References Eigen::numext::abs(), cols, i, j, Eigen::numext::maxi(), Eigen::numext::mini(), and rows.

◆ isOrthogonal()

template<typename Derived >
template<typename OtherDerived >
bool Eigen::MatrixBase< Derived >::isOrthogonal ( const MatrixBase< OtherDerived > &  other,
const RealScalar prec = NumTraits<Scalar>::dummy_precision() 
) const
Returns
true if *this is approximately orthogonal to other, within the precision given by prec.

Example:

Vector3d v(1, 0, 0);
Vector3d w(1e-4, 0, 1);
cout << "Here's the vector v:" << endl << v << endl;
cout << "Here's the vector w:" << endl << w << endl;
cout << "v.isOrthogonal(w) returns: " << v.isOrthogonal(w) << endl;
cout << "v.isOrthogonal(w,1e-3) returns: " << v.isOrthogonal(w, 1e-3) << endl;
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
RowVector3d w
Definition: Matrix_resize_int.cpp:3

Output:

 
238  {
239  typename internal::nested_eval<Derived, 2>::type nested(derived());
240  typename internal::nested_eval<OtherDerived, 2>::type otherNested(other.derived());
241  return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
242 }
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1102

References Eigen::numext::abs2().

◆ isSkewSymmetric()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isSkewSymmetric ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to a skew symmetric matrix, within the precision given by prec.
319  {
320  if (cols() != rows()) return false;
321  return (this->transpose() + *this).isZero(prec);
322 }

References cols, rows, and anonymous_namespace{skew_symmetric_matrix3.cpp}::transpose().

◆ isUnitary()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUnitary ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately an unitary matrix, within the precision given by prec. In the case where the Scalar type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
Note
This can be used to check whether a family of vectors forms an orthonormal basis. Indeed, m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.

Example:

Matrix3d m = Matrix3d::Identity();
m(0, 2) = 1e-4;
cout << "Here's the matrix m:" << endl << m << endl;
cout << "m.isUnitary() returns: " << m.isUnitary() << endl;
cout << "m.isUnitary(1e-3) returns: " << m.isUnitary(1e-3) << endl;

Output:

 
256  {
257  typename internal::nested_eval<Derived, 1>::type self(derived());
258  for (Index i = 0; i < cols(); ++i) {
259  if (!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) return false;
260  for (Index j = 0; j < i; ++j)
261  if (!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) return false;
262  }
263  return true;
264 }
EIGEN_DEVICE_FUNC RealScalar squaredNorm() const
Definition: Dot.h:66
EIGEN_DEVICE_FUNC ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType dot(const MatrixBase< OtherDerived > &other) const

References col(), cols, dot(), i, Eigen::internal::isApprox(), Eigen::internal::isMuchSmallerThan(), and j.

◆ isUpperTriangular()

template<typename Derived >
bool Eigen::MatrixBase< Derived >::isUpperTriangular ( const RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
Returns
true if *this is approximately equal to an upper triangular matrix, within the precision given by prec.
See also
isLowerTriangular()
585  {
586  RealScalar maxAbsOnUpperPart = static_cast<RealScalar>(-1);
587  for (Index j = 0; j < cols(); ++j) {
588  Index maxi = numext::mini(j, rows() - 1);
589  for (Index i = 0; i <= maxi; ++i) {
590  RealScalar absValue = numext::abs(coeff(i, j));
591  if (absValue > maxAbsOnUpperPart) maxAbsOnUpperPart = absValue;
592  }
593  }
594  RealScalar threshold = maxAbsOnUpperPart * prec;
595  for (Index j = 0; j < cols(); ++j)
596  for (Index i = j + 1; i < rows(); ++i)
597  if (numext::abs(coeff(i, j)) > threshold) return false;
598  return true;
599 }

References Eigen::numext::abs(), cols, i, j, Eigen::numext::maxi(), Eigen::numext::mini(), and rows.

◆ jacobiSvd() [1/4]

template<typename Derived >
template<int Options = 0>
JacobiSVD<PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd ( ) const
inline

◆ jacobiSvd() [2/4]

template<typename Derived >
template<int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd ( ) const

\svd_module

Returns
the singular value decomposition of *this computed by two-sided Jacobi transformations.
See also
class JacobiSVD
794  {
795  return JacobiSVD<PlainObject, Options>(*this);
796 }

◆ jacobiSvd() [3/4]

template<typename Derived >
template<int Options = 0>
EIGEN_DEPRECATED JacobiSVD<PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions) const
inline

◆ jacobiSvd() [4/4]

template<typename Derived >
template<int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd ( unsigned int  computationOptions) const
801  {
802  return JacobiSVD<PlainObject, Options>(*this, computationOptions);
803 }

◆ lazyProduct() [1/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product<Derived, OtherDerived, LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const
Returns
an expression of the matrix product of *this and other without implicit evaluation.

The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.

Warning
This version of the matrix product can be much much slower. So use it only if you know what you are doing and that you measured a true speed improvement.
See also
operator*(const MatrixBase&)
497  {
498  enum {
499  ProductIsValid = Derived::ColsAtCompileTime == Dynamic || OtherDerived::RowsAtCompileTime == Dynamic ||
500  int(Derived::ColsAtCompileTime) == int(OtherDerived::RowsAtCompileTime),
501  AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
502  SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived, OtherDerived)
503  };
504  // note to the lost user:
505  // * for a dot product use: v1.dot(v2)
506  // * for a coeff-wise product use: v1.cwiseProduct(v2)
508  ProductIsValid || !(AreVectors && SameSizes),
509  INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
510  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
511  INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
512  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
513 
514  return Product<Derived, OtherDerived, LazyProduct>(derived(), other.derived());
515 }
#define EIGEN_PREDICATE_SAME_MATRIX_SIZE(TYPE0, TYPE1)
Definition: StaticAssert.h:66
return int(ret)+1

References Eigen::Dynamic, EIGEN_PREDICATE_SAME_MATRIX_SIZE, EIGEN_STATIC_ASSERT, and int().

◆ lazyProduct() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived, LazyProduct> Eigen::MatrixBase< Derived >::lazyProduct ( const MatrixBase< OtherDerived > &  other) const

◆ ldlt()

template<typename Derived >
const LDLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::ldlt
inline

\cholesky_module

Returns
the Cholesky decomposition with full pivoting without square root of *this
See also
SelfAdjointView::ldlt()
643  {
644  return LDLT<PlainObject>(derived());
645 }

References Eigen::SolverBase< LDLT< MatrixType_, UpLo_ > >::derived().

◆ llt()

template<typename Derived >
const LLT< typename MatrixBase< Derived >::PlainObject > Eigen::MatrixBase< Derived >::llt
inline

\cholesky_module

Returns
the LLT decomposition of *this
See also
SelfAdjointView::llt()
498  {
499  return LLT<PlainObject>(derived());
500 }

References Eigen::SolverBase< LLT< MatrixType_, UpLo_ > >::derived().

◆ lpNorm() [1/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC NumTraits<typename internal::traits<Derived>::Scalar>::Real Eigen::MatrixBase< Derived >::lpNorm ( ) const
inline
Returns
the coefficient-wise \( \ell^p \) norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this. If p is the special value Eigen::Infinity, this function returns the \( \ell^\infty \) norm, that is the maximum of the absolute values of the coefficients of *this.

In all cases, if *this is empty, then the value 0 is returned.

Note
For matrices, this function does not compute the operator-norm. That is, if *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \(\infty\)-norm matrix operator norms using partial reductions .
See also
norm()
224  {
226 }
static EIGEN_DEVICE_FUNC RealScalar run(const MatrixBase< Derived > &m)
Definition: Dot.h:169

References Eigen::internal::lpNorm_selector< Derived, p >::run().

◆ lpNorm() [2/2]

template<typename Derived >
template<int p>
EIGEN_DEVICE_FUNC RealScalar Eigen::MatrixBase< Derived >::lpNorm ( ) const

◆ lu() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const PartialPivLU<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::lu ( ) const
inline

◆ lu() [2/2]

template<typename Derived >
template<typename PermutationIndex >
const PartialPivLU<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::lu ( ) const
inline

\lu_module

Synonym of partialPivLu().

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU
569  {
570  return PartialPivLU<PlainObject, PermutationIndex>(eval());
571 }

References eval().

◆ makeHouseholder()

template<typename Derived >
template<typename EssentialPart >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholder ( EssentialPart &  essential,
Scalar tau,
RealScalar beta 
) const

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)

On output:

Parameters
essentialthe essential part of the vector v
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholderInPlace(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()
66  {
67  using numext::conj;
68  using numext::sqrt;
69 
70  EIGEN_STATIC_ASSERT_VECTOR_ONLY(EssentialPart)
71  VectorBlock<const Derived, EssentialPart::SizeAtCompileTime> tail(derived(), 1, size() - 1);
72 
73  RealScalar tailSqNorm = size() == 1 ? RealScalar(0) : tail.squaredNorm();
74  Scalar c0 = coeff(0);
76 
77  if (tailSqNorm <= tol && numext::abs2(numext::imag(c0)) <= tol) {
78  tau = RealScalar(0);
79  beta = numext::real(c0);
80  essential.setZero();
81  } else {
82  beta = sqrt(numext::abs2(c0) + tailSqNorm);
83  if (numext::real(c0) >= RealScalar(0)) beta = -beta;
84  essential = tail / (c0 - beta);
85  tau = conj((beta - c0) / beta);
86  }
87 }
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:133
AnnoyingScalar imag(const AnnoyingScalar &)
Definition: AnnoyingScalar.h:132
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
Definition: StaticAssert.h:36
NumTraits< Scalar >::Real RealScalar
Definition: MatrixBase.h:60
float real
Definition: datatypes.h:10
#define min(a, b)
Definition: datatypes.h:22
Scalar beta
Definition: level2_cplx_impl.h:36
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sqrt(const float &x)
Definition: arch/SSE/MathFunctions.h:69
const AutoDiffScalar< DerType > & conj(const AutoDiffScalar< DerType > &x)
Definition: AutoDiffScalar.h:482

References Eigen::numext::abs2(), beta, conj(), Eigen::conj(), EIGEN_STATIC_ASSERT_VECTOR_ONLY, imag(), min, size, sqrt(), and Eigen::numext::sqrt().

◆ makeHouseholderInPlace()

template<typename Derived >
EIGEN_DEVICE_FUNC void Eigen::MatrixBase< Derived >::makeHouseholderInPlace ( Scalar tau,
RealScalar beta 
)

Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)

The essential part of the vector v is stored in *this.

On output:

Parameters
tauthe scaling factor of the Householder transformation
betathe result of H * *this
See also
MatrixBase::makeHouseholder(), MatrixBase::applyHouseholderOnTheLeft(), MatrixBase::applyHouseholderOnTheRight()
43  {
45  makeHouseholder(essentialPart, tau, beta);
46 }
EIGEN_DEVICE_FUNC void makeHouseholder(EssentialPart &essential, Scalar &tau, RealScalar &beta) const
Definition: Householder.h:65
Eigen::DenseIndex ret
Definition: level1_cplx_impl.h:43

References beta, and size.

◆ matrix() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( )
inline
315 { return *this; }

◆ matrix() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC const MatrixBase<Derived>& Eigen::MatrixBase< Derived >::matrix ( ) const
inline
316 { return *this; }

◆ matrixFunction()

template<typename Derived >
const MatrixFunctionReturnValue< Derived > Eigen::MatrixBase< Derived >::matrixFunction ( StemFunction  f) const

Helper function for the unsupported MatrixFunctions module.

508  {
509  eigen_assert(rows() == cols());
510  return MatrixFunctionReturnValue<Derived>(derived(), f);
511 }
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237

References cols, eigen_assert, f(), and rows.

◆ noalias()

template<typename Derived >
NoAlias< Derived, MatrixBase > EIGEN_DEVICE_FUNC Eigen::MatrixBase< Derived >::noalias
Returns
a pseudo expression of *this with an operator= assuming no aliasing between *this and the source expression.

More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.

Here are some examples where noalias is useful:

D.noalias() = A * B;
D.noalias() += A.transpose() * B;
D.noalias() -= 2 * A * B.adjoint();
dominoes D
Definition: Domino.cpp:55

On the other hand the following example will lead to a wrong result:

A.noalias() = A * B;

because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:

A = A * B;
See also
class NoAlias
96  {
97  return NoAlias<Derived, Eigen::MatrixBase>(derived());
98 }

◆ norm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::norm
Returns
, for vectors, the l2 norm of *this, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this with itself.
See also
lpNorm(), dot(), squaredNorm()
78  {
79  return numext::sqrt(squaredNorm());
80 }

References Eigen::numext::sqrt().

◆ normalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::normalize

Normalizes the vector, i.e. divides it by its own norm.

\only_for_vectors

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
norm(), normalized()
113  {
114  RealScalar z = squaredNorm();
115  // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
116  if (z > RealScalar(0)) derived() /= numext::sqrt(z);
117 }

References Eigen::numext::sqrt().

◆ normalized()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::normalized
Returns
an expression of the quotient of *this by its own norm.
Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.

\only_for_vectors

See also
norm(), normalize()
93  {
94  typedef typename internal::nested_eval<Derived, 2>::type Nested_;
95  Nested_ n(derived());
96  RealScalar z = n.squaredNorm();
97  // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU
98  if (z > RealScalar(0))
99  return n / numext::sqrt(z);
100  else
101  return n;
102 }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11

References n, and Eigen::numext::sqrt().

◆ operator!=()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator!= ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator==
291  {
292  return !(*this == other);
293  }

◆ operator*() [1/4]

template<typename Derived >
template<typename DiagonalDerived >
EIGEN_DEVICE_FUNC const Product< Derived, DiagonalDerived, LazyProduct > Eigen::MatrixBase< Derived >::operator* ( const DiagonalBase< DiagonalDerived > &  a_diagonal) const
inline
Returns
the diagonal matrix product of *this by the diagonal matrix diagonal.
24  {
25  return Product<Derived, DiagonalDerived, LazyProduct>(derived(), a_diagonal.derived());
26 }

References Eigen::DiagonalBase< Derived >::derived().

◆ operator*() [2/4]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Product<Derived, OtherDerived> Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const
Returns
the matrix product of *this and other.
Note
If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
See also
lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
456  {
457  // A note regarding the function declaration: In MSVC, this function will sometimes
458  // not be inlined since DenseStorage is an unwindable object for dynamic
459  // matrices and product types are holding a member to store the result.
460  // Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
461  enum {
462  ProductIsValid = Derived::ColsAtCompileTime == Dynamic || OtherDerived::RowsAtCompileTime == Dynamic ||
463  int(Derived::ColsAtCompileTime) == int(OtherDerived::RowsAtCompileTime),
464  AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
465  SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived, OtherDerived)
466  };
467  // note to the lost user:
468  // * for a dot product use: v1.dot(v2)
469  // * for a coeff-wise product use: v1.cwiseProduct(v2)
471  ProductIsValid || !(AreVectors && SameSizes),
472  INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
473  EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
474  INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
475  EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
476 #ifdef EIGEN_DEBUG_PRODUCT
477  internal::product_type<Derived, OtherDerived>::debug();
478 #endif
479 
480  return Product<Derived, OtherDerived>(derived(), other.derived());
481 }

References Eigen::Dynamic, EIGEN_PREDICATE_SAME_MATRIX_SIZE, EIGEN_STATIC_ASSERT, and int().

◆ operator*() [3/4]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC const Product<Derived, OtherDerived> Eigen::MatrixBase< Derived >::operator* ( const MatrixBase< OtherDerived > &  other) const

◆ operator*() [4/4]

template<typename Derived >
template<typename SkewDerived >
EIGEN_DEVICE_FUNC const Product< Derived, SkewDerived, LazyProduct > Eigen::MatrixBase< Derived >::operator* ( const SkewSymmetricBase< SkewDerived > &  skew) const
inline
Returns
the matrix product of *this by the skew symmetric matrix \skew.
329  {
330  return Product<Derived, SkewDerived, LazyProduct>(derived(), skew.derived());
331 }

References Eigen::SkewSymmetricBase< Derived >::derived().

◆ operator*=()

template<typename Derived >
template<typename OtherDerived >
Derived & Eigen::MatrixBase< Derived >::operator*= ( const EigenBase< OtherDerived > &  other)
inline

replaces *this by *this * other.

Returns
a reference to *this

Example:

Matrix3f A = Matrix3f::Random(3, 3), B;
B << 0, 1, 0, 0, 0, 1, 1, 0, 0;
cout << "At start, A = " << endl << A << endl;
A *= B;
cout << "After A *= B, A = " << endl << A << endl;
A.applyOnTheRight(B); // equivalent to A *= B
cout << "After applyOnTheRight, A = " << endl << A << endl;

Output:

 
509  : \verbinclude MatrixBase_applyOnTheRight.out
510  */
511 template <typename Derived>
512 template <typename OtherDerived>

◆ operator+=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator+= ( const ArrayBase< OtherDerived > &  )
inlineprotected
483  :
484  // mixing arrays and matrices is not legal
485  template <typename OtherDerived>
486  Derived& operator+=(const ArrayBase<OtherDerived>&) {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & operator+=(const MatrixBase< OtherDerived > &other)
Definition: CwiseBinaryOp.h:159

References EIGEN_STATIC_ASSERT.

◆ operator+=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator+= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this + other.

Returns
a reference to *this
159  {
160  call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar, typename OtherDerived::Scalar>());
161  return derived();
162 }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void call_assignment(Dst &dst, const Src &src)
Definition: AssignEvaluator.h:781

References Eigen::internal::call_assignment().

◆ operator-=() [1/2]

template<typename Derived >
template<typename OtherDerived >
Derived& Eigen::MatrixBase< Derived >::operator-= ( const ArrayBase< OtherDerived > &  )
inlineprotected
493  {

◆ operator-=() [2/2]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator-= ( const MatrixBase< OtherDerived > &  other)

replaces *this by *this - other.

Returns
a reference to *this
148  {
149  call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar, typename OtherDerived::Scalar>());
150  return derived();
151 }

References Eigen::internal::call_assignment().

◆ operator=() [1/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const DenseBase< OtherDerived > &  other)
58  {
59  internal::call_assignment(derived(), other.derived());
60  return derived();
61 }

References Eigen::internal::call_assignment().

◆ operator=() [2/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)
65  {
66  internal::call_assignment(derived(), other.derived());
67  return derived();
68 }

References Eigen::internal::call_assignment(), and Eigen::EigenBase< Derived >::derived().

◆ operator=() [3/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= ( const EigenBase< OtherDerived > &  other)

◆ operator=() [4/6]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::operator= ( const MatrixBase< Derived > &  other)

Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)

51  {
52  internal::call_assignment(derived(), other.derived());
53  return derived();
54 }

References Eigen::internal::call_assignment().

◆ operator=() [5/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)
73  {
74  other.derived().evalTo(derived());
75  return derived();
76 }

◆ operator=() [6/6]

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC Derived& Eigen::MatrixBase< Derived >::operator= ( const ReturnByValue< OtherDerived > &  other)

◆ operator==()

template<typename Derived >
template<typename OtherDerived >
EIGEN_DEVICE_FUNC bool Eigen::MatrixBase< Derived >::operator== ( const MatrixBase< OtherDerived > &  other) const
inline
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See also
isApprox(), operator!=
282  {
283  return (this->rows() == other.rows()) && (this->cols() == other.cols()) && cwiseEqual(other).all();
284  }

References cols, and rows.

◆ operatorNorm()

template<typename Derived >
MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::operatorNorm
inline

Computes the L2 operator norm.

Returns
Operator norm of the matrix.

\eigenvalues_module This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix \( A \) is defined to be

\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]

where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix \( A^*A \).

The current implementation uses the eigenvalues of \( A^*A \), as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.

Example:

MatrixXd ones = MatrixXd::Ones(3, 3);
cout << "The operator norm of the 3x3 matrix of ones is " << ones.operatorNorm() << endl;

Output:

See also
SelfAdjointView::eigenvalues(), SelfAdjointView::operatorNorm()
111  {
112  using std::sqrt;
113  typename Derived::PlainObject m_eval(derived());
114  // FIXME if it is really guaranteed that the eigenvalues are already sorted,
115  // then we don't need to compute a maxCoeff() here, comparing the 1st and last ones is enough.
116  return sqrt((m_eval * m_eval.adjoint()).eval().template selfadjointView<Lower>().eigenvalues().maxCoeff());
117 }

References sqrt().

◆ partialPivLu() [1/2]

template<typename Derived >
template<typename PermutationIndex = DefaultPermutationIndex>
const PartialPivLU<PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::partialPivLu ( ) const
inline

◆ partialPivLu() [2/2]

template<typename Derived >
template<typename PermutationIndex >
const PartialPivLU<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::partialPivLu ( ) const
inline

\lu_module

Returns
the partial-pivoting LU decomposition of *this.
See also
class PartialPivLU
555  {
556  return PartialPivLU<PlainObject, PermutationIndex>(eval());
557 }

References eval().

◆ selfadjointView() [1/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( )

◆ selfadjointView() [2/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( )
Returns
an expression of a symmetric/self-adjoint view extracted from the upper or lower triangular part of the current matrix

The parameter UpLo can be either Upper or Lower

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the symmetric matrix extracted from the upper part of m:" << endl
<< Matrix3i(m.selfadjointView<Upper>()) << endl;
cout << "Here is the symmetric matrix extracted from the lower part of m:" << endl
<< Matrix3i(m.selfadjointView<Lower>()) << endl;
@ Lower
Definition: Constants.h:211
@ Upper
Definition: Constants.h:213

Output:

See also
class SelfAdjointView
323  {
324  return typename SelfAdjointViewReturnType<UpLo>::Type(derived());
325 }
SelfAdjointView< Derived, UpLo > Type
Definition: MatrixBase.h:231

◆ selfadjointView() [3/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

◆ selfadjointView() [4/4]

template<typename Derived >
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView ( ) const

This is the const version of MatrixBase::selfadjointView()

306  {
307  return typename ConstSelfAdjointViewReturnType<UpLo>::Type(derived());
308 }
const SelfAdjointView< const Derived, UpLo > Type
Definition: MatrixBase.h:235

◆ setIdentity() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity

Writes the identity expression (not necessarily square) into *this.

Example:

Matrix4i m = Matrix4i::Zero();
m.block<3, 3>(1, 0).setIdentity();
cout << m << endl;
EIGEN_DEVICE_FUNC Derived & setIdentity()
Definition: CwiseNullaryOp.h:845
double Zero
Definition: pseudosolid_node_update_elements.cc:35

Output:

See also
class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
845  {
847 }
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & run(Derived &m)
Definition: CwiseNullaryOp.h:820

References Eigen::internal::setIdentity_impl< Derived, Big >::run().

◆ setIdentity() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setIdentity ( Index  rows,
Index  cols 
)

Resizes to the given size, and writes the identity expression (not necessarily square) into *this.

Parameters
rowsthe new number of rows
colsthe new number of columns

Example:

MatrixXf m;
m.setIdentity(3, 3);
cout << m << endl;

Output:

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
860  {
861  derived().resize(rows, cols);
862  return setIdentity();
863 }

References cols, rows, and setIdentity().

◆ setUnit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  i)

Set the coefficients of *this to the i-th unit (basis) vector.

Parameters
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)
950  {
952  eigen_assert(i < size());
953  derived().setZero();
954  derived().coeffRef(i) = Scalar(1);
955  return derived();
956 }

References eigen_assert, EIGEN_STATIC_ASSERT_VECTOR_ONLY, i, and size.

◆ setUnit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived & Eigen::MatrixBase< Derived >::setUnit ( Index  newSize,
Index  i 
)

Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.

Parameters
newSizethe new size of the vector
iindex of the unique coefficient to be set to 1

\only_for_vectors

See also
MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Unit(Index,Index)
968  {
970  eigen_assert(i < newSize);
971  derived().resize(newSize);
972  return setUnit(i);
973 }
EIGEN_DEVICE_FUNC Derived & setUnit(Index i)
Set the coefficients of *this to the i-th unit (basis) vector.
Definition: CwiseNullaryOp.h:950

References eigen_assert, EIGEN_STATIC_ASSERT_VECTOR_ONLY, and i.

◆ squaredNorm()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::squaredNorm
Returns
, for vectors, the squared l2 norm of *this, and for matrices the squared Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this with itself.
See also
dot(), norm(), lpNorm()
66  {
68 }
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Real run(const Derived &a)
Definition: Dot.h:23

References Eigen::internal::squared_norm_impl< Derived, Scalar >::run().

◆ stableNorm()

template<typename Derived >
NumTraits< typename internal::traits< Derived >::Scalar >::Real Eigen::MatrixBase< Derived >::stableNorm
inline
Returns
the l2 norm of *this avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s 2 - compute \( s \Vert \frac{*this}{s} \Vert \) in a standard way

For architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.

See also
norm(), blueNorm(), hypotNorm()
184  {
185  return internal::stable_norm_impl(derived());
186 }
VectorType::RealScalar stable_norm_impl(const VectorType &vec, std::enable_if_t< VectorType::IsVectorAtCompileTime > *=0)
Definition: StableNorm.h:64

References Eigen::internal::stable_norm_impl().

◆ stableNormalize()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void Eigen::MatrixBase< Derived >::stableNormalize

Normalizes the vector while avoid underflow and overflow

\only_for_vectors

This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then *this is left unchanged.
See also
stableNorm(), stableNormalized(), normalize()
156  {
157  RealScalar w = cwiseAbs().maxCoeff();
158  RealScalar z = (derived() / w).squaredNorm();
159  if (z > RealScalar(0)) derived() /= numext::sqrt(z) * w;
160 }

References Eigen::numext::sqrt(), and w.

◆ stableNormalized()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::PlainObject Eigen::MatrixBase< Derived >::stableNormalized
Returns
an expression of the quotient of *this by its own norm while avoiding underflow and overflow.

\only_for_vectors

This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.

Warning
If the input vector is too small (i.e., this->norm()==0), then this function returns a copy of the input.
See also
stableNorm(), stableNormalize(), normalized()
133  {
134  typedef typename internal::nested_eval<Derived, 3>::type Nested_;
135  Nested_ n(derived());
136  RealScalar w = n.cwiseAbs().maxCoeff();
137  RealScalar z = (n / w).squaredNorm();
138  if (z > RealScalar(0))
139  return n / (numext::sqrt(z) * w);
140  else
141  return n;
142 }

References n, Eigen::numext::sqrt(), and w.

◆ trace()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE internal::traits< Derived >::Scalar Eigen::MatrixBase< Derived >::trace
Returns
the trace of *this, i.e. the sum of the coefficients on the main diagonal.

*this can be any matrix, not necessarily square.

See also
diagonal(), sum()
522  {
523  return derived().diagonal().sum();
524 }

◆ triangularView() [1/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( )

◆ triangularView() [2/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( )
Returns
an expression of a triangular view extracted from the current matrix

The parameter Mode can have the following values: Upper, StrictlyUpper, UnitUpper, Lower, StrictlyLower, UnitLower.

Example:

Matrix3i m = Matrix3i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the upper-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::Upper>()) << endl;
cout << "Here is the strictly-upper-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::StrictlyUpper>()) << endl;
cout << "Here is the unit-lower-triangular matrix extracted from m:" << endl
<< Matrix3i(m.triangularView<Eigen::UnitLower>()) << endl;
// FIXME need to implement output for triangularViews (Bug 885)
@ StrictlyUpper
Definition: Constants.h:225
@ UnitLower
Definition: Constants.h:219

Output:

See also
class TriangularView
567  {
568  return typename TriangularViewReturnType<Mode>::Type(derived());
569 }
TriangularView< Derived, Mode > Type
Definition: MatrixBase.h:217

◆ triangularView() [3/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

◆ triangularView() [4/4]

template<typename Derived >
template<unsigned int Mode>
EIGEN_DEVICE_FUNC MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView ( ) const

This is the const version of MatrixBase::triangularView()

575  {
576  return typename ConstTriangularViewReturnType<Mode>::Type(derived());
577 }
const TriangularView< const Derived, Mode > Type
Definition: MatrixBase.h:221

◆ Unit() [1/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  i)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

This variant is for fixed-size vector only.

See also
MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
888  {
890  return BasisReturnType(SquareMatrixType::Identity(), i);
891 }
Block< const CwiseNullaryOp< internal::scalar_identity_op< Scalar >, SquareMatrixType >, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime > BasisReturnType
Definition: MatrixBase.h:122

References EIGEN_STATIC_ASSERT_VECTOR_ONLY, and i.

◆ Unit() [2/2]

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::Unit ( Index  newSize,
Index  i 
)
static
Returns
an expression of the i-th unit (basis) vector.

\only_for_vectors

See also
MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
873  {
875  return BasisReturnType(SquareMatrixType::Identity(newSize, newSize), i);
876 }

References EIGEN_STATIC_ASSERT_VECTOR_ONLY, and i.

◆ UnitW()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitW
static
Returns
an expression of the W axis unit vector (0,0,0,1)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
937  {
938  return Derived::Unit(3);
939 }

◆ UnitX()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitX
static
Returns
an expression of the X axis unit vector (1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
901  {
902  return Derived::Unit(0);
903 }

◆ UnitY()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitY
static
Returns
an expression of the Y axis unit vector (0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
913  {
914  return Derived::Unit(1);
915 }

◆ UnitZ()

template<typename Derived >
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const MatrixBase< Derived >::BasisReturnType Eigen::MatrixBase< Derived >::UnitZ
static
Returns
an expression of the Z axis unit vector (0,0,1{,0}^*)

\only_for_vectors

See also
MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
925  {
926  return Derived::Unit(2);
927 }

The documentation for this class was generated from the following files: