diagonalmatrices.cpp File Reference
#include "main.h"

Macros

#define EIGEN_STACK_ALLOCATION_LIMIT   0
 
#define EIGEN_RUNTIME_NO_MALLOC
 

Functions

template<typename MatrixType >
void diagonalmatrices (const MatrixType &m)
 
template<typename MatrixType >
void as_scalar_product (const MatrixType &m)
 
template<int >
void bug987 ()
 
 EIGEN_DECLARE_TEST (diagonalmatrices)
 

Macro Definition Documentation

◆ EIGEN_RUNTIME_NO_MALLOC

#define EIGEN_RUNTIME_NO_MALLOC

◆ EIGEN_STACK_ALLOCATION_LIMIT

#define EIGEN_STACK_ALLOCATION_LIMIT   0

Function Documentation

◆ as_scalar_product()

template<typename MatrixType >
void as_scalar_product ( const MatrixType m)
140  {
141  typedef typename MatrixType::Scalar Scalar;
143  typedef Matrix<Scalar, Dynamic, Dynamic> DynMatrixType;
144  typedef Matrix<Scalar, Dynamic, 1> DynVectorType;
145  typedef Matrix<Scalar, 1, Dynamic> DynRowVectorType;
146 
147  Index rows = m.rows();
148  Index depth = internal::random<Index>(1, EIGEN_TEST_MAX_SIZE);
149 
150  VectorType v1 = VectorType::Random(rows);
151  DynVectorType dv1 = DynVectorType::Random(depth);
152  DynRowVectorType drv1 = DynRowVectorType::Random(depth);
153  DynMatrixType dm1 = dv1;
154  DynMatrixType drm1 = drv1;
155 
156  Scalar s = v1(0);
157 
158  VERIFY_IS_APPROX(v1.asDiagonal() * drv1, s * drv1);
159  VERIFY_IS_APPROX(dv1 * v1.asDiagonal(), dv1 * s);
160 
161  VERIFY_IS_APPROX(v1.asDiagonal() * drm1, s * drm1);
162  VERIFY_IS_APPROX(dm1 * v1.asDiagonal(), dm1 * s);
163 }
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())
int rows
Definition: Tutorial_commainit_02.cpp:1
SCALAR Scalar
Definition: bench_gemm.cpp:45
#define EIGEN_TEST_MAX_SIZE
Definition: boostmultiprec.cpp:16
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:13
RealScalar s
Definition: level1_cplx_impl.h:130
int * m
Definition: level2_cplx_impl.h:294
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:83
Definition: fft_test_shared.h:66

References EIGEN_TEST_MAX_SIZE, m, rows, s, v1(), and VERIFY_IS_APPROX.

Referenced by EIGEN_DECLARE_TEST().

◆ bug987()

template<int >
void bug987 ( )
166  {
167  Matrix3Xd points = Matrix3Xd::Random(3, 3);
168  Vector2d diag = Vector2d::Random();
169  Matrix2Xd tmp1 = points.topRows<2>(), res1, res2;
170  VERIFY_IS_APPROX(res1 = diag.asDiagonal() * points.topRows<2>(), res2 = diag.asDiagonal() * tmp1);
171  Matrix2d tmp2 = points.topLeftCorner<2, 2>();
172  VERIFY_IS_APPROX((res1 = points.topLeftCorner<2, 2>() * diag.asDiagonal()), res2 = tmp2 * diag.asDiagonal());
173 }
const char const char const char * diag
Definition: level2_impl.h:86

References diag, and VERIFY_IS_APPROX.

◆ diagonalmatrices()

template<typename MatrixType >
void diagonalmatrices ( const MatrixType m)
18  {
19  typedef typename MatrixType::Scalar Scalar;
20  enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
22  typedef Matrix<Scalar, 1, Cols> RowVectorType;
23  typedef Matrix<Scalar, Rows, Rows> SquareMatrixType;
24  typedef Matrix<Scalar, Dynamic, Dynamic> DynMatrixType;
25  typedef DiagonalMatrix<Scalar, Rows> LeftDiagonalMatrix;
26  typedef DiagonalMatrix<Scalar, Cols> RightDiagonalMatrix;
28  Index rows = m.rows();
29  Index cols = m.cols();
30 
31  MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols);
32  VectorType v1 = VectorType::Random(rows), v2 = VectorType::Random(rows);
33  RowVectorType rv1 = RowVectorType::Random(cols), rv2 = RowVectorType::Random(cols);
34 
35  LeftDiagonalMatrix ldm1(v1), ldm2(v2);
36  RightDiagonalMatrix rdm1(rv1), rdm2(rv2);
37 
38  Scalar s1 = internal::random<Scalar>();
39 
40  SquareMatrixType sq_m1(v1.asDiagonal());
41  VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
42  sq_m1 = v1.asDiagonal();
43  VERIFY_IS_APPROX(sq_m1, v1.asDiagonal().toDenseMatrix());
44  SquareMatrixType sq_m2 = v1.asDiagonal();
45  VERIFY_IS_APPROX(sq_m1, sq_m2);
46 
47  ldm1 = v1.asDiagonal();
48  LeftDiagonalMatrix ldm3(v1);
49  VERIFY_IS_APPROX(ldm1.diagonal(), ldm3.diagonal());
50  LeftDiagonalMatrix ldm4 = v1.asDiagonal();
51  VERIFY_IS_APPROX(ldm1.diagonal(), ldm4.diagonal());
52 
53  sq_m1.block(0, 0, rows, rows) = ldm1;
54  VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
55  sq_m1.transpose() = ldm1;
56  VERIFY_IS_APPROX(sq_m1, ldm1.toDenseMatrix());
57 
58  Index i = internal::random<Index>(0, rows - 1);
59  Index j = internal::random<Index>(0, cols - 1);
60 
61  internal::set_is_malloc_allowed(false);
62  VERIFY_IS_APPROX(((ldm1 * m1)(i, j)), ldm1.diagonal()(i) * m1(i, j));
63  VERIFY_IS_APPROX(((ldm1 * (m1 + m2))(i, j)), ldm1.diagonal()(i) * (m1 + m2)(i, j));
64  VERIFY_IS_APPROX(((m1 * rdm1)(i, j)), rdm1.diagonal()(j) * m1(i, j));
65  VERIFY_IS_APPROX(((v1.asDiagonal() * m1)(i, j)), v1(i) * m1(i, j));
66  VERIFY_IS_APPROX(((m1 * rv1.asDiagonal())(i, j)), rv1(j) * m1(i, j));
67  VERIFY_IS_APPROX((((v1 + v2).asDiagonal() * m1)(i, j)), (v1 + v2)(i)*m1(i, j));
68  VERIFY_IS_APPROX((((v1 + v2).asDiagonal() * (m1 + m2))(i, j)), (v1 + v2)(i) * (m1 + m2)(i, j));
69  VERIFY_IS_APPROX(((m1 * (rv1 + rv2).asDiagonal())(i, j)), (rv1 + rv2)(j)*m1(i, j));
70  VERIFY_IS_APPROX((((m1 + m2) * (rv1 + rv2).asDiagonal())(i, j)), (rv1 + rv2)(j) * (m1 + m2)(i, j));
71  VERIFY_IS_APPROX((ldm1 * ldm1).diagonal()(i), ldm1.diagonal()(i) * ldm1.diagonal()(i));
72  VERIFY_IS_APPROX((ldm1 * ldm1 * m1)(i, j), ldm1.diagonal()(i) * ldm1.diagonal()(i) * m1(i, j));
73  VERIFY_IS_APPROX(((v1.asDiagonal() * v1.asDiagonal()).diagonal()(i)), v1(i) * v1(i));
74  internal::set_is_malloc_allowed(true);
75 
76  if (rows > 1) {
77  DynMatrixType tmp = m1.topRows(rows / 2), res;
78  VERIFY_IS_APPROX((res = m1.topRows(rows / 2) * rv1.asDiagonal()), tmp * rv1.asDiagonal());
79  VERIFY_IS_APPROX((res = v1.head(rows / 2).asDiagonal() * m1.topRows(rows / 2)),
80  v1.head(rows / 2).asDiagonal() * tmp);
81  }
82 
83  BigMatrix big;
84  big.setZero(2 * rows, 2 * cols);
85 
86  big.block(i, j, rows, cols) = m1;
87  big.block(i, j, rows, cols) = v1.asDiagonal() * big.block(i, j, rows, cols);
88 
89  VERIFY_IS_APPROX((big.block(i, j, rows, cols)), v1.asDiagonal() * m1);
90 
91  big.block(i, j, rows, cols) = m1;
92  big.block(i, j, rows, cols) = big.block(i, j, rows, cols) * rv1.asDiagonal();
93  VERIFY_IS_APPROX((big.block(i, j, rows, cols)), m1 * rv1.asDiagonal());
94 
95  // products do not allocate memory
97  internal::set_is_malloc_allowed(false);
98  res.noalias() = ldm1 * m1;
99  res.noalias() = m1 * rdm1;
100  res.noalias() = ldm1 * m1 * rdm1;
101  res.noalias() = LeftDiagonalMatrix::Identity(rows) * m1 * RightDiagonalMatrix::Zero(cols);
102  internal::set_is_malloc_allowed(true);
103 
104  // scalar multiple
105  VERIFY_IS_APPROX(LeftDiagonalMatrix(ldm1 * s1).diagonal(), ldm1.diagonal() * s1);
106  VERIFY_IS_APPROX(LeftDiagonalMatrix(s1 * ldm1).diagonal(), s1 * ldm1.diagonal());
107 
108  VERIFY_IS_APPROX(m1 * (rdm1 * s1), (m1 * rdm1) * s1);
109  VERIFY_IS_APPROX(m1 * (s1 * rdm1), (m1 * rdm1) * s1);
110 
111  // Diagonal to dense
112  sq_m1.setRandom();
113  sq_m2 = sq_m1;
114  VERIFY_IS_APPROX((sq_m1 += (s1 * v1).asDiagonal()), sq_m2 += (s1 * v1).asDiagonal().toDenseMatrix());
115  VERIFY_IS_APPROX((sq_m1 -= (s1 * v1).asDiagonal()), sq_m2 -= (s1 * v1).asDiagonal().toDenseMatrix());
116  VERIFY_IS_APPROX((sq_m1 = (s1 * v1).asDiagonal()), (s1 * v1).asDiagonal().toDenseMatrix());
117 
118  sq_m1.setRandom();
119  sq_m2 = v1.asDiagonal();
120  sq_m2 = sq_m1 * sq_m2;
121  VERIFY_IS_APPROX((sq_m1 * v1.asDiagonal()).col(i), sq_m2.col(i));
122  VERIFY_IS_APPROX((sq_m1 * v1.asDiagonal()).row(i), sq_m2.row(i));
123 
124  sq_m1 = v1.asDiagonal();
125  sq_m2 = v2.asDiagonal();
126  SquareMatrixType sq_m3 = v1.asDiagonal();
127  VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() + v2.asDiagonal(), sq_m1 + sq_m2);
128  VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() - v2.asDiagonal(), sq_m1 - sq_m2);
129  VERIFY_IS_APPROX(sq_m3 = v1.asDiagonal() - 2 * v2.asDiagonal() + v1.asDiagonal(), sq_m1 - 2 * sq_m2 + sq_m1);
130 
131  // Zero and Identity
132  LeftDiagonalMatrix zero = LeftDiagonalMatrix::Zero(rows);
133  LeftDiagonalMatrix identity = LeftDiagonalMatrix::Identity(rows);
134  VERIFY_IS_APPROX(identity.diagonal().sum(), Scalar(rows));
135  VERIFY_IS_APPROX(zero.diagonal().sum(), Scalar(0));
136  VERIFY_IS_APPROX((zero + 2 * LeftDiagonalMatrix::Identity(rows)).diagonal().sum(), Scalar(2 * rows));
137 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Matrix3d m1
Definition: IOFormat.cpp:2
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
MatrixType m2(n_dims)
Map< RowVectorXf > v2(M2.data(), M2.size())
int cols
Definition: Tutorial_commainit_02.cpp:1
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
Represents a diagonal matrix with its storage.
Definition: DiagonalMatrix.h:172
void diagonal(const MatrixType &m)
Definition: diagonal.cpp:13
Eigen::Matrix< Scalar, Dynamic, Dynamic, ColMajor > tmp
Definition: level3_impl.h:365
double Zero
Definition: pseudosolid_node_update_elements.cc:35
EIGEN_DONT_INLINE Scalar zero()
Definition: svd_common.h:232
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References cols, diagonal(), i, j, m, m1, m2(), res, rows, tmp, v1(), v2(), VERIFY_IS_APPROX, zero(), and oomph::PseudoSolidHelper::Zero.

Referenced by EIGEN_DECLARE_TEST().

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( diagonalmatrices  )
175  {
176  for (int i = 0; i < g_repeat; i++) {
179 
180  CALL_SUBTEST_2(diagonalmatrices(Matrix3f()));
182  CALL_SUBTEST_4(diagonalmatrices(Matrix4d()));
185  MatrixXcf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
186  CALL_SUBTEST_6(as_scalar_product(MatrixXcf(1, 1)));
188  MatrixXi(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
190  internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
192  MatrixXf(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE))));
193  CALL_SUBTEST_9(diagonalmatrices(MatrixXf(1, 1)));
194  CALL_SUBTEST_9(as_scalar_product(MatrixXf(1, 1)));
195  }
196  CALL_SUBTEST_10(bug987<0>());
197 }
void as_scalar_product(const MatrixType &m)
Definition: diagonalmatrices.cpp:140
void diagonalmatrices(const MatrixType &m)
Definition: diagonalmatrices.cpp:18
static int g_repeat
Definition: main.h:191
#define CALL_SUBTEST_6(FUNC)
Definition: split_test_helper.h:34
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
#define CALL_SUBTEST_8(FUNC)
Definition: split_test_helper.h:46
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
#define CALL_SUBTEST_7(FUNC)
Definition: split_test_helper.h:40
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
#define CALL_SUBTEST_9(FUNC)
Definition: split_test_helper.h:52
#define CALL_SUBTEST_10(FUNC)
Definition: split_test_helper.h:58

References as_scalar_product(), CALL_SUBTEST_1, CALL_SUBTEST_10, CALL_SUBTEST_2, CALL_SUBTEST_3, CALL_SUBTEST_4, CALL_SUBTEST_5, CALL_SUBTEST_6, CALL_SUBTEST_7, CALL_SUBTEST_8, CALL_SUBTEST_9, diagonalmatrices(), EIGEN_TEST_MAX_SIZE, Eigen::g_repeat, and i.