SinterInteraction Class Reference

Computes normal forces in case of a linear plastic visco-elastic interaction. More...

#include <SinterInteraction.h>

+ Inheritance diagram for SinterInteraction:

Public Types

typedef SinterNormalSpecies SpeciesType
 An alias for the corresponding species. More...
 

Public Member Functions

 SinterInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 Constructor. More...
 
 SinterInteraction (const SinterInteraction &p)
 Copy constructor. More...
 
 SinterInteraction ()
 
 ~SinterInteraction () override
 Destructor. More...
 
void computeNormalForce ()
 Creates a copy of an object of this class. (Deep copy) More...
 
void read (std::istream &is) override
 Interaction read function, which accepts an std::istream as input. More...
 
void write (std::ostream &os) const override
 Interaction write function, which accepts an std::ostream as input. More...
 
virtual std::string getBaseName () const
 Returns the name of the interaction. More...
 
Mdouble getElasticEnergy () const override
 Computes and returns the amount of elastic energy stored in the spring. More...
 
const SinterNormalSpeciesgetSpecies () const
 
Mdouble getPlasticOverlap () const
 
void setPlasticOverlap (Mdouble plasticOverlap)
 
Mdouble getUnloadingStiffness () const
 
unsigned getNumberOfFieldsVTK () const override
 
std::string getTypeVTK (unsigned i) const override
 
std::string getNameVTK (unsigned i) const override
 
std::vector< MdoublegetFieldVTK (unsigned i) const override
 
- Public Member Functions inherited from BaseInteraction
 BaseInteraction (BaseInteractable *P, BaseInteractable *I, unsigned timeStamp)
 A constructor takes the BaseInteractable objects which are interacting (come into contact) and time the interaction starts. More...
 
 BaseInteraction ()
 
 BaseInteraction (const BaseInteraction &p)
 Copy constructor. More...
 
 ~BaseInteraction () override
 The destructor. It removes this interactions from the objects that were interacting, and writes the time to a file when needed. More...
 
virtual void actionsOnErase ()
 If an interaction needs to do something before it gets erased, add it here. E.g. Liquid bridges rupture at the end of their lifetime, and the liquid bridge volume has to be redistributed. The reason this action is not done in the destructor is that this action should not be taken when erasing ghost interactions. More...
 
virtual void computeForce ()
 Virtual function that contains the force law between the two objects interacting. More...
 
void writeToFStat (std::ostream &os, Mdouble time) const
 Writes forces data to the FStat file. More...
 
std::string getName () const override
 Virtual function which allows interactions to be named. More...
 
void setDistance (Mdouble distance)
 Sets the interaction distance between the two interacting objects. More...
 
void setNormal (Vec3D normal)
 Sets the normal vector between the two interacting objects. More...
 
void setOverlap (Mdouble overlap)
 Set the overlap between the two interacting object. More...
 
void setContactPoint (Vec3D contactPoint)
 Set the location of the contact point between the two interacting objects. More...
 
void setTimeStamp (unsigned timeStamp)
 Updates the time step of the interacting. Note, time steps used to find completed interactions. More...
 
void setSpecies (const BaseSpecies *species)
 Set the Species of the interaction; note this can either be a Species or MixedSpecies. More...
 
void setP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void setI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
void importP (BaseInteractable *P)
 Sets the first object involved in the interaction (normally a particle). More...
 
void importI (BaseInteractable *I)
 Sets the second object involved in the interaction (often particle or wall). More...
 
Vec3D getIP () const
 
Vec3D getIC () const
 
Vec3D getCP () const
 
void setLagrangeMultiplier (Mdouble multiplier)
 
Mdouble getLagrangeMultiplier ()
 
void setHandler (InteractionHandler *handler)
 Sets the pointer to the interaction hander which is storing this interaction. More...
 
InteractionHandlergetHandler () const
 Gets a point to the interaction handlers to which this interaction belongs. More...
 
const Vec3DgetForce () const
 Gets the current force (vector) between the two interacting objects. More...
 
const Vec3DgetTorque () const
 Gets the current torque (vector) between the two interacting objects. More...
 
const Vec3DgetNormal () const
 Gets the normal vector between the two interacting objects. More...
 
const Vec3DgetContactPoint () const
 Gets constant reference to contact point (vector). More...
 
Mdouble getOverlap () const
 Returns a Mdouble with the current overlap between the two interacting objects. More...
 
Mdouble getOverlapVolume () const
 Returns the overlap volume between two interacting objects. More...
 
Mdouble getContactRadius () const
 Returns a Mdouble with the current contact between the two interacting objects. More...
 
void removeFromHandler ()
 Removes this interaction from its interaction hander. More...
 
void copySwitchPointer (const BaseInteractable *original, BaseInteractable *ghost) const
 This copies the interactions of the original particle and replaces the original with the ghost copy. More...
 
void gatherContactStatistics ()
 
BaseInteractablegetP ()
 Returns a pointer to first object involved in the interaction (normally a particle). More...
 
BaseInteractablegetI ()
 Returns a pointer to the second object involved in the interaction (often a wall or a particle). More...
 
const BaseInteractablegetP () const
 Returns a constant pointer to the first object involved in the interaction. More...
 
const BaseInteractablegetI () const
 Returns a constant pointer to the second object involved in the interaction. More...
 
Mdouble getTimeStamp () const
 Returns an Mdouble which is the time stamp of the interaction. More...
 
virtual void integrate (Mdouble timeStep)
 integrates variables of the interaction which need to be integrate e.g. the tangential overlap. More...
 
virtual Mdouble getTangentialOverlap () const
 get the length of the current tangential overlap More...
 
Mdouble getDistance () const
 Returns an Mdouble which is the norm (length) of distance vector. More...
 
const Vec3DgetRelativeVelocity () const
 Returns a constant reference to a vector of relative velocity. More...
 
Mdouble getNormalRelativeVelocity () const
 Returns a double which is the norm (length) of the relative velocity vector. More...
 
Mdouble getAbsoluteNormalForce () const
 Returns the absolute value of the norm (length) of the Normal force vector. More...
 
virtual BaseInteractioncopy () const =0
 Makes a copy of the interaction and returns a pointer to the copy. More...
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseWall *I)
 
void setFStatData (std::fstream &fstat, BaseParticle *P, BaseParticle *I)
 
unsigned int getMultiContactIdentifier () const
 
void setMultiContactIdentifier (unsigned int multiContactIdentifier_)
 
virtual void rotateHistory (Matrix3D &rotationMatrix)
 When periodic particles are used, some interactions need certain history properties rotated (e.g. tangential springs). This is the function for that. More...
 
virtual void actionsAfterTimeStep ()
 
void addForce (Vec3D force)
 add an force increment to the total force. More...
 
void addTorque (Vec3D torque)
 add a torque increment to the total torque. More...
 
void setForce (Vec3D force)
 set total force (this is used by the normal force, tangential forces are added use addForce) More...
 
void setTorque (Vec3D torque)
 set the total force (this is used by the normal force, tangential torques are added use addTorque) More...
 
const BaseSpeciesgetBaseSpecies () const
 Return a constant point to BaseSpecies of the interaction. More...
 
virtual void createMPIType ()
 
virtual void * createMPIInteractionDataArray (unsigned int numberOfInteractions) const
 
virtual void deleteMPIInteractionDataArray (void *dataArray)
 
virtual void getMPIInteraction (void *historyDataArray, unsigned int index) const
 copies the history interactions into the data array More...
 
virtual void getInteractionDetails (void *interactionDataArray, unsigned int index, unsigned int &identificationP, unsigned int &identificationI, bool &isWallInteraction, unsigned &timeStamp)
 
virtual void setMPIInteraction (void *interactionDataArray, unsigned int index, bool resetPointers)
 
void setBasicMPIInteractionValues (int P, int I, unsigned timeStamp, Vec3D force, Vec3D torque, bool isWallInteraction, bool resetPointers)
 
void setIdentificationP (unsigned int identification)
 
void setIdentificationI (int identification)
 
void setWallInteraction (bool flag)
 
unsigned int getIdentificationP ()
 
int getIdentificationI ()
 
bool isWallInteraction ()
 
virtual bool isBonded () const
 
- Public Member Functions inherited from BaseObject
 BaseObject ()=default
 Default constructor. More...
 
 BaseObject (const BaseObject &p)=default
 Copy constructor, copies all the objects BaseObject contains. More...
 
virtual ~BaseObject ()=default
 virtual destructor More...
 
virtual void moveInHandler (unsigned int index)
 Except that it is virtual, it does the same thing as setIndex() does. More...
 
void setIndex (unsigned int index)
 Allows one to assign an index to an object in the handler/container. More...
 
void setId (unsigned long id)
 Assigns a unique identifier to each object in the handler (container) which remains constant even after the object is deleted from the container/handler. More...
 
unsigned int getIndex () const
 Returns the index of the object in the handler. More...
 
unsigned int getId () const
 Returns the unique identifier of any particular object. More...
 
void setGroupId (unsigned groupId)
 
unsigned getGroupId () const
 

Private Attributes

Mdouble plasticOverlap_
 

Additional Inherited Members

- Protected Member Functions inherited from BaseInteraction
virtual const Vec3D getTangentialForce () const
 
Mdouble getEffectiveRadius () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
Mdouble getEffectiveMass () const
 Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap) More...
 
void setRelativeVelocity (Vec3D relativeVelocity)
 set the relative velocity of the current of the interactions. More...
 
void setNormalRelativeVelocity (Mdouble normalRelativeVelocit)
 set the normal component of the relative velocity. More...
 
void setAbsoluteNormalForce (Mdouble absoluteNormalForce)
 the absolute values of the norm (length) of the normal force More...
 
virtual Mdouble getElasticEnergyAtEquilibrium (Mdouble adhesiveForce) const
 
virtual void reverseHistory ()
 When periodic particles some interaction need certain history properties reversing. This is the function for that. More...
 
void writeInteraction (std::ostream &os, bool created) const
 Writes information about a interaction to the interaction file. More...
 

Detailed Description

Computes normal forces in case of a linear plastic visco-elastic interaction.

Ref: Visco-elastic sintering kinetics in virgin and aged polymer powders. Powder Technology, 2020.

Member Typedef Documentation

◆ SpeciesType

An alias for the corresponding species.

Constructor & Destructor Documentation

◆ SinterInteraction() [1/3]

SinterInteraction::SinterInteraction ( BaseInteractable P,
BaseInteractable I,
unsigned  timeStamp 
)

Constructor.

Parameters
[in]P
[in]I
[in]timeStamp
18  : BaseInteraction(P, I, timeStamp)
19 {
20  plasticOverlap_ = 0;
21 #ifdef DEBUG_CONSTRUCTOR
22  std::cout<<"SinterInteraction::SinterInteraction() finished"<<std::endl;
23 #endif
24 }
BaseInteraction()
Definition: BaseInteraction.cc:43
Mdouble plasticOverlap_
Definition: SinterInteraction.h:103
#define I
Definition: main.h:127
double P
Uniform pressure.
Definition: TwenteMeshGluing.cpp:77

References plasticOverlap_.

◆ SinterInteraction() [2/3]

SinterInteraction::SinterInteraction ( const SinterInteraction p)

Copy constructor.

Parameters
[in]p
31 {
32  plasticOverlap_ = p.plasticOverlap_;
33 #ifdef DEBUG_CONSTRUCTOR
34  std::cout<<"SinterInteraction::SinterInteraction(const SinterInteraction &p finished"<<std::endl;
35 #endif
36 }
float * p
Definition: Tutorial_Map_using.cpp:9

References p, and plasticOverlap_.

◆ SinterInteraction() [3/3]

SinterInteraction::SinterInteraction ( )
default
Todo:
: MX add to MPI

◆ ~SinterInteraction()

SinterInteraction::~SinterInteraction ( )
override

Destructor.

45 {
46 #ifdef DEBUG_DESTRUCTOR
47  std::cout<<"SinterInteraction::~SinterInteraction() finished"<<std::endl;
48 #endif
49 }

Member Function Documentation

◆ computeNormalForce()

void SinterInteraction::computeNormalForce ( )

Creates a copy of an object of this class. (Deep copy)

Computes the normal forces due to linear plastic visco elastic interaction.

Todo:
adhesive force only, or add normalForce?
84 {
85  // Compute the relative velocity vector of particle P w.r.t. I
87  getP()->getVelocityAtContact(getContactPoint()) - getI()->getVelocityAtContact(getContactPoint()));
88  // Compute the projection of vrel onto the normal (can be negative)
90 
91  if (getOverlap() > 0) //if contact forces
92  {
93  const SinterNormalSpecies* species = getSpecies();
94 
95  // calculate the effective diameter, equal to the radius for two equal-sized particles
96  const Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
97 
98  // [1] Calculate the overlap above which the max. unloading stiffness
99  //becomes active (the 'fluid branch'). In this interaction, it is the same than delta*
100 
101  const Mdouble d_fluid_0 = (species->getUnloadingStiffnessMax()
102  / (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()))
103  * species->getPenetrationDepthMax() * effectiveDiameter;
104 
105  //const Mdouble deltaStar = species->getPenetrationDepthMax() * effectiveDiameter;
106 
107  //[2] Compute the rate d(k2/k1)/d(delta0). To obtain this parameter, the linear relationship
108  //between unloading stiffness and maximum overlap is used.
109  const Mdouble dk = (species->getUnloadingStiffnessMax() / species->getLoadingStiffness() - 1.0) / d_fluid_0;
110 
111  //increase max overlap if necessary
112  //Here, two relationships are used. The linear relationship between unloadingstiffness max and
113  //the equilibrium overlap based on the unloading stiffness.
114  //k2 = k1*(1+dk*d), k1*d = k2*(d-d0)
115  //k1*d = k1*(1 + dk*d)*(d-d0)
116  //d = d - d0 +dk*d^2 -dk*d*d0
117  //dk*d^2 = dk *d * d0 + d0
118  //dk*d^2 = (dk*d + 1)*d0
119  //dkd^2/(dk*d + 1) = d0
120  //d0 = d/(1 + 1/(dk*d))
121 
122  //[3] Compute the equilibirum overlap is:
123  const Mdouble d0 = getOverlap()/(1.0 + 1.0/(dk*getOverlap()));
124 
125  const Mdouble minPlasticOverlap = std::min(d0,d_fluid_0);
126 
127  //[4] Determine the plastic overlap
128  plasticOverlap_ = std::max(minPlasticOverlap, plasticOverlap_);
129 
130  //[5] Compute the unloading Stiffness \hat{k2}.
131  const Mdouble unloadingStiffness = species->getLoadingStiffness() * (1.0 + dk * plasticOverlap_);
132 
133  //[6] Compute the elastic force
134  Mdouble normalForce = unloadingStiffness * (getOverlap() - plasticOverlap_);
135 
136  //[7] Add the adhesive force (distinct from sintering)
137  Mdouble nonSinterAdhesiveForce = -species->getCohesionStiffness() * getOverlap();
138 
139  if (normalForce < nonSinterAdhesiveForce)
140  {
141  plasticOverlap_ = (1.0 + species->getCohesionStiffness() / unloadingStiffness) * getOverlap();
142  normalForce = nonSinterAdhesiveForce;
143  }
144 
145  //[[8] Add dissipative force (distinct from sintering)
146  normalForce -= species->getDissipation() * getNormalRelativeVelocity();
147 
148  //[9] Sintering effect:
149  Mdouble adhesiveForce = species->getSinterAdhesion() * effectiveDiameter;
150 
151  //[10] Now set the interaction force equal to this normal force (friction and adhesive forces will be added later)
152  setForce(getNormal() * ((normalForce - adhesiveForce)));
153  setTorque(Vec3D(0.0, 0.0, 0.0));
154  //used for tangential force calculations; don't add adhesive force components
155  setAbsoluteNormalForce(std::abs(normalForce));
156 
157  //[11] Approaches - Increase plastic overlap due to sintering
158  const Mdouble baseNum = 9*constants::pi*species->getComplianceZero()*species->getSurfTension()/(effectiveDiameter);
159  const Mdouble a0_R = std::pow(baseNum,1.0/3.0);
160  const Mdouble realOverlap = std::sqrt(getOverlap()/effectiveDiameter);
161 
162  DPMBase* dpmBase = getHandler()->getDPMBase();
163  Mdouble rateOverlap;
164  // sinter adhesion force fa=sinterAdhesion_*radius in sinter rate:
166  {
167  rateOverlap = normalForce * species->getSinterRate() /
168  (0.375 * species->getSinterAdhesion() * mathsFunc::square(
169  getOverlap() / effectiveDiameter));
170  if (species->getSinterRate() == 0) rateOverlap = 0;
171  }
172  else if (species->getSinterType() == SINTERTYPE::CONSTANT_RATE)
173  {
174  rateOverlap = 2.0 * normalForce * species->getSinterRate() / species->getSinterAdhesion();
175  if (species->getSinterRate() == 0) rateOverlap = 0;
176  }
178  {
179  ThermalParticle* tp = dynamic_cast<ThermalParticle*>(getP());
180  ThermalParticle* ti = dynamic_cast<ThermalParticle*>(getI());
181  logger.assert_debug(tp && ti,
182  "warning contact partners have to be ThermalParticle's if this sinter species is used");
183  double temperature =
184  2.0 * tp->getTemperature() * ti->getTemperature() / (tp->getTemperature() + ti->getTemperature());
185  rateOverlap = 2.0 * normalForce * species->getTemperatureDependentSinterRate(temperature) /
186  species->getSinterAdhesion();
187  }
188  else if (species->getSinterType() == SINTERTYPE::REGIME_SINTERING)
189  {
190  if (realOverlap < a0_R) {
191  //Here, Sintering rate has unit of [1/s]
192  rateOverlap = normalForce / species->getSinterAdhesion();
193  //rateOverlap = effectiveDiameter* species->getSinterRate();
194 
195  }else {
196  const Mdouble val0 = std::pow((63 * pow(constants::pi, 3.0) / 16.0), 1.0 / 7.0);
197  const Mdouble val1 = pow((species->getSeparationDis()*10 / effectiveDiameter), 2.0 / 7.0);
198  const Mdouble val2 = (2.0 / 7.0) * (2.0 * species->getConstantC1() * species->getSurfTension() /
199  (effectiveDiameter));
200  const Mdouble val3 = 1.0 / (std::pow(getOverlap(), 5.0 / 2.0));
201  const Mdouble val4 = std::pow(effectiveDiameter, 7.0 / 2.0);
202 
203  rateOverlap = (std::pow(val0 * val1, 7.0) * val2 * val3 * val4) * normalForce / species->getSinterAdhesion();
204 
205  const Mdouble aVisc_R = std::pow(63.0 * std::pow(constants::pi, 3.0), 1.0 / 5.0) *
206  std::pow((1.0 / 8.0) * (species->getSeparationDis()/33.0) / (effectiveDiameter), 2.0 / 5.0);
207 
208  if (realOverlap > aVisc_R) {
209  rateOverlap = 2.0*normalForce * species->getSinterRate() / species->getSinterAdhesion();
210 // logger(INFO," RealOver % aVisc_R %",realOverlap,aVisc_R);
211  }
212  }
213  }
214  else
215  {
216  rateOverlap = 0;
217  //missing: add the sintering model 'modified Frenkel' of the Pokula paper
218  }
219  plasticOverlap_ = std::max(0.0, std::min(d_fluid_0, plasticOverlap_ + rateOverlap * dpmBase->getTimeStep()));
220 
221  /*//change particle radius by dr
222  Mdouble dr;
223  BaseParticle* PParticle = dynamic_cast<BaseParticle*>(getP());
224  BaseParticle* IParticle = dynamic_cast<BaseParticle*>(getI());
225  if (dpmBase->getSystemDimensions()==2) {
226  //2D: increase the radius of each particle such that the particle area
227  //increases by the same amount that the contact area decreases
228  //Particle circumference C = 2 pi r increased by dr => dA = 2 pi r dr
229  //Contact line L = 2*sqrt(2*r*o) indented by do/2 => dA = sqrt(2*r*o) do
230  //Thus, dr = sqrt(0.5*o/r)/pi do.
231  dr = sqrt(0.5*plasticOverlap_/effectiveDiameter)/3.14 *doverlap;
232  } else {
233  //3D: increase the radius of each sphere such that the particle volume
234  //increases by the same amount that the contact volume decreases
235  //Particle surface area S = 4 pi r^2 increased by dr => dA = 4 pi r^2 dr
236  //Contact area L = pi 2*r*o indented by do/2 => dA = pi r o do
237  //Thus, dr = 0.25*o/r do
238  dr = 0.25*plasticOverlap_/effectiveDiameter *doverlap;
239  }
240  if (PParticle==nullptr) { //if P is a wall
241  IParticle->setRadius(IParticle->getRadius()+dr);//should be twice that amount
242  } else if (IParticle==nullptr) { //if I is a wall
243  PParticle->setRadius(PParticle->getRadius()+dr);
244  } else { //if both P and I are particles
245  PParticle->setRadius(PParticle->getRadius()+dr);
246  IParticle->setRadius(IParticle->getRadius()+dr);
247  }*/
248  }
249  else
250  {
252  setForce(Vec3D(0.0, 0.0, 0.0));
253  setTorque(Vec3D(0.0, 0.0, 0.0));
254  }
255 }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ TEMPERATURE_DEPENDENT_FRENKEL
DPMBase * getDPMBase()
Gets the problem that is solved using this handler.
Definition: BaseHandler.h:733
const Vec3D & getRelativeVelocity() const
Returns a constant reference to a vector of relative velocity.
Definition: BaseInteraction.cc:554
void setAbsoluteNormalForce(Mdouble absoluteNormalForce)
the absolute values of the norm (length) of the normal force
Definition: BaseInteraction.cc:651
const Vec3D & getContactPoint() const
Gets constant reference to contact point (vector).
Definition: BaseInteraction.h:213
const Vec3D & getNormal() const
Gets the normal vector between the two interacting objects.
Definition: BaseInteraction.h:205
Mdouble getNormalRelativeVelocity() const
Returns a double which is the norm (length) of the relative velocity vector.
Definition: BaseInteraction.cc:565
Mdouble getEffectiveRadius() const
Returns a Mdouble to the effective radius of the interaction. (Not corrected for the overlap)
Definition: BaseInteraction.cc:774
void setRelativeVelocity(Vec3D relativeVelocity)
set the relative velocity of the current of the interactions.
Definition: BaseInteraction.cc:630
BaseInteractable * getI()
Returns a pointer to the second object involved in the interaction (often a wall or a particle).
Definition: BaseInteraction.h:264
BaseInteractable * getP()
Returns a pointer to first object involved in the interaction (normally a particle).
Definition: BaseInteraction.h:253
InteractionHandler * getHandler() const
Gets a point to the interaction handlers to which this interaction belongs.
Definition: BaseInteraction.cc:247
void setNormalRelativeVelocity(Mdouble normalRelativeVelocit)
set the normal component of the relative velocity.
Definition: BaseInteraction.cc:641
void setForce(Vec3D force)
set total force (this is used by the normal force, tangential forces are added use addForce)
Definition: BaseInteraction.cc:608
void setTorque(Vec3D torque)
set the total force (this is used by the normal force, tangential torques are added use addTorque)
Definition: BaseInteraction.cc:619
Mdouble getOverlap() const
Returns a Mdouble with the current overlap between the two interacting objects.
Definition: BaseInteraction.h:219
The DPMBase header includes quite a few header files, defining all the handlers, which are essential....
Definition: DPMBase.h:56
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1241
const SinterNormalSpecies * getSpecies() const
Definition: SinterInteraction.cc:272
SinterNormalSpecies contains the parameters used to describe a plastic-cohesive normal force (Stefan ...
Definition: SinterNormalSpecies.h:26
Mdouble getUnloadingStiffnessMax() const
Returns the maximum unloading stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterNormalSpecies.cc:169
Mdouble getComplianceZero() const
Definition: SinterNormalSpecies.cc:422
std::function< double(double temperature)> getTemperatureDependentSinterRate() const
Definition: SinterNormalSpecies.cc:452
Mdouble getPenetrationDepthMax() const
Returns the maximum penetration depth of the linear plastic-viscoelastic normal force.
Definition: SinterNormalSpecies.cc:185
Mdouble getSeparationDis() const
Definition: SinterNormalSpecies.cc:437
Mdouble getConstantC1() const
Definition: SinterNormalSpecies.cc:432
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
Definition: SinterNormalSpecies.cc:393
Mdouble getSinterAdhesion() const
Accesses sinterAdhesion_.
Definition: SinterNormalSpecies.cc:401
SINTERTYPE getSinterType() const
Definition: SinterNormalSpecies.cc:442
Mdouble getSinterRate() const
Accesses sinterRate_.
Definition: SinterNormalSpecies.cc:417
Mdouble getSurfTension() const
Definition: SinterNormalSpecies.cc:427
Mdouble getLoadingStiffness() const
Returns the loading stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterNormalSpecies.cc:161
Mdouble getCohesionStiffness() const
Returns the cohesive stiffness of the linear plastic-viscoelastic normal force.
Definition: SinterNormalSpecies.cc:177
Definition: ThermalParticle.h:15
Mdouble getTemperature() const
Definition: ThermalParticle.h:80
Definition: Kernel/Math/Vector.h:30
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:56
#define min(a, b)
Definition: datatypes.h:22
#define max(a, b)
Definition: datatypes.h:23
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
const Mdouble pi
Definition: ExtendedMath.h:23
T square(const T val)
squares a number
Definition: ExtendedMath.h:86

References abs(), CONSTANT_RATE, Vec3D::dot(), SinterNormalSpecies::getCohesionStiffness(), SinterNormalSpecies::getComplianceZero(), SinterNormalSpecies::getConstantC1(), BaseInteraction::getContactPoint(), SinterNormalSpecies::getDissipation(), BaseHandler< T >::getDPMBase(), BaseInteraction::getEffectiveRadius(), BaseInteraction::getHandler(), BaseInteraction::getI(), SinterNormalSpecies::getLoadingStiffness(), BaseInteraction::getNormal(), BaseInteraction::getNormalRelativeVelocity(), BaseInteraction::getOverlap(), BaseInteraction::getP(), SinterNormalSpecies::getPenetrationDepthMax(), BaseInteraction::getRelativeVelocity(), SinterNormalSpecies::getSeparationDis(), SinterNormalSpecies::getSinterAdhesion(), SinterNormalSpecies::getSinterRate(), SinterNormalSpecies::getSinterType(), getSpecies(), SinterNormalSpecies::getSurfTension(), Thermal< Particle >::getTemperature(), SinterNormalSpecies::getTemperatureDependentSinterRate(), DPMBase::getTimeStep(), SinterNormalSpecies::getUnloadingStiffnessMax(), logger, max, min, PARHAMI_MCKEEPING, constants::pi, plasticOverlap_, Eigen::bfloat16_impl::pow(), REGIME_SINTERING, BaseInteraction::setAbsoluteNormalForce(), BaseInteraction::setForce(), BaseInteraction::setNormalRelativeVelocity(), BaseInteraction::setRelativeVelocity(), BaseInteraction::setTorque(), sqrt(), mathsFunc::square(), and TEMPERATURE_DEPENDENT_FRENKEL.

◆ getBaseName()

std::string SinterInteraction::getBaseName ( ) const
virtual

Returns the name of the interaction.

Returns
std::string
76 {
77  return "Sinter";
78 }

◆ getElasticEnergy()

Mdouble SinterInteraction::getElasticEnergy ( ) const
overridevirtual

Computes and returns the amount of elastic energy stored in the spring.

Returns
Mdouble
Todo:
TW this is not correct; we should count the return energy

Reimplemented from BaseInteraction.

261 {
262  if (getOverlap() > 0)
264  else
265  return 0.0;
267 }

References SinterNormalSpecies::getLoadingStiffness(), BaseInteraction::getOverlap(), getSpecies(), and mathsFunc::square().

◆ getFieldVTK()

std::vector< Mdouble > SinterInteraction::getFieldVTK ( unsigned  i) const
overridevirtual

Reimplemented from BaseInteraction.

329 {
330  if (i == 0)
331  return std::vector<Mdouble>(1, plasticOverlap_);
332  else
333  return std::vector<Mdouble>(1, sqrt(2.0 * getEffectiveRadius() * plasticOverlap_));
334 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9

References BaseInteraction::getEffectiveRadius(), i, plasticOverlap_, and sqrt().

◆ getNameVTK()

std::string SinterInteraction::getNameVTK ( unsigned  i) const
overridevirtual

Reimplemented from BaseInteraction.

321 {
322  if (i == 0)
323  return "plasticOverlap";
324  else
325  return "neckRadius";
326 }

References i.

◆ getNumberOfFieldsVTK()

unsigned SinterInteraction::getNumberOfFieldsVTK ( ) const
overridevirtual

Reimplemented from BaseInteraction.

311 {
312  return 2;
313 }

◆ getPlasticOverlap()

Mdouble SinterInteraction::getPlasticOverlap ( ) const
Returns
Mdouble plasticOverlap_
282 {
283  return plasticOverlap_;
284 }

References plasticOverlap_.

Referenced by getUnloadingStiffness().

◆ getSpecies()

const SinterNormalSpecies * SinterInteraction::getSpecies ( ) const
Returns
const SinterNormalSpecies*
273 {
274  return static_cast<const SinterNormalSpecies*>(getBaseSpecies()->getNormalForce());
275 ;
276 }
const BaseSpecies * getBaseSpecies() const
Return a constant point to BaseSpecies of the interaction.
Definition: BaseInteraction.cc:663
BaseNormalForce * getNormalForce() const
Definition: BaseSpecies.h:127

References BaseInteraction::getBaseSpecies(), and BaseSpecies::getNormalForce().

Referenced by computeNormalForce(), getElasticEnergy(), and getUnloadingStiffness().

◆ getTypeVTK()

std::string SinterInteraction::getTypeVTK ( unsigned  i) const
overridevirtual

Reimplemented from BaseInteraction.

316 {
317  return "Float32";
318 }

◆ getUnloadingStiffness()

Mdouble SinterInteraction::getUnloadingStiffness ( ) const
Returns
Mdouble
298 {
299  const SinterNormalSpecies* species = getSpecies();
300  Mdouble effectiveDiameter = 2.0 * getEffectiveRadius();
301  Mdouble deltaMaxFluid = species->getPenetrationDepthMax() * effectiveDiameter /
302  (1.0 - species->getLoadingStiffness() / species->getUnloadingStiffnessMax());
303  if (getOverlap() > deltaMaxFluid)
304  return species->getUnloadingStiffnessMax();
305  else
306  return species->getLoadingStiffness() + (species->getUnloadingStiffnessMax() - species->getLoadingStiffness()) *
307  getPlasticOverlap() / deltaMaxFluid;
308 }
Mdouble getPlasticOverlap() const
Definition: SinterInteraction.cc:281

References BaseInteraction::getEffectiveRadius(), SinterNormalSpecies::getLoadingStiffness(), BaseInteraction::getOverlap(), SinterNormalSpecies::getPenetrationDepthMax(), getPlasticOverlap(), getSpecies(), and SinterNormalSpecies::getUnloadingStiffnessMax().

◆ read()

void SinterInteraction::read ( std::istream &  is)
overridevirtual

Interaction read function, which accepts an std::istream as input.

Calls the read function of BaseInteraction().

Parameters
[in,out]is

Reimplemented from BaseInteraction.

66 {
68  std::string dummy;
69  is >> dummy >> plasticOverlap_;
70 }
void read(std::istream &is) override
Interaction read function, which accepts an std::istream as input.
Definition: BaseInteraction.cc:165
std::string string(const unsigned &i)
Definition: oomph_definitions.cc:286

References plasticOverlap_, BaseInteraction::read(), and oomph::Global_string_for_annotation::string().

◆ setPlasticOverlap()

void SinterInteraction::setPlasticOverlap ( Mdouble  plasticOverlap)
Parameters
[in]maxOverlap
290 {
291  plasticOverlap_ = plasticOverlap;
292 }

References plasticOverlap_.

◆ write()

void SinterInteraction::write ( std::ostream &  os) const
overridevirtual

Interaction write function, which accepts an std::ostream as input.

Calls the write function of BaseInteraction().

Parameters
[in,out]os

Reimplemented from BaseInteraction.

56 {
58  os << " plasticOverlap " << plasticOverlap_;
59 }
void write(std::ostream &os) const override
Interaction print function, which accepts an std::ostream as input.
Definition: BaseInteraction.cc:137

References plasticOverlap_, and BaseInteraction::write().

Member Data Documentation

◆ plasticOverlap_

Mdouble SinterInteraction::plasticOverlap_
private

The documentation for this class was generated from the following files: