RotatingProblem< ELEMENT > Class Template Reference
+ Inheritance diagram for RotatingProblem< ELEMENT >:

Public Member Functions

 RotatingProblem (const unsigned &Nr1, const unsigned &Nr2, const unsigned &Nz1, const unsigned &Nz2)
 
void set_boundary_conditions ()
 Set boundary conditions on the walls. More...
 
void solve_system ()
 Function that is used to run the parameter study. More...
 
CylinderMesh< ELEMENT > * mesh_pt ()
 Return a pointer to the specific mesh used. More...
 
void actions_after_newton_solve ()
 No actions to be taken after each solve step. More...
 
void actions_before_newton_solve ()
 No actions to be taken before each solve step. More...
 
 RotatingProblem (const unsigned &Nr1, const unsigned &Nr2, const unsigned &Nz1, const unsigned &Nz2)
 
void set_boundary_conditions ()
 
void solve_system ()
 
void finish_problem_setup ()
 
CylinderMesh< ELEMENT > * mesh_pt ()
 
void actions_after_newton_solve ()
 
void actions_before_newton_solve ()
 
void actions_after_change_in_bifurcation_parameter ()
 
void actions_before_newton_convergence_check ()
 
void change_length ()
 
 RotatingProblem (const unsigned &Nr1, const unsigned &Nr2, const unsigned &Nz1, const unsigned &Nz2)
 
void set_boundary_conditions ()
 
void solve_system ()
 
void finish_problem_setup ()
 
CylinderMesh< ELEMENT > * mesh_pt ()
 
void actions_after_newton_solve ()
 
void actions_before_newton_solve ()
 
void actions_after_change_in_bifurcation_parameter ()
 
void actions_before_newton_convergence_check ()
 
void change_length ()
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Attributes

double Re
 The Reynolds number will be private member data. More...
 
double Length
 
unsigned Central_node
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class RotatingProblem< ELEMENT >

Solve the Axisymmetric Navier Stokes equations for a cylinder with counter-rotating ends and aspect ratio 2.

Constructor & Destructor Documentation

◆ RotatingProblem() [1/3]

template<class ELEMENT >
RotatingProblem< ELEMENT >::RotatingProblem ( const unsigned Nr1,
const unsigned Nr2,
const unsigned Nz1,
const unsigned Nz2 
)

Constructor: Nr: Number of elements in the r (radial) direction Nz: Number of elements in the z (axial) direction

Constructor: Nr1: Number of elements in the left region in r (radial) direction Nr2: Number of elements in the right region in r (radial) direction Nz1: Number of elements in the lower region in z (axial) direction Nz2: Number of elements in the upper region in z (axial) direction

210  :
211  Re(0.0) //Initialise value of Re to zero
212 {
213  //Now create the mesh, a generic square mesh, the boundaries of the mesh
214  //are labelled 0 to 3 starting from the "bottom" and proceeding in an
215  //anti-clockwise direction. The parameters of the constructor are passed
216  //directly to the mesh constructor, and the width of the channel is
217  //always 1.0. The mesh is defined in stdmesh.h
218  Problem::mesh_pt() = new CylinderMesh<ELEMENT>(Nr1,Nr2,Nz1,Nz2,1);
219 
220  //Loop over all the (fluid) elements
221  unsigned n_element = mesh_pt()->nelement();
222  for(unsigned e=0;e<n_element;e++)
223  {
224  //Cast to the particular element type, this is necessary because
225  //the base elements don't have the member functions that we're about
226  //to call!
227  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
228 
229  //There is no need for ALE
230  el_pt->disable_ALE();
231 
232  //Set the Reynolds number for each element
233  //(yes we could have different Reynolds number in each element!!)
234  el_pt->re_pt() = &Re;
235  }
236 
237  //Let this problem be conventional form by setting gamma to zero
238  ELEMENT::Gamma[0] = 0.0; //r-momentum
239  ELEMENT::Gamma[1] = 0.0; //z-momentum
240 
241  //Set the boundary conditions
242  //Loop over all four boundaries
243  for(unsigned i=0;i<4;i++)
244  {
245  //Find the number of nodes on the boundary
246  unsigned Nboundary_node = mesh_pt()->nboundary_node(i);
247  //Loop over the nodes on the boundary
248  for(unsigned n=0;n<Nboundary_node;n++)
249  {
250  //Pin the u (radial) velocity on all cylinder boundaries
251  mesh_pt()->boundary_node_pt(i,n)->pin(0);
252  //Pin the v velocity on all cylinder boundaries
253  mesh_pt()->boundary_node_pt(i,n)->pin(2);
254  //If not on the axis, pin the w-velocity
255  if(i!=3) {mesh_pt()->boundary_node_pt(i,n)->pin(1);}
256  }
257  }
258 
259  //Pin a single pressure value
260  dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(0))->fix_pressure(0,0.0);
261 
262  //Setup all the equation numbering and look-up schemes
263  cout << assign_eqn_numbers() << std::endl;
264 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Definition: rotating_ends.cc:57
CylinderMesh< ELEMENT > * mesh_pt()
Return a pointer to the specific mesh used.
Definition: rotating_ends.cc:190
double Re
The Reynolds number will be private member data.
Definition: rotating_ends.cc:174
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
double Gamma
Aspect ratio (cylinder height / cylinder radius)
Definition: axisym_navier_stokes/counter_rotating_disks/counter_rotating_disks.cc:70

References oomph::Problem::assign_eqn_numbers(), e(), GlobalPhysicalVariables::Gamma, i, RotatingProblem< ELEMENT >::mesh_pt(), n, and RotatingProblem< ELEMENT >::Re.

◆ RotatingProblem() [2/3]

template<class ELEMENT >
RotatingProblem< ELEMENT >::RotatingProblem ( const unsigned Nr1,
const unsigned Nr2,
const unsigned Nz1,
const unsigned Nz2 
)

◆ RotatingProblem() [3/3]

template<class ELEMENT >
RotatingProblem< ELEMENT >::RotatingProblem ( const unsigned Nr1,
const unsigned Nr2,
const unsigned Nz1,
const unsigned Nz2 
)

Member Function Documentation

◆ actions_after_change_in_bifurcation_parameter() [1/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_after_change_in_bifurcation_parameter ( )
inlinevirtual

Actions that are to be performed after a change in the parameter that is being varied as part of the solution of a bifurcation detection problem. The default is to call actions_before_newton_solve(), actions_before_newton_convergence_check() and actions_after_newton_solve(). This could be amazingly inefficient in certain problems and should be overloaded in such cases. An example would be when a remesh is required in general, but the global parameter does not affect the mesh directly.

Reimplemented from oomph::Problem.

266 {}

◆ actions_after_change_in_bifurcation_parameter() [2/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_after_change_in_bifurcation_parameter ( )
inlinevirtual

Actions that are to be performed after a change in the parameter that is being varied as part of the solution of a bifurcation detection problem. The default is to call actions_before_newton_solve(), actions_before_newton_convergence_check() and actions_after_newton_solve(). This could be amazingly inefficient in certain problems and should be overloaded in such cases. An example would be when a remesh is required in general, but the global parameter does not affect the mesh directly.

Reimplemented from oomph::Problem.

273 {}

◆ actions_after_newton_solve() [1/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

No actions to be taken after each solve step.

Reimplemented from oomph::Problem.

194 {}

◆ actions_after_newton_solve() [2/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Any actions that are to be performed after a complete Newton solve, e.g. post processing. CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

260 {}

◆ actions_after_newton_solve() [3/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Any actions that are to be performed after a complete Newton solve, e.g. post processing. CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

267 {}

◆ actions_before_newton_convergence_check() [1/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_before_newton_convergence_check ( )
inlinevirtual

Any actions that are to be performed before the residual is checked in the Newton method, e.g. update any boundary conditions that depend upon variables of the problem; update any ‘dependent’ variables; or perform an update of the nodal positions in SpineMeshes etc. CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

void change_length()
Definition: bifurcation_tracking/track_pitch.cc:273
void set_boundary_conditions()
Set boundary conditions on the walls.
Definition: rotating_ends.cc:270

◆ actions_before_newton_convergence_check() [2/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_before_newton_convergence_check ( )
inlinevirtual

Any actions that are to be performed before the residual is checked in the Newton method, e.g. update any boundary conditions that depend upon variables of the problem; update any ‘dependent’ variables; or perform an update of the nodal positions in SpineMeshes etc. CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

278 #ifdef OOMPH_HAS_MPI
279  this->synchronise_all_dofs();
280 #endif
281  }

◆ actions_before_newton_solve() [1/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

No actions to be taken before each solve step.

Reimplemented from oomph::Problem.

197 {}

◆ actions_before_newton_solve() [2/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Any actions that are to be performed before a complete Newton solve (e.g. adjust boundary conditions). CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

263 {} //{change_length(); set_boundary_conditions();}

◆ actions_before_newton_solve() [3/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Any actions that are to be performed before a complete Newton solve (e.g. adjust boundary conditions). CAREFUL: This step should (and if the FD-based LinearSolver FD_LU is used, must) only update values that are pinned!

Reimplemented from oomph::Problem.

270 {} //{change_length(); set_boundary_conditions();}

◆ change_length() [1/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::change_length ( )
inline
274  {
275  double ratio = mesh_pt()->rescale_length(Length);
276  //If the ratio is actually bigger than 1.0
277  //if(std::abs(ratio - 1.0) > 1.0e-5)
278  {
279  //rescale the velocities
280  unsigned long n_node = mesh_pt()->nnode();
281  for(unsigned n=0;n<n_node;++n)
282  {
283  //If the node is not pinned then rescale
284  for(unsigned i=0;i<3;i+=2)
285  {
286  if(!mesh_pt()->node_pt(n)->is_pinned(i))
287  {
288  (*mesh_pt()->node_pt(n)->value_pt(i)) *= ratio;
289  }
290  }
291  }
292  }
293  }
double Length
Definition: bifurcation_tracking/track_pitch.cc:232

References i, Global_Physical_Variables::Length, and n.

◆ change_length() [2/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::change_length ( )
inline
285  {
286  double ratio = mesh_pt()->rescale_length(Length);
287  //If the ratio is actually bigger than 1.0
288  //if(std::abs(ratio - 1.0) > 1.0e-5)
289  {
290  //rescale the velocities
291  unsigned long n_node = mesh_pt()->nnode();
292  for(unsigned n=0;n<n_node;++n)
293  {
294  //If the node is not pinned then rescale
295  for(unsigned i=0;i<3;i+=2)
296  {
297  if(!mesh_pt()->node_pt(n)->is_pinned(i))
298  {
299  (*mesh_pt()->node_pt(n)->value_pt(i)) *= ratio;
300  }
301  }
302  }
303  }
304  }

References i, Global_Physical_Variables::Length, and n.

◆ finish_problem_setup() [1/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::finish_problem_setup
444 {
445  //Loop over all the (fluid) elements
446  unsigned long Nfluid = mesh_pt()->nelement();
447  for(unsigned long e=0;e<Nfluid;e++)
448  {
449  //Cast to the particular element type, this is necessary because
450  //the base elements don't have the member functions that we're about
451  //to call!
452  ELEMENT *temp_pt = dynamic_cast<ELEMENT*>(mesh_pt()->element_pt(e));
453 
454  //Set the Reynolds number for each element
455  //(yes we could have different Reynolds number in each element!!)
456  temp_pt->re_pt() = &Re;
457  //Need to have non-zero timescale
458  temp_pt->re_st_pt() = &Re;
459  //The mesh is NOT moving
460  temp_pt->disable_ALE();
461 
462  }
463 }

References e(), and GlobalPhysicalVariables::Re.

◆ finish_problem_setup() [2/2]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::finish_problem_setup ( )

◆ mesh_pt() [1/3]

template<class ELEMENT >
CylinderMesh<ELEMENT>* RotatingProblem< ELEMENT >::mesh_pt ( )
inline

Return a pointer to the specific mesh used.

191  {return dynamic_cast<CylinderMesh<ELEMENT>*>(Problem::mesh_pt());}

Referenced by RotatingProblem< ELEMENT >::RotatingProblem().

◆ mesh_pt() [2/3]

template<class ELEMENT >
CylinderMesh<ELEMENT>* RotatingProblem< ELEMENT >::mesh_pt ( )
inline
255  {return dynamic_cast<CylinderMesh<ELEMENT>*>(Problem::mesh_pt());}

◆ mesh_pt() [3/3]

template<class ELEMENT >
CylinderMesh<ELEMENT>* RotatingProblem< ELEMENT >::mesh_pt ( )
inline
262  {return dynamic_cast<CylinderMesh<ELEMENT>*>(Problem::mesh_pt());}

◆ set_boundary_conditions() [1/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::set_boundary_conditions

Set boundary conditions on the walls.

Set the boundary conditions.

271 {
272  //NOTE: The default value of all parameters is zero, so we need only
273  //set the values that are non-zero on the boundaries, i.e. the swirl
274 
275  //Top boundary
276  {
277  unsigned i=2;
278  //Find the number of nodes on the boundary
279  unsigned Nboundary_node = mesh_pt()->nboundary_node(i);
280  //Loop over the nodes on the boundary
281  for(unsigned n=0;n<Nboundary_node;n++)
282  {
283  //Get the radial values
284  double r = mesh_pt()->boundary_node_pt(i,n)->x(0);
285  //Set the value of the v-velocity (negative rotation)
286  mesh_pt()->boundary_node_pt(i,n)->set_value(2,-1.0*r);
287  }
288  }
289 
290  //Bottom boundary
291  {
292  unsigned i=0;
293  //Find the number of nodes on the boundary
294  unsigned Nboundary_node = mesh_pt()->nboundary_node(i);
295  //Loop over the nodes on the boundary
296  for(unsigned n=0;n<Nboundary_node;n++)
297  {
298  //Get the radial values
299  double r = mesh_pt()->boundary_node_pt(i,n)->x(0);
300  //Set the value of the v-velocity (positive rotation)
301  mesh_pt()->boundary_node_pt(i,n)->set_value(2,1.0*r);
302  }
303  }
304 }
r
Definition: UniformPSDSelfTest.py:20

References i, n, and UniformPSDSelfTest::r.

◆ set_boundary_conditions() [2/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::set_boundary_conditions ( )

◆ set_boundary_conditions() [3/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::set_boundary_conditions ( )

◆ solve_system() [1/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::solve_system

Function that is used to run the parameter study.

Solve the system for a number of different values of the Reynolds number.

311 {
312  //Define a string that we can set to be the name of the output file
313  char filename[100];
314 
315  //Set the boundary conditions (only need to do this once)
316  //If the boundary conditions depend up on time, or Re, we need to
317  //reset them every time something changes. This is most easily
318  //achieved using the actions_before_newton_solve() {} function.
320 
321  //Solve the problem (function defined in Problem class)
322  //The default tolerance is that the maximum residual must be less that 1.0e-8
324 
325  //Output first solution
326  ofstream file("Re0.dat");
327  mesh_pt()->output(file,5);
328  file.close();
329 
330  //Increase the Reynolds number in steps of 25
331  for(unsigned i=1;i<3;i++)
332  {
333  Re += 25.0;
334  //Solve the problem
336 
337  //Output data at each step
338  //Create the filename, including the array index
339  sprintf(filename,"Re%g.dat",Re);
340  //Actually, write the data
341  file.open(filename);
342  mesh_pt()->output(file,5);
343  file.close();
344  }
345 }
void steady_newton_solve(unsigned const &max_adapt=0)
Definition: problem.cc:9292
string filename
Definition: MergeRestartFiles.py:39

References MergeRestartFiles::filename, i, and GlobalPhysicalVariables::Re.

◆ solve_system() [2/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::solve_system ( )

◆ solve_system() [3/3]

template<class ELEMENT >
void RotatingProblem< ELEMENT >::solve_system ( )

Member Data Documentation

◆ Central_node

template<class ELEMENT >
unsigned RotatingProblem< ELEMENT >::Central_node
private

◆ Length

template<class ELEMENT >
double RotatingProblem< ELEMENT >::Length
private

◆ Re

template<class ELEMENT >
double RotatingProblem< ELEMENT >::Re
private

The Reynolds number will be private member data.

Referenced by RotatingProblem< ELEMENT >::RotatingProblem().


The documentation for this class was generated from the following files: