CollapsibleChannelProblem< ELEMENT > Class Template Reference

Problem class. More...

+ Inheritance diagram for CollapsibleChannelProblem< ELEMENT >:

Public Member Functions

 CollapsibleChannelProblem (const unsigned &nup, const unsigned &ncollapsible, const unsigned &ndown, const unsigned &ny, const double &lup, const double &lcollapsible, const double &ldown, const double &ly, const double &amplitude, const double &period)
 Constructor for the collapsible channel problem. More...
 
 ~CollapsibleChannelProblem ()
 Empty destructor. More...
 
RefineableCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt ()
 Access function for the specific mesh. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve (empty) More...
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void actions_before_implicit_timestep ()
 Update the velocity boundary condition on the moving wall. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of prescribed traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of prescribed traction elements. More...
 
void set_initial_condition ()
 Apply initial conditions. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution. More...
 
 CollapsibleChannelProblem (const unsigned &nup, const unsigned &ncollapsible, const unsigned &ndown, const unsigned &ny, const double &lup, const double &lcollapsible, const double &ldown, const double &ly, const double &amplitude, const double &period)
 
 ~CollapsibleChannelProblem ()
 Empty destructor. More...
 
MyAlgebraicCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt ()
 Access function for the specific mesh. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve (empty) More...
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void actions_before_implicit_timestep ()
 Update the velocity boundary condition on the moving wall. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of prescribed traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of prescribed traction elements. More...
 
void set_initial_condition ()
 Apply initial conditions. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution. More...
 
 CollapsibleChannelProblem (const unsigned &nup, const unsigned &ncollapsible, const unsigned &ndown, const unsigned &ny, const double &lup, const double &lcollapsible, const double &ldown, const double &ly, const double &limpedance, const double &amplitude, const double &period, const unsigned &outflow)
 Constructor for the collapsible channel problem. More...
 
 ~CollapsibleChannelProblem ()
 Empty destructor. More...
 
RefineableCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt ()
 Access function for the fluid bulk mesh. More...
 
Mesh *& outflow_impedance_master_mesh_pt ()
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution. More...
 
void unsteady_run (string directory_for_data, double nstep, const bool &validation_run=false)
 Run unsteady problem. More...
 
void refine_elements_based_on_x_coord (const double &x_min, const double &x_max)
 
void switch_off_wall_oscillations ()
 Function to switch off wall oscillations. More...
 
Meshcreate_mesh_for_navier_stokes_preconditioner ()
 Create a mesh for the NavierStokes Preconditioner. More...
 
 CollapsibleChannelProblem (const unsigned &nup, const unsigned &ncollapsible, const unsigned &ndown, const unsigned &ny, const double &lup, const double &lcollapsible, const double &ldown, const double &ly, const double &amplitude, const double &period)
 
 ~CollapsibleChannelProblem ()
 Empty destructor. More...
 
RefineableCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt ()
 Access function for the specific mesh. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve (empty) More...
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void actions_before_newton_convergence_check ()
 Update no slip before Newton convergence check. More...
 
void actions_before_implicit_timestep ()
 Update the velocity boundary condition on the moving wall. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of prescribed traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of prescribed traction elements. More...
 
void set_initial_condition ()
 Apply initial conditions. More...
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution. More...
 
 CollapsibleChannelProblem (const unsigned &nup, const unsigned &ncollapsible, const unsigned &ndown, const unsigned &ny, const double &lup, const double &lcollapsible, const double &ldown, const double &ly, const double &limpedance, const double &amplitude, const double &period, const unsigned &outflow)
 
 ~CollapsibleChannelProblem ()
 Empty destructor. More...
 
RefineableCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt ()
 Access function for the fluid bulk mesh. More...
 
Mesh *& outflow_impedance_master_mesh_pt ()
 
void doc_solution (DocInfo &doc_info, ofstream &trace_file)
 Doc the solution. More...
 
void unsteady_run (string directory_for_data, double nstep, const bool &validation_run=false)
 Run unsteady problem. More...
 
void refine_elements_based_on_x_coord (const double &x_min, const double &x_max)
 
void switch_off_wall_oscillations ()
 Function to switch off wall oscillations. More...
 
Meshcreate_mesh_for_navier_stokes_preconditioner ()
 Create a mesh for the NavierStokesSchurComplementPreconditioner. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Protected Member Functions

void set_poiseuille_outflow ()
 Apply Poiseuille flow on outlet. More...
 
void set_parallel_outflow ()
 Apply parallel flow on outlet. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve. More...
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void actions_before_implicit_timestep ()
 Update the velocity boundary condition on the moving wall. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of prescribed traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of prescribed traction elements. More...
 
void set_initial_condition ()
 Apply initial conditions. More...
 
void set_poiseuille_outflow ()
 Apply Poiseuille flow on outlet. More...
 
void set_parallel_outflow ()
 Apply parallel flow on outlet. More...
 
void actions_before_newton_solve ()
 Update the problem specs before solve. More...
 
void actions_after_newton_solve ()
 Update the problem after solve (empty) More...
 
void actions_before_implicit_timestep ()
 Update the velocity boundary condition on the moving wall. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of prescribed traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of prescribed traction elements. More...
 
void set_initial_condition ()
 Apply initial conditions. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 

Private Member Functions

void create_traction_elements (const unsigned &b, Mesh *const &bulk_mesh_pt, Mesh *const &surface_mesh_pt)
 Create the traction elements. More...
 
void delete_traction_elements (Mesh *const &surface_mesh_pt)
 Delete prescribed traction elements from the surface mesh. More...
 
void create_traction_elements (const unsigned &b, Mesh *const &bulk_mesh_pt, Mesh *const &surface_mesh_pt)
 
void delete_traction_elements (Mesh *const &surface_mesh_pt)
 Delete prescribed traction elements from the surface mesh. More...
 
void delete_outflow_flux_control_elements ()
 Delete flux control elements from outflow boundary. More...
 
void setup_outflow_flux_control_elements ()
 Attach flux control elements to outflow boundary. More...
 
void setup_inflow_traction_elements ()
 Create the prescribed traction elements on the inflow. More...
 
void delete_inflow_traction_elements ()
 Delete prescribed traction elements from the surface mesh. More...
 
void delete_outflow_impedance_elements ()
 Delete impedance elements from outflow boundary. More...
 
void setup_outflow_impedance_elements ()
 Attach impedance elements to outflow boundary. More...
 
void create_traction_elements (const unsigned &b, Mesh *const &bulk_mesh_pt, Mesh *const &surface_mesh_pt)
 
void delete_traction_elements (Mesh *const &surface_mesh_pt)
 Delete prescribed traction elements from the surface mesh. More...
 
void create_lagrange_multiplier_elements ()
 Create elements that impose the prescribed boundary displacement. More...
 
void delete_lagrange_multiplier_elements ()
 
void delete_outflow_flux_control_elements ()
 Delete flux control elements from outflow boundary. More...
 
void setup_outflow_flux_control_elements ()
 Attach flux control elements to outflow boundary. More...
 
void setup_inflow_traction_elements ()
 Create the prescribed traction elements on the inflow. More...
 
void delete_inflow_traction_elements ()
 Delete prescribed traction elements from the surface mesh. More...
 
void delete_outflow_impedance_elements ()
 
void setup_outflow_impedance_elements ()
 

Private Attributes

unsigned Nup
 Number of elements in the x direction in the upstream part of the channel. More...
 
unsigned Ncollapsible
 
unsigned Ndown
 Number of elements in the x direction in the downstream part of the channel. More...
 
unsigned Ny
 Number of elements across the channel. More...
 
double Lup
 x-length in the upstream part of the channel More...
 
double Lcollapsible
 x-length in the "collapsible" part of the channel More...
 
double Ldown
 x-length in the downstream part of the channel More...
 
double Ly
 Transverse length. More...
 
OscillatingWallWall_pt
 Pointer to the geometric object that parametrises the "collapsible" wall. More...
 
RefineableCollapsibleChannelMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 
MeshSurface_mesh_pt
 
NodeLeft_node_pt
 Pointer to the left control node. More...
 
NodeRight_node_pt
 Pointer to right control node. More...
 
MyAlgebraicCollapsibleChannelMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 
MeshInflow_traction_mesh_pt
 
MeshOutflow_flux_control_master_mesh_pt
 Pointer to mesh containing the net flux control element (only!) More...
 
MeshOutflow_flux_control_sub_mesh_pt
 Pointer to mesh of flux control elements at outflow. More...
 
WomersleyOutflowImpedanceTube< QWomersleyElement< 1, 3 >, 1 > * Womersley_impedance_tube_pt
 Pointer to impendance tube. More...
 
MeshOutflow_impedance_mesh_pt
 Pointer to the impedance mesh. More...
 
MeshOutflow_impedance_master_mesh_pt
 Pointer to the master impedance mesh when using flux control elements. More...
 
double L_impedance
 Length of optional impedance tube. More...
 
double Prescribed_volume_flux
 Prescribed volume flux: set to -1 for value consistent with Re. More...
 
double Period
 Period of oscillation. More...
 
double Amplitude
 Amplitude of osciallation. More...
 
unsigned Outflow_type
 
unsigned Bulk_mesh_id
 Id of the fluid bulk mesh. More...
 
ElasticRefineableCollapsibleChannelMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 
SolidMeshLagrange_multiplier_mesh_pt
 Pointers to meshes of Lagrange multiplier elements. More...
 
ConstitutiveLawConstitutive_law_pt
 Constitutive law used to determine the mesh deformation. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class CollapsibleChannelProblem< ELEMENT >

Problem class.

Constructor & Destructor Documentation

◆ CollapsibleChannelProblem() [1/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::CollapsibleChannelProblem ( const unsigned nup,
const unsigned ncollapsible,
const unsigned ndown,
const unsigned ny,
const double lup,
const double lcollapsible,
const double ldown,
const double ly,
const double amplitude,
const double period 
)

Constructor for the collapsible channel problem.

Constructor : the arguments are the number of elements, the length of the domain and the amplitude and period of the oscillations

361 {
362  // Number of elements
363  Nup=nup;
364  Ncollapsible=ncollapsible;
365  Ndown=ndown;
366  Ny=ny;
367 
368  // Lengths of domain
369  Lup=lup;
370  Lcollapsible=lcollapsible;
371  Ldown=ldown;
372  Ly=ly;
373 
374  // Overwrite maximum allowed residual to accomodate possibly
375  // poor initial guess for solution
376  Problem::Max_residuals=10000;
377 
378  // Allocate the timestepper -- this constructs the Problem's
379  // time object with a sufficient amount of storage to store the
380  // previous timsteps.
382 
383  // Parameters for wall object
384  double height=ly;
385  double length=lcollapsible;
386  double x_left=lup;
387 
388  //Create the geometric object that represents the wall
389  Wall_pt=new OscillatingWall(height, x_left, length, amplitude, period,
390  time_pt());
391 
392  //Build mesh
394  nup, ncollapsible, ndown, ny,
395  lup, lcollapsible, ldown, ly,
396  Wall_pt,
397  time_stepper_pt());
398 
399 
400  // Enable boundary layer squash function?
401 #ifdef USE_BL_SQUASH_FCT
402 
403  // Set a non-trivial boundary-layer-squash function...
404  Bulk_mesh_pt->bl_squash_fct_pt() = &BL_Squash::squash_fct;
405 
406  // ... and update the nodal positions accordingly
407  Bulk_mesh_pt->node_update();
408 
409 #endif
410  // end of boundary layer squash function
411 
412 
413  // Create "surface mesh" that will contain only the prescribed-traction
414  // elements at the inflow. The default constructor just creates the mesh
415  // without giving it any elements, nodes, etc.
416  Surface_mesh_pt = new Mesh;
417 
418  // Create prescribed-traction elements from all elements that are
419  // adjacent to boundary 5 (inflow boundary), and add them to the surface mesh.
421 
422  // Add the two sub meshes to the problem
425 
426  // Combine all submeshes added so far into a single Mesh
428 
429  //Set errror estimator for bulk mesh
432  (Bulk_mesh_pt)->spatial_error_estimator_pt()=error_estimator_pt;
433 
434 
435  // Loop over the elements to set up element-specific
436  // things that cannot be handled by constructor
437  unsigned n_element=Bulk_mesh_pt->nelement();
438  for(unsigned e=0;e<n_element;e++)
439  {
440  // Upcast from GeneralisedElement to the present element
441  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
442 
443  //Set the Reynolds number
444  el_pt->re_pt() = &Global_Physical_Variables::Re;
445 
446  // Set the Womersley number
447  el_pt->re_st_pt() = &Global_Physical_Variables::ReSt;
448 
449  } // end loop over bulk elements
450 
451 
452 
453  // Loop over the traction elements to pass pointer to prescribed
454  // traction function
455  unsigned n_el=Surface_mesh_pt->nelement();
456  for(unsigned e=0;e<n_el;e++)
457  {
458  // Upcast from GeneralisedElement to NavierStokes traction element
460  dynamic_cast< NavierStokesTractionElement<ELEMENT>*>(
462 
463  // Set the pointer to the prescribed traction function
465 
466  } // end loop over applied traction elements
467 
468 
469 
470 
471  //Pin the velocity on the boundaries
472  //x and y-velocities pinned along boundary 0 (bottom boundary) :
473  unsigned ibound=0;
474  unsigned num_nod= bulk_mesh_pt()->nboundary_node(ibound);
475  for (unsigned inod=0;inod<num_nod;inod++)
476  {
477  for(unsigned i=0;i<2;i++)
478  {
479  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(i);
480  }
481  }
482 
483 
484  //x and y-velocities pinned along boundary 2, 3, 4 (top boundaries) :
485  for(unsigned ib=2;ib<5;ib++)
486  {
487  num_nod= bulk_mesh_pt()->nboundary_node(ib);
488  for (unsigned inod=0;inod<num_nod;inod++)
489  {
490  for(unsigned i=0;i<2;i++)
491  {
492  bulk_mesh_pt()->boundary_node_pt(ib, inod)->pin(i);
493  }
494  }
495  }
496 
497  //y-velocity pinned along boundary 1 (right boundary):
498  ibound=1;
499  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
500  for (unsigned inod=0;inod<num_nod;inod++)
501  {
502  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(1);
503  }
504 
505 
506  //y-velocity pinned along boundary 5 (left boundary):
507  ibound=5;
508  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
509  for (unsigned inod=0;inod<num_nod;inod++)
510  {
511  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(1);
512  }// end of pin_velocity
513 
514 
515 
516  //Select control nodes "half way" up the inflow/outflow cross-sections
517  //--------------------------------------------------------------------
518 
519  // Left boundary
520  ibound=5;
521  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
522  unsigned control_nod=num_nod/2;
523  Left_node_pt= bulk_mesh_pt()->boundary_node_pt(ibound, control_nod);
524 
525  // Right boundary
526  ibound=1;
527  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
528  control_nod=num_nod/2;
529  Right_node_pt= bulk_mesh_pt()->boundary_node_pt(ibound, control_nod);
530 
531  // Setup equation numbering scheme
532  cout <<"Number of equations: " << assign_eqn_numbers() << std::endl;
533 
534 } //end of constructor
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Mesh * Surface_mesh_pt
Definition: collapsible_channel.cc:333
Node * Left_node_pt
Pointer to the left control node.
Definition: collapsible_channel.cc:336
RefineableCollapsibleChannelMesh< ELEMENT > * bulk_mesh_pt()
Access function for the specific mesh.
Definition: collapsible_channel.cc:258
double Lcollapsible
x-length in the "collapsible" part of the channel
Definition: collapsible_channel.cc:317
unsigned Nup
Number of elements in the x direction in the upstream part of the channel.
Definition: collapsible_channel.cc:301
OscillatingWall * Wall_pt
Pointer to the geometric object that parametrises the "collapsible" wall.
Definition: collapsible_channel.cc:326
double Lup
x-length in the upstream part of the channel
Definition: collapsible_channel.cc:314
double Ldown
x-length in the downstream part of the channel
Definition: collapsible_channel.cc:320
RefineableCollapsibleChannelMesh< ELEMENT > * Bulk_mesh_pt
Pointer to the "bulk" mesh.
Definition: collapsible_channel.cc:329
void create_traction_elements(const unsigned &b, Mesh *const &bulk_mesh_pt, Mesh *const &surface_mesh_pt)
Create the traction elements.
Definition: collapsible_channel.cc:597
double Ly
Transverse length.
Definition: collapsible_channel.cc:323
unsigned Ncollapsible
Definition: collapsible_channel.cc:305
unsigned Ndown
Number of elements in the x direction in the downstream part of the channel.
Definition: collapsible_channel.cc:308
unsigned Ny
Number of elements across the channel.
Definition: collapsible_channel.cc:311
Node * Right_node_pt
Pointer to right control node.
Definition: collapsible_channel.cc:339
Definition: collapsible_channel.cc:117
Definition: mesh.h:67
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
Definition: fluid_traction_elements.h:55
void(*&)(const double &t, const Vector< double > &x, const Vector< double > &n, Vector< double > &result) traction_fct_pt()
Definition: fluid_traction_elements.h:186
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Definition: problem.cc:1545
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
Time *& time_pt()
Return a pointer to the global time object.
Definition: problem.h:1504
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
TimeStepper *& time_stepper_pt()
Definition: problem.h:1524
Definition: collapsible_channel_mesh.template.h:186
Definition: error_estimator.h:266
double squash_fct(const double &s)
Definition: fsi_chan_problem.h:118
double ReSt
Womersley number.
Definition: rayleigh_instability.cc:56
void prescribed_traction(const double &t, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction)
Traction applied on the fluid at the left (inflow) boundary.
Definition: fsi_collapsible_channel.cc:186
double height(const double &x)
Height of domain.
Definition: simple_spine_channel.cc:429
double Re
Reynolds number.
Definition: fibre.cc:55
Z2ErrorEstimator * error_estimator_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:190
const double ly
Definition: ConstraintElementsUnitTest.cpp:34
const unsigned ny
Definition: ConstraintElementsUnitTest.cpp:31

References e(), MeshRefinement::error_estimator_pt, Global_Physical_Variables::height(), i, Global_Parameters::Ldown, Global_Parameters::Lup, Mesh_Parameters::ly, Global_Parameters::Ly, Mesh_Parameters::ny, GlobalParameters::Ny, Global_Physical_Variables::prescribed_traction(), Global_Physical_Variables::Re, Global_Physical_Variables::ReSt, BL_Squash::squash_fct(), and oomph::NavierStokesTractionElement< ELEMENT >::traction_fct_pt.

◆ ~CollapsibleChannelProblem() [1/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::~CollapsibleChannelProblem ( )
inline

Empty destructor.

255 {}

◆ CollapsibleChannelProblem() [2/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::CollapsibleChannelProblem ( const unsigned nup,
const unsigned ncollapsible,
const unsigned ndown,
const unsigned ny,
const double lup,
const double lcollapsible,
const double ldown,
const double ly,
const double amplitude,
const double period 
)

Constructor : the arguments are the number of elements, the length of the domain and the amplitude and period of the oscillations

◆ ~CollapsibleChannelProblem() [2/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::~CollapsibleChannelProblem ( )
inline

Empty destructor.

256 {}

◆ CollapsibleChannelProblem() [3/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::CollapsibleChannelProblem ( const unsigned nup,
const unsigned ncollapsible,
const unsigned ndown,
const unsigned ny,
const double lup,
const double lcollapsible,
const double ldown,
const double ly,
const double limpedance,
const double amplitude,
const double period,
const unsigned outflow 
)

Constructor for the collapsible channel problem.

Constructor : the arguments are the number of elements, the length of the domain and the amplitude and period of the oscillations

Default length of optional impedance tube

487 {
488  // Number of elements
489  Nup=nup;
490  Ncollapsible=ncollapsible;
491  Ndown=ndown;
492  Ny=ny;
493 
494  // Lengths of domain
495  Lup=lup;
496  Lcollapsible=lcollapsible;
497  Ldown=ldown;
498  Ly=ly;
499 
500  // Other input data
501  Period=period;
502  Amplitude=amplitude;
503 
504  // Outflow boundary type
505  // 0: prescribed flux boundary conditions
506  // 1: impedance boundary conditions
507  // 2: impedance boundary conditions using flux control elements
508  // 3: prescribed outflow
509  // Otherwise we have pressure driven flow with zero pressure at outlet
510  Outflow_type = outflow;
511 
513  L_impedance=limpedance;
514 
515  // Overwrite maximum allowed residual to accomodate possibly
516  // poor initial guess for solution
517  Problem::Max_residuals=100000000;
518 
519  // Point optional mesh pointers and other stuff to null
526 
527  // Allocate the timestepper -- this constructs the Problem's
528  // time object with a sufficient amount of storage to store the
529  // previous timsteps.
531 
532  // Parameters for wall object
533  double height=ly;
534  double length=lcollapsible;
535  double x_left=lup;
536 
537  //Create the geometric object that represents the wall
538  Wall_pt=new OscillatingWall(height, x_left, length, amplitude, period,
539  time_pt());
540 
541  //Build mesh
543  nup, ncollapsible, ndown, ny,
544  lup, lcollapsible, ldown, ly,
545  Wall_pt,
546  time_stepper_pt());
547 
548 
549  // Enable boundary layer squash function?
550 #ifdef USE_BL_SQUASH_FCT
551 
552  // Set a non-trivial boundary-layer-squash function...
553  Bulk_mesh_pt->bl_squash_fct_pt() = &BL_Squash::squash_fct;
554 
555  // ... and update the nodal positions accordingly
556  Bulk_mesh_pt->node_update();
557 
558 #endif
559  // end of boundary layer squash function
560 
561  // Add the bulk sub mesh to the problem
563 
564  // Create "surface mesh" that will contain only the prescribed-traction
565  // elements at the inflow. The default constructor just creates the mesh
566  // without giving it any elements, nodes, etc.
568 
569  // Create prescribed-traction elements
571 
572  // Add the new sub mesh to the problem
574 
575  if (Outflow_type==0)
576  {
577  oomph_info << "Flux control flow\n";
578 
579  // Create the flux control meshes
580 
581  // Construct Outflow_flux_control_master_mesh_pt
583 
584  // Construct Outflow_flux_control_sub_mesh_pt
586 
587  // Set up elements for sub meshes
589 
590  // Add new sub meshes
593  }
594  else if (Outflow_type==1)
595  {
596  oomph_info << "Pressure driven flow with impedance tube of length "
597  << L_impedance << "\n";
598 
599  if (L_impedance>0.0)
600  {
601  // Construct the mesh
603 
604  // Set up elements and impedance tube
606 
607  // Add new sub meshes
609  }
610  }
611  else if (Outflow_type==2)
612  {
613  oomph_info << "Pressure driven flow with impedance tube of length "
614  << L_impedance << " using flux control elements\n";
615 
616  if (L_impedance>0.0)
617  {
618  // Construct Outflow_flux_control_sub_mesh_pt
620 
621  // Construct Mesh
623 
624  // Set up elements and impedance tube
626 
627  // Add new sub meshes
630  }
631  }
632  else if (Outflow_type==3)
633  {
634  oomph_info << "Prescribed outflow\n";
635  }
636  else
637  {
638  oomph_info << "Pressure driven flow\n";
639  }
640 
641  // Combine all submeshes added so far into a single Mesh
643 
644  //Set errror estimator for bulk mesh
647  (Bulk_mesh_pt)->spatial_error_estimator_pt()=error_estimator_pt;
648 
649 
650  // Loop over the elements to set up element-specific
651  // things that cannot be handled by constructor
652  unsigned n_element=Bulk_mesh_pt->nelement();
653  for(unsigned e=0;e<n_element;e++)
654  {
655  // Upcast from GeneralisedElement to the present element
656  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
657 
658  //Set the Reynolds number
659  el_pt->re_pt() = &Global_Physical_Variables::Re;
660 
661  // Set the Womersley number
662  el_pt->re_st_pt() = &Global_Physical_Variables::ReSt;
663 
664  } // end loop over bulk elements
665 
666  // Pin redudant pressure dofs
669 
670  // Loop over the traction elements to pass pointer to prescribed
671  // traction function
673  {
674  unsigned n_el=Inflow_traction_mesh_pt->nelement();
675  for(unsigned e=0;e<n_el;e++)
676  {
677  // Upcast from GeneralisedElement to NavierStokes traction element
679  dynamic_cast< NavierStokesTractionElement<ELEMENT>*>(
681 
682  // Set the pointer to the prescribed traction function
683  el_pt->traction_fct_pt() =
685 
686  } // end loop over applied traction elements
687  }
688 
689 
690 
691  //Pin the velocity on the boundaries
692  //x and y-velocities pinned along boundary 0 (bottom boundary) :
693  unsigned ibound=0;
694  unsigned num_nod= bulk_mesh_pt()->nboundary_node(ibound);
695  for (unsigned inod=0;inod<num_nod;inod++)
696  {
697  for(unsigned i=0;i<2;i++)
698  {
699  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(i);
700  }
701  }
702 
703 
704  //x and y-velocities pinned along boundary 2, 3, 4 (top boundaries) :
705  for(unsigned ib=2;ib<5;ib++)
706  {
707  num_nod= bulk_mesh_pt()->nboundary_node(ib);
708  for (unsigned inod=0;inod<num_nod;inod++)
709  {
710  for(unsigned i=0;i<2;i++)
711  {
712  bulk_mesh_pt()->boundary_node_pt(ib, inod)->pin(i);
713  }
714  }
715  }
716 
717  //y-velocity pinned along boundary 1 (right boundary) and also x-velocity for
718  //prescribed outflow
719  ibound=1;
720  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
721  for (unsigned inod=0;inod<num_nod;inod++)
722  {
723  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(1);
724  if (Outflow_type==3)
725  {
726  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(0);
727  }
728  }
729 
730  //y-velocity pinned along boundary 5 (left boundary):
731  ibound=5;
732  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
733  for (unsigned inod=0;inod<num_nod;inod++)
734  {
735  bulk_mesh_pt()->boundary_node_pt(ibound, inod)->pin(1);
736  }// end of pin_velocity
737 
738 
739  //Select control nodes "half way" up the inflow/outflow cross-sections
740  //--------------------------------------------------------------------
741 
742  // Left boundary
743  ibound=5;
744  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
745  unsigned control_nod=num_nod/2;
746  Left_node_pt= bulk_mesh_pt()->boundary_node_pt(ibound, control_nod);
747 
748  // Right boundary
749  ibound=1;
750  num_nod= bulk_mesh_pt()->nboundary_node(ibound);
751  control_nod=num_nod/2;
752  Right_node_pt= bulk_mesh_pt()->boundary_node_pt(ibound, control_nod);
753 
754  // Setup equation numbering scheme
755  oomph_info <<"Number of equations: " << assign_eqn_numbers() << std::endl;
756 
757 } //end of constructor
void setup_outflow_flux_control_elements()
Attach flux control elements to outflow boundary.
Definition: flux_control.cc:1162
void setup_outflow_impedance_elements()
Attach impedance elements to outflow boundary.
Definition: flux_control.cc:1276
Mesh * Outflow_flux_control_sub_mesh_pt
Pointer to mesh of flux control elements at outflow.
Definition: flux_control.cc:425
double L_impedance
Length of optional impedance tube.
Definition: flux_control.cc:444
Mesh * Outflow_impedance_mesh_pt
Pointer to the impedance mesh.
Definition: flux_control.cc:432
Mesh * Outflow_flux_control_master_mesh_pt
Pointer to mesh containing the net flux control element (only!)
Definition: flux_control.cc:422
Mesh * Outflow_impedance_master_mesh_pt
Pointer to the master impedance mesh when using flux control elements.
Definition: flux_control.cc:435
Mesh * Inflow_traction_mesh_pt
Definition: flux_control.cc:419
double Period
Period of oscillation.
Definition: flux_control.cc:450
unsigned Outflow_type
Definition: flux_control.cc:460
unsigned Bulk_mesh_id
Id of the fluid bulk mesh.
Definition: flux_control.cc:463
void setup_inflow_traction_elements()
Create the prescribed traction elements on the inflow.
Definition: flux_control.cc:878
double Amplitude
Amplitude of osciallation.
Definition: flux_control.cc:453
WomersleyOutflowImpedanceTube< QWomersleyElement< 1, 3 >, 1 > * Womersley_impedance_tube_pt
Pointer to impendance tube.
Definition: flux_control.cc:429
Definition: refineable_navier_stokes_elements.h:322
OomphInfo oomph_info
Definition: oomph_definitions.cc:319

References GlobalParameters::Amplitude, e(), MeshRefinement::error_estimator_pt, Global_Physical_Variables::height(), i, GlobalPhysicalParameters::L_impedance, Global_Parameters::Ldown, Global_Parameters::Lup, Mesh_Parameters::ly, Global_Parameters::Ly, Mesh_Parameters::ny, GlobalParameters::Ny, oomph::oomph_info, Global_Physical_Variables::Period, Global_Physical_Variables::prescribed_traction(), Global_Physical_Variables::Re, Global_Physical_Variables::ReSt, BL_Squash::squash_fct(), and oomph::NavierStokesTractionElement< ELEMENT >::traction_fct_pt.

◆ ~CollapsibleChannelProblem() [3/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::~CollapsibleChannelProblem ( )
inline

Empty destructor.

298 {}

◆ CollapsibleChannelProblem() [4/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::CollapsibleChannelProblem ( const unsigned nup,
const unsigned ncollapsible,
const unsigned ndown,
const unsigned ny,
const double lup,
const double lcollapsible,
const double ldown,
const double ly,
const double amplitude,
const double period 
)

Constructor : the arguments are the number of elements, the length of the domain and the amplitude and period of the oscillations

◆ ~CollapsibleChannelProblem() [4/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::~CollapsibleChannelProblem ( )
inline

Empty destructor.

313 {}

◆ CollapsibleChannelProblem() [5/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::CollapsibleChannelProblem ( const unsigned nup,
const unsigned ncollapsible,
const unsigned ndown,
const unsigned ny,
const double lup,
const double lcollapsible,
const double ldown,
const double ly,
const double limpedance,
const double amplitude,
const double period,
const unsigned outflow 
)

Constructor : the arguments are the number of elements, the length of the domain and the amplitude and period of the oscillations

◆ ~CollapsibleChannelProblem() [5/5]

template<class ELEMENT >
CollapsibleChannelProblem< ELEMENT >::~CollapsibleChannelProblem ( )
inline

Empty destructor.

296 {}

Member Function Documentation

◆ actions_after_adapt() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_adapt
virtual

Actions after adapt: Rebuild the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

742 {
743  // Create prescribed-flux elements from all elements that are
744  // adjacent to boundary 5 and add them to surface mesh
746 
747  // Rebuild the global mesh
749 
750  // Loop over the traction elements to pass pointer to prescribed traction function
751  unsigned n_element=Surface_mesh_pt->nelement();
752  for(unsigned e=0;e<n_element;e++)
753  {
754  // Upcast from GeneralisedElement to NavierStokesTractionElement element
758 
759  // Set the pointer to the prescribed traction function
761  }
762 } // end of actions_after_adapt
void rebuild_global_mesh()
Definition: problem.cc:1533

References e(), Global_Physical_Variables::prescribed_traction(), and oomph::NavierStokesTractionElement< ELEMENT >::traction_fct_pt.

◆ actions_after_adapt() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_adapt ( )
virtual

Actions after adapt: Rebuild the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_after_adapt() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_adapt ( )
protectedvirtual

Actions after adapt: Rebuild the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_after_adapt() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_adapt ( )
virtual

Actions after adapt: Rebuild the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_after_adapt() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_adapt ( )
protectedvirtual

Actions after adapt: Rebuild the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_after_newton_solve() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

272 {}

◆ actions_after_newton_solve() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

292 {}

◆ actions_after_newton_solve() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_newton_solve ( )
inlineprotectedvirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

350 {}

◆ actions_after_newton_solve() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

330 {}

◆ actions_after_newton_solve() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_after_newton_solve ( )
inlineprotectedvirtual

Update the problem after solve (empty)

Reimplemented from oomph::Problem.

348 {}

◆ actions_before_adapt() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_adapt
virtual

Actions before adapt: Wipe the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

727 {
728  // Kill the traction elements and wipe surface mesh
730 
731  // Rebuild the global mesh.
733 
734 } // end of actions_before_adapt
void delete_traction_elements(Mesh *const &surface_mesh_pt)
Delete prescribed traction elements from the surface mesh.
Definition: collapsible_channel.cc:630

◆ actions_before_adapt() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_adapt ( )
virtual

Actions before adapt: Wipe the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_before_adapt() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_adapt ( )
protectedvirtual

Actions before adapt: Wipe the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_before_adapt() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_adapt ( )
virtual

Actions before adapt: Wipe the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_before_adapt() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_adapt ( )
protectedvirtual

Actions before adapt: Wipe the mesh of prescribed traction elements.

Reimplemented from oomph::Problem.

◆ actions_before_implicit_timestep() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_implicit_timestep
virtual

Update the velocity boundary condition on the moving wall.

Execute the actions before timestep: Update the velocity boundary condition on the moving wall

Reimplemented from oomph::Problem.

701 {
702  // Update the domain shape
703  bulk_mesh_pt()->node_update();
704 
705  // Moving wall: No slip; this implies that the velocity needs
706  // to be updated in response to wall motion
707  unsigned ibound=3;
708  unsigned num_nod=bulk_mesh_pt()->nboundary_node(ibound);
709  for (unsigned inod=0;inod<num_nod;inod++)
710  {
711  // Which node are we dealing with?
712  Node* node_pt=bulk_mesh_pt()->boundary_node_pt(ibound,inod);
713 
714  // Apply no slip
716  }
717 } //end of actions_before_implicit_timestep
Definition: nodes.h:906
void apply_no_slip_on_moving_wall(Node *node_pt)
Definition: fsi.cc:48

References oomph::FSI_functions::apply_no_slip_on_moving_wall().

◆ actions_before_implicit_timestep() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_implicit_timestep ( )
virtual

Update the velocity boundary condition on the moving wall.

Reimplemented from oomph::Problem.

◆ actions_before_implicit_timestep() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_implicit_timestep ( )
protectedvirtual

Update the velocity boundary condition on the moving wall.

Reimplemented from oomph::Problem.

◆ actions_before_implicit_timestep() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_implicit_timestep ( )
virtual

Update the velocity boundary condition on the moving wall.

Reimplemented from oomph::Problem.

◆ actions_before_implicit_timestep() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_implicit_timestep ( )
protectedvirtual

Update the velocity boundary condition on the moving wall.

Reimplemented from oomph::Problem.

◆ actions_before_newton_convergence_check()

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_convergence_check ( )
inlinevirtual

Update no slip before Newton convergence check.

Reimplemented from oomph::Problem.

334  {
335  // Moving wall: No slip; this implies that the velocity needs
336  // to be updated in response to wall motion
337  unsigned ibound=3;
338  unsigned num_nod=bulk_mesh_pt()->nboundary_node(ibound);
339  for (unsigned inod=0;inod<num_nod;inod++)
340  {
341  // Which node are we dealing with?
342  Node* node_pt=bulk_mesh_pt()->boundary_node_pt(ibound,inod);
343 
344  // Apply no slip
346  }
347  }

References oomph::FSI_functions::apply_no_slip_on_moving_wall().

◆ actions_before_newton_solve() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_solve
inlinevirtual

Update the problem specs before solve (empty)

Update the inflow and outflow boundary conditioner before solve.

Reimplemented from oomph::Problem.

269 {}

◆ actions_before_newton_solve() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty)

Reimplemented from oomph::Problem.

289 {}

◆ actions_before_newton_solve() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_solve ( )
protectedvirtual

Update the problem specs before solve.

Reimplemented from oomph::Problem.

◆ actions_before_newton_solve() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update the problem specs before solve (empty)

Reimplemented from oomph::Problem.

327 {}

◆ actions_before_newton_solve() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::actions_before_newton_solve ( )
protectedvirtual

Update the problem specs before solve.

Reimplemented from oomph::Problem.

◆ bulk_mesh_pt() [1/5]

template<class ELEMENT >
RefineableCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::bulk_mesh_pt ( )
inline

Access function for the specific mesh.

259  {
260 
261  // Upcast from pointer to the Mesh base class to the specific
262  // element type that we're using here.
263  return dynamic_cast<RefineableCollapsibleChannelMesh<ELEMENT>*>
264  (Bulk_mesh_pt);
265 
266  } // end of access to bulk mesh

◆ bulk_mesh_pt() [2/5]

template<class ELEMENT >
MyAlgebraicCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::bulk_mesh_pt ( )
inline

Access function for the specific mesh.

276  {
277 
278  // Upcast from pointer to the Mesh base class to the specific
279  // element type that we're using here.
280  return dynamic_cast<MyAlgebraicCollapsibleChannelMesh<ELEMENT>*>
281  (Bulk_mesh_pt);
282 
283  } // end of access to bulk mesh
Collapsible channel mesh with algebraic node update.
Definition: my_alg_channel_mesh.h:51

◆ bulk_mesh_pt() [3/5]

template<class ELEMENT >
RefineableCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::bulk_mesh_pt ( )
inline

Access function for the fluid bulk mesh.

302  {
303  // Upcast from pointer to the Mesh base class to the specific
304  // element type that we're using here.
305  return dynamic_cast<RefineableCollapsibleChannelMesh<ELEMENT>*>
306  (Bulk_mesh_pt);
307 
308  } // end of access to bulk mesh

◆ bulk_mesh_pt() [4/5]

template<class ELEMENT >
RefineableCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::bulk_mesh_pt ( )
inline

Access function for the specific mesh.

317  {
318 
319  // Upcast from pointer to the Mesh base class to the specific
320  // element type that we're using here.
321  return dynamic_cast<RefineableCollapsibleChannelMesh<ELEMENT>*>
322  (Bulk_mesh_pt);
323 
324  } // end of access to bulk mesh

◆ bulk_mesh_pt() [5/5]

template<class ELEMENT >
RefineableCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::bulk_mesh_pt ( )
inline

Access function for the fluid bulk mesh.

300  {
301  // Upcast from pointer to the Mesh base class to the specific
302  // element type that we're using here.
303  return dynamic_cast<RefineableCollapsibleChannelMesh<ELEMENT>*>
304  (Bulk_mesh_pt);
305 
306  } // end of access to bulk mesh

◆ create_lagrange_multiplier_elements()

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::create_lagrange_multiplier_elements
private

Create elements that impose the prescribed boundary displacement.

Create elements that enforce prescribed boundary motion by Lagrange multiplilers

776 {
777  // Lagrange multiplier elements are located on boundary 3:
778  unsigned b=3;
779 
780  // How many bulk elements are adjacent to boundary b?
781  unsigned n_element = bulk_mesh_pt()->nboundary_element(b);
782 
783  // Loop over the bulk elements adjacent to boundary b?
784  for(unsigned e=0;e<n_element;e++)
785  {
786  // Get pointer to the bulk element that is adjacent to boundary b
787  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
788  bulk_mesh_pt()->boundary_element_pt(b,e));
789 
790  //Find the index of the face of element e along boundary b
791  int face_index = bulk_mesh_pt()->face_index_at_boundary(b,e);
792 
793  // Create new element and add to mesh
796  bulk_elem_pt,face_index));
797  }
798 
799 
800  // Loop over the elements in the Lagrange multiplier element mesh
801  // for elements on the top boundary (boundary 3)
803  for(unsigned i=0;i<n_element;i++)
804  {
805  //Cast to a Lagrange multiplier element
809 
810  // Set the GeomObject that defines the boundary shape and
811  // specify which bulk boundary it's attached to
813 
814  // Loop over the nodes
815  unsigned nnod=el_pt->nnode();
816  for (unsigned j=0;j<nnod;j++)
817  {
818  Node* nod_pt = el_pt->node_pt(j);
819 
820  // Is the node also on boundary 2 or 4?
821  if ((nod_pt->is_on_boundary(2))||(nod_pt->is_on_boundary(4)))
822  {
823  // How many nodal values were used by the "bulk" element
824  // that originally created this node?
825  unsigned n_bulk_value=el_pt->nbulk_value(j);
826 
827  // The remaining ones are Lagrange multipliers and we pin them.
828  unsigned nval=nod_pt->nvalue();
829  for (unsigned j=n_bulk_value;j<nval;j++)
830  {
831  nod_pt->pin(j);
832  }
833  }
834  }
835  }
836 
837 } // end of create_lagrange_multiplier_elements
Scalar * b
Definition: benchVecAdd.cpp:17
SolidMesh * Lagrange_multiplier_mesh_pt
Pointers to meshes of Lagrange multiplier elements.
Definition: pseudo_solid_collapsible_channel.cc:419
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
unsigned & nbulk_value(const unsigned &n)
Definition: elements.h:4845
Node *& node_pt(const unsigned &n)
Return a pointer to the local node n.
Definition: elements.h:2175
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
Definition: solid_traction_elements.h:1107
void set_boundary_shape_geom_object_pt(GeomObject *boundary_shape_geom_object_pt, const unsigned &boundary_number_in_bulk_mesh)
Definition: solid_traction_elements.h:1209
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
virtual bool is_on_boundary() const
Definition: nodes.h:1373
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References b, oomph::Mesh::boundary_element_pt(), e(), oomph::Mesh::face_index_at_boundary(), i, oomph::Node::is_on_boundary(), j, oomph::Mesh::nboundary_element(), oomph::FaceElement::nbulk_value(), oomph::FiniteElement::nnode(), oomph::FiniteElement::node_pt(), oomph::Data::nvalue(), oomph::Data::pin(), and oomph::ImposeDisplacementByLagrangeMultiplierElement< ELEMENT >::set_boundary_shape_geom_object_pt().

◆ create_mesh_for_navier_stokes_preconditioner() [1/2]

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::create_mesh_for_navier_stokes_preconditioner

Create a mesh for the NavierStokes Preconditioner.

Create a mesh for the NavierStokesSchurComplementPreconditioner.

1113 {
1114  //Vector to hold the meshes
1115  Vector<Mesh*> meshes;
1116 
1117  //Add the bulk mesh
1118  meshes.push_back(Bulk_mesh_pt);
1119 
1120  // Add the flux control master mesh if it exists
1122  {
1123  meshes.push_back(Outflow_flux_control_master_mesh_pt);
1124  }
1125 
1126  // Build "combined" mesh from vector of submeshes
1127  Mesh* mesh_pt = new Mesh(meshes);
1128 
1129  return mesh_pt;
1130 }
Mesh *& mesh_pt()
Return a pointer to the global mesh.
Definition: problem.h:1280

◆ create_mesh_for_navier_stokes_preconditioner() [2/2]

template<class ELEMENT >
Mesh* CollapsibleChannelProblem< ELEMENT >::create_mesh_for_navier_stokes_preconditioner ( )

Create a mesh for the NavierStokesSchurComplementPreconditioner.

◆ create_traction_elements() [1/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::create_traction_elements ( const unsigned b,
Mesh *const &  bulk_mesh_pt,
Mesh *const &  surface_mesh_pt 
)
private

Create the traction elements.

Create the prescribed traction elements on boundary b of the bulk mesh and stick them into the surface mesh.

599 {
600  // How many bulk elements are adjacent to boundary b?
601  unsigned n_element = bulk_mesh_pt->nboundary_element(b);
602 
603  // Loop over the bulk elements adjacent to boundary b
604  for(unsigned e=0;e<n_element;e++)
605  {
606  // Get pointer to the bulk element that is adjacent to boundary b
607  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>
608  (bulk_mesh_pt->boundary_element_pt(b,e));
609 
610  //What is the index of the face of element e that lies along boundary b
611  int face_index = bulk_mesh_pt->face_index_at_boundary(b,e);
612 
613  // Build the corresponding prescribed-traction element
614  NavierStokesTractionElement<ELEMENT>* traction_element_pt =
615  new NavierStokesTractionElement<ELEMENT>(bulk_elem_pt,face_index);
616 
617  //Add the prescribed-flux element to the surface mesh
618  surface_mesh_pt->add_element_pt(traction_element_pt);
619 
620  } //end of loop over bulk elements adjacent to boundary b
621 
622 } // end of create_traction_elements

References oomph::Mesh::add_element_pt(), b, oomph::Mesh::boundary_element_pt(), e(), oomph::Mesh::face_index_at_boundary(), and oomph::Mesh::nboundary_element().

◆ create_traction_elements() [2/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::create_traction_elements ( const unsigned b,
Mesh *const &  bulk_mesh_pt,
Mesh *const &  surface_mesh_pt 
)
private

Create the prescribed traction elements on boundary b of the bulk mesh and stick them into the surface mesh.

◆ create_traction_elements() [3/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::create_traction_elements ( const unsigned b,
Mesh *const &  bulk_mesh_pt,
Mesh *const &  surface_mesh_pt 
)
private

Create the prescribed traction elements on boundary b of the bulk mesh and stick them into the surface mesh.

◆ delete_inflow_traction_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_inflow_traction_elements
private

Delete prescribed traction elements from the surface mesh.

Delete traction elements and wipe the surface mesh.

913 {
914  // How many surface elements are in the surface mesh
915  unsigned n_element = Inflow_traction_mesh_pt->nelement();
916 
917  // Loop over the surface elements
918  for(unsigned e=0;e<n_element;e++)
919  {
920  // Kill element
922  }
923 
924  // Wipe the mesh
926 
927 } // end of delete_traction_elements
void flush_element_and_node_storage()
Definition: mesh.h:407

References e().

◆ delete_inflow_traction_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_inflow_traction_elements ( )
private

Delete prescribed traction elements from the surface mesh.

◆ delete_lagrange_multiplier_elements()

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_lagrange_multiplier_elements
private

Delete elements that enforce prescribed boundary motion by Lagrange multiplilers

Delete elements that impose the prescribed boundary displacement and wipe the associated mesh

848 {
849  // How many surface elements are in the surface mesh
850  unsigned n_element = Lagrange_multiplier_mesh_pt->nelement();
851 
852  // Loop over the surface elements
853  for(unsigned e=0;e<n_element;e++)
854  {
855  // Kill surface element
857  }
858 
859  // Wipe the mesh
861 
862 } // end of delete_lagrange_multiplier_elements

References e().

◆ delete_outflow_flux_control_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_outflow_flux_control_elements
private

Delete flux control elements from outflow boundary.

1138 {
1139  // Delete the master flux control element
1141 
1142  // Wipe the mesh
1144 
1145  // Loop over all flux control elements at outflow
1146  unsigned n_bound_el=Outflow_flux_control_sub_mesh_pt->nelement();
1147  for (unsigned e=0;e<n_bound_el;e++)
1148  {
1149  //Delete the element
1151  }
1152 
1153  // Wipe the mesh
1155 }

References e().

◆ delete_outflow_flux_control_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_outflow_flux_control_elements ( )
private

Delete flux control elements from outflow boundary.

◆ delete_outflow_impedance_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_outflow_impedance_elements
private

Delete impedance elements from outflow boundary.

1227 {
1228  if (Outflow_type==1)
1229  {
1230  // Loop over all elements at outflow
1231  unsigned n_bound_el=Outflow_impedance_mesh_pt->nelement();
1232  for (unsigned e=0;e<n_bound_el;e++)
1233  {
1234  //Delete the element
1236  }
1237 
1238  // Wipe the mesh
1240 
1241  // Delete the impedance tube
1244  }
1245  else
1246  {
1247  // Delete the elements in the master mesh
1250 
1251  // Wipe the mesh
1253 
1254  // Loop over all flux control elements at outflow
1255  unsigned n_bound_el=Outflow_flux_control_sub_mesh_pt->nelement();
1256  for (unsigned e=0;e<n_bound_el;e++)
1257  {
1258  //Delete the element
1260  }
1261 
1262  // Wipe the mesh
1264 
1265  // Delete the impedance tube
1268  }
1269 
1270 }

References e().

◆ delete_outflow_impedance_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_outflow_impedance_elements ( )
private

◆ delete_traction_elements() [1/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_traction_elements ( Mesh *const &  surface_mesh_pt)
private

Delete prescribed traction elements from the surface mesh.

Delete traction elements and wipe the surface mesh.

631 {
632  // How many surface elements are in the surface mesh
633  unsigned n_element = surface_mesh_pt->nelement();
634 
635  // Loop over the surface elements
636  for(unsigned e=0;e<n_element;e++)
637  {
638  // Kill surface element
639  delete surface_mesh_pt->element_pt(e);
640  }
641 
642  // Wipe the mesh
643  surface_mesh_pt->flush_element_and_node_storage();
644 
645 } // end of delete_traction_elements

References e(), oomph::Mesh::element_pt(), oomph::Mesh::flush_element_and_node_storage(), and oomph::Mesh::nelement().

◆ delete_traction_elements() [2/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_traction_elements ( Mesh *const &  surface_mesh_pt)
private

Delete prescribed traction elements from the surface mesh.

◆ delete_traction_elements() [3/3]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::delete_traction_elements ( Mesh *const &  surface_mesh_pt)
private

Delete prescribed traction elements from the surface mesh.

◆ doc_solution() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution.

545 {
546  ofstream some_file;
547  char filename[100];
548 
549  // Number of plot points
550  unsigned npts;
551  npts=5;
552 
553  // Output solution
554  sprintf(filename,"%s/soln%i.dat",doc_info.directory().c_str(),
555  doc_info.number());
556  some_file.open(filename);
557  bulk_mesh_pt()->output(some_file,npts);
558  some_file.close();
559 
560 
561  // Get the position of the midpoint on the geometric object
562  Vector<double> zeta(1);
563  zeta[0]=0.5*Lcollapsible;
564  Vector<double> wall_point(2);
565  Wall_pt->position(zeta,wall_point);
566 
567  // Write trace file
568  trace_file << time_pt()->time() << " "
569  << wall_point[1] << " "
570  << Left_node_pt->value(0) << " "
571  << Right_node_pt->value(0) << " "
572  << std::endl;
573 
574  // Output wall shape
575  sprintf(filename,"%s/wall%i.dat",doc_info.directory().c_str(),
576  doc_info.number());
577  some_file.open(filename);
578  unsigned nplot=100;
579  for (unsigned i=0;i<nplot;i++)
580  {
581  zeta[0]=double(i)/double(nplot-1)*Lcollapsible;
582  Wall_pt->position(zeta,wall_point);
583  some_file << wall_point[0] << " "
584  << wall_point[1] << std::endl;
585  }
586  some_file.close();
587 
588 } // end_of_doc_solution
void position(const unsigned &t, const Vector< double > &zeta, Vector< double > &r) const
Definition: collapsible_channel.cc:142
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
double value(const unsigned &i) const
Definition: nodes.cc:2408
double & time()
Return the current value of the continuous time.
Definition: timesteppers.h:123
EIGEN_STRONG_INLINE const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > zeta(const Eigen::ArrayBase< DerivedX > &x, const Eigen::ArrayBase< DerivedQ > &q)
Definition: SpecialFunctionsArrayAPI.h:152
string filename
Definition: MergeRestartFiles.py:39

References oomph::DocInfo::directory(), MergeRestartFiles::filename, i, oomph::DocInfo::number(), and Eigen::zeta().

◆ doc_solution() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution.

◆ doc_solution() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution.

◆ doc_solution() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution.

◆ doc_solution() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::doc_solution ( DocInfo doc_info,
ofstream &  trace_file 
)

Doc the solution.

◆ outflow_impedance_master_mesh_pt() [1/2]

template<class ELEMENT >
Mesh* & CollapsibleChannelProblem< ELEMENT >::outflow_impedance_master_mesh_pt ( )
inline

Access function to the pointer to the master impedance mesh which is used when using impedance boundary conditions with flux control elements

313  {
315  }

◆ outflow_impedance_master_mesh_pt() [2/2]

template<class ELEMENT >
Mesh* & CollapsibleChannelProblem< ELEMENT >::outflow_impedance_master_mesh_pt ( )
inline

Access function to the pointer to the master impedance mesh which is used when using impedance boundary conditions with flux control elements

311  {
313  }

◆ refine_elements_based_on_x_coord() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::refine_elements_based_on_x_coord ( const double x_min,
const double x_max 
)

Refine any element whoes centre node lies between x coorodinates x_min and x_max

790  {
791  // Vector to store pointers to elements to be refined
792  Vector<RefineableElement*> element_pt;
793 
794  // Get elements we want to refine
795  unsigned n_el = Bulk_mesh_pt->nelement();
796 
797  for (unsigned e=0; e<n_el; e++)
798  {
799  // Get element
800  RefineableElement* el_pt =
801  dynamic_cast<RefineableElement*>(Bulk_mesh_pt->element_pt(e));
802 
803  // Get x-coord of node at centre
804  double x_centre=el_pt->node_pt(4)->x(0);
805 
806  // Add to Vector if to be refined
807  if ((x_centre>=x_min) && (x_centre<=x_max))
808  {
809  element_pt.push_back(el_pt);
810  }
811  }
812 
813  // Refine the elements
814  oomph_info << "Number of elements to refine between x=" << x_min
815  << " & " << x_max << " is "
816  << element_pt.size() << "\n";
818  }
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
void refine_selected_elements(const Vector< unsigned > &elements_to_be_refined)
Definition: problem.cc:14898
Definition: refineable_elements.h:97

References e(), oomph::FiniteElement::node_pt(), oomph::oomph_info, and oomph::Node::x().

◆ refine_elements_based_on_x_coord() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::refine_elements_based_on_x_coord ( const double x_min,
const double x_max 
)

Refine any element whoes centre node lies between x coorodinates x_min and x_max

◆ set_initial_condition() [1/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_initial_condition
virtual

Apply initial conditions.

Apply initial conditions: Impulsive start from steady Poiseuille.

Apply initial conditions: Impulsive start from steady Poiseuille flow.

Reimplemented from oomph::Problem.

654 {
655 
656  // Check that timestepper is from the BDF family
657  if (time_stepper_pt()->type()!="BDF")
658  {
659  std::ostringstream error_stream;
660  error_stream
661  << "Timestepper has to be from the BDF family!\n"
662  << "You have specified a timestepper from the "
663  << time_stepper_pt()->type() << " family" << std::endl;
664 
665  throw OomphLibError(error_stream.str(),
668  }
669 
670  // Update the mesh
671  bulk_mesh_pt()->node_update();
672 
673  // Loop over the nodes to set initial guess everywhere
674  unsigned num_nod = bulk_mesh_pt()->nnode();
675  for (unsigned n=0;n<num_nod;n++)
676  {
677  // Get nodal coordinates
678  Vector<double> x(2);
679  x[0]=bulk_mesh_pt()->node_pt(n)->x(0);
680  x[1]=bulk_mesh_pt()->node_pt(n)->x(1);
681 
682  // Assign initial condition: Steady Poiseuille flow
683  bulk_mesh_pt()->node_pt(n)->set_value(0,6.0*(x[1]/Ly)*(1.0-(x[1]/Ly)));
684  bulk_mesh_pt()->node_pt(n)->set_value(1,0.0);
685  }
686 
687  // Assign initial values for an impulsive start
688  bulk_mesh_pt()->assign_initial_values_impulsive();
689 
690 
691 } // end of set_initial_condition
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Definition: oomph_definitions.h:222
std::string type() const
Definition: timesteppers.h:490
type
Definition: compute_granudrum_aor.py:141
list x
Definition: plotDoE.py:28
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86

References Global_Parameters::Ly, n, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, compute_granudrum_aor::type, and plotDoE::x.

◆ set_initial_condition() [2/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_initial_condition ( )
virtual

Apply initial conditions.

Reimplemented from oomph::Problem.

◆ set_initial_condition() [3/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_initial_condition ( )
protectedvirtual

Apply initial conditions.

Reimplemented from oomph::Problem.

◆ set_initial_condition() [4/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_initial_condition ( )
virtual

Apply initial conditions.

Reimplemented from oomph::Problem.

◆ set_initial_condition() [5/5]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_initial_condition ( )
protectedvirtual

Apply initial conditions.

Reimplemented from oomph::Problem.

◆ set_parallel_outflow() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_parallel_outflow
protected

Apply parallel flow on outlet.

1419 {
1420  // Outflow is boundary 1
1421  unsigned b = 1;
1422 
1423  // Loop over all elements on this boundary
1424  unsigned n_bound_el=Bulk_mesh_pt->nboundary_element(b);
1425  for (unsigned e=0;e<n_bound_el;e++)
1426  {
1427  // Assign parallel flow
1428  bulk_mesh_pt()->node_pt(e)->set_value(1,0.0);
1429  }
1430 }

References b, and e().

◆ set_parallel_outflow() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_parallel_outflow ( )
protected

Apply parallel flow on outlet.

◆ set_poiseuille_outflow() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_poiseuille_outflow
protected

Apply Poiseuille flow on outlet.

1394 {
1395  // Outflow is boundary 1
1396  unsigned b = 1;
1397 
1398  // Loop over all elements on this boundary
1399  unsigned n_bound_el=Bulk_mesh_pt->nboundary_element(b);
1400  for (unsigned e=0;e<n_bound_el;e++)
1401  {
1402  // Get nodal coordinates
1403  Vector<double> x(2);
1404  x[0]=bulk_mesh_pt()->node_pt(e)->x(0);
1405  x[1]=bulk_mesh_pt()->node_pt(e)->x(1);
1406 
1407  // Assign Poiseuille flow
1408  bulk_mesh_pt()->node_pt(e)->set_value(0,6.0*(x[1]/Ly)*(1.0-(x[1]/Ly)));
1409  bulk_mesh_pt()->node_pt(e)->set_value(1,0.0);
1410  }
1411 
1412 }

References b, e(), Global_Parameters::Ly, and plotDoE::x.

◆ set_poiseuille_outflow() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::set_poiseuille_outflow ( )
protected

Apply Poiseuille flow on outlet.

◆ setup_inflow_traction_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_inflow_traction_elements
private

Create the prescribed traction elements on the inflow.

Create the traction elements.

879 {
880  // inflow is boundary 5
881  unsigned b=5;
882 
883  // How many bulk elements are adjacent to boundary b?
884  unsigned n_element = Bulk_mesh_pt->nboundary_element(b);
885 
886  // Loop over the bulk elements adjacent to boundary b
887  for(unsigned e=0;e<n_element;e++)
888  {
889  // Get pointer to the bulk element that is adjacent to boundary b
890  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>
891  (Bulk_mesh_pt->boundary_element_pt(b,e));
892 
893  //What is the index of the face of element e that lies along boundary b
894  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
895 
896  // Build the corresponding prescribed-traction element
897  NavierStokesTractionElement<ELEMENT>* traction_element_pt =
898  new NavierStokesTractionElement<ELEMENT>(bulk_elem_pt,face_index);
899 
900  //Add the prescribed-flux element to the surface mesh
901  Inflow_traction_mesh_pt->add_element_pt(traction_element_pt);
902 
903  } //end of loop over bulk elements adjacent to boundary b
904 
905 }

References b, and e().

◆ setup_inflow_traction_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_inflow_traction_elements ( )
private

Create the prescribed traction elements on the inflow.

◆ setup_outflow_flux_control_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_outflow_flux_control_elements
private

Attach flux control elements to outflow boundary.

1163 {
1164  // Attach elements to apply traction on boundary 1
1165  unsigned b = 1;
1166 
1167  // Loop over all elements on this boundary
1168  unsigned n_bound_el=Bulk_mesh_pt->nboundary_element(b);
1169  for (unsigned e=0;e<n_bound_el;e++)
1170  {
1171  // Get pointer to bulk element
1172  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
1173  Bulk_mesh_pt->boundary_element_pt(b,e));
1174 
1175  // Get the index of the face of element e along boundary b
1176  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
1177 
1178  // Build the corresponding flux control element
1179  NavierStokesFluxControlElement<ELEMENT>* flux_element_pt = new
1180  NavierStokesFluxControlElement<ELEMENT>(bulk_elem_pt, face_index);
1181 
1182  //Add the new element to its mesh
1184  }
1185 
1186 
1187  // Build master element
1188  NetFluxControlElement* flux_control_el_pt = new NetFluxControlElement(
1191 
1192 
1193  // Set the block id for the pressure unknown in this element for the
1194  // preconditioning, in 2D the Navier-Stokes pressure is in block 2
1195  flux_control_el_pt->dof_number_for_unknown() = 2;
1196 
1197  // Add NetFluxControlElement to its mesh
1199  add_element_pt(flux_control_el_pt);
1200 
1201  // Get pointer to the outflow pressure data
1203  flux_control_el_pt->pressure_data_pt();
1204 
1205  // Loop over the elements in the sub mesh and pass
1206  // Global_Physical_Variables::Pout_data_pt to the element
1207  unsigned n_el = Outflow_flux_control_sub_mesh_pt->nelement();
1208  for (unsigned e=0; e< n_el; e++)
1209  {
1210  // Get pointer to the element
1211  GeneralisedElement* el_pt =
1213 
1214  // Dynamic cast
1215  dynamic_cast<NavierStokesFluxControlElement<ELEMENT>* >(el_pt)->
1216  add_pressure_data(Global_Physical_Variables::Pout_data_pt);
1217  }
1218 
1219 }
double Prescribed_volume_flux
Prescribed volume flux: set to -1 for value consistent with Re.
Definition: flux_control.cc:447
Definition: elements.h:73
Definition: navier_stokes_flux_control_elements.h:351
Definition: flux_control_elements_bk.h:54
unsigned & dof_number_for_unknown()
Definition: navier_stokes_flux_control_elements.h:229
Data * pressure_data_pt() const
Definition: flux_control_elements_bk.h:104
Data * Pout_data_pt
Pointer to Data holding downstream pressure load.
Definition: flux_control.cc:266

References b, oomph::NetFluxControlElement< ELEMENT >::dof_number_for_unknown(), e(), Global_Physical_Variables::Pout_data_pt, GlobalPhysicalParameters::Prescribed_volume_flux, and oomph::NetFluxControlElement< ELEMENT >::pressure_data_pt().

◆ setup_outflow_flux_control_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_outflow_flux_control_elements ( )
private

Attach flux control elements to outflow boundary.

◆ setup_outflow_impedance_elements() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_outflow_impedance_elements
private

Attach impedance elements to outflow boundary.

1277 {
1278  // Check we are at time t=0, otherwise this function will not work
1279  // since an ImpedanceTube is contstructed so it's been at steady state
1280  // for all previous time.
1281  if (time_stepper_pt()->time()>0.0)
1282  {
1283  std::ostringstream error_stream;
1284  error_stream
1285  << "Impedance is set up assuming problem has been at rest for all previous "
1286  << "times, \ndid you mean to set up the impedance elements at time="
1287  << time_stepper_pt()->time() << " ?\n";
1288 
1289  throw OomphLibError(error_stream.str(),
1292  }
1293 
1294  // Elements apply traction on boundary 1
1295  unsigned b = 1;
1296 
1297  // Loop over all elements on this boundary
1298  unsigned n_bound_el=Bulk_mesh_pt->nboundary_element(b);
1299 
1300  if (Outflow_type==1)
1301  {
1302  for (unsigned e=0;e<n_bound_el;e++)
1303  {
1304  // Get pointer to bulk element
1305  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
1306  Bulk_mesh_pt->boundary_element_pt(b,e));
1307 
1308  // Get the index of the face of element e along boundary b
1309  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
1310 
1311  // Build the corresponding prescribed traction element
1313  <ELEMENT,QWomersleyElement<1,3>,1>* traction_element_pt =
1315  <ELEMENT,QWomersleyElement<1,3>,1>(bulk_elem_pt,face_index);
1316 
1317  //Add the prescribed traction element to the mesh
1318  Outflow_impedance_mesh_pt->add_element_pt(traction_element_pt);
1319  }
1320 
1321  // fixed coord in bulk mesh which is constant at the outflow
1322  unsigned fixed_coordinate=0;
1323 
1324  // nodal index of velocity component which defines the outflow
1325  unsigned v_index=0;
1326 
1327  // Build Womersley impedance tube and let it provide the
1328  // outflow traction to the elements in the Outflow_traction_mesh_pt.
1331  (L_impedance,
1333  fixed_coordinate,
1334  v_index);
1335  }
1336  else
1337  {
1338  // Loop over all elements on this boundary
1339  unsigned n_bound_el=Bulk_mesh_pt->nboundary_element(b);
1340  for (unsigned e=0;e<n_bound_el;e++)
1341  {
1342  // Get pointer to bulk element
1343  ELEMENT* bulk_elem_pt = dynamic_cast<ELEMENT*>(
1344  Bulk_mesh_pt->boundary_element_pt(b,e));
1345 
1346  // Get the index of the face of element e along boundary b
1347  int face_index = Bulk_mesh_pt->face_index_at_boundary(b,e);
1348 
1349  // Build the corresponding flux control element
1350  NavierStokesFluxControlElement<ELEMENT>* flux_element_pt = new
1351  NavierStokesFluxControlElement<ELEMENT>(bulk_elem_pt, face_index);
1352 
1353  //Add the new element to its mesh
1355  }
1356 
1357  // fixed coord in bulk mesh which is constant at the outflow
1358  unsigned fixed_coordinate=0;
1359 
1360  // nodal index of velocity component which defines the outflow
1361  unsigned v_index=0;
1362 
1363  // Build Womersley impedance tube and let it provide the
1364  // outflow traction to the elements in the Outflow_traction_mesh_pt.
1367  L_impedance,
1369  fixed_coordinate,
1370  v_index);
1371 
1372  // Build the pressure control element and add to the master mesh
1373  NavierStokesWomersleyPressureControlElement* pressure_control_element
1376 
1377  Outflow_impedance_master_mesh_pt->add_element_pt(pressure_control_element);
1378 
1379  // Build the flux control master element and add to the master mesh
1382  (Outflow_flux_control_sub_mesh_pt, pressure_control_element);
1383 
1384  Outflow_impedance_master_mesh_pt->add_element_pt(flux_control_element);
1385  }
1386 }
Definition: womersley_elements.h:1979
Definition: womersley_elements.h:2578
Definition: womersley_elements.h:2733
double & time()
Return the current value of continuous time.
Definition: problem.cc:11531
Definition: womersley_elements.h:632
double & time()
Return current value of continous time.
Definition: timesteppers.h:332
Definition: womersley_elements.h:1828

References b, e(), GlobalPhysicalParameters::L_impedance, OOMPH_CURRENT_FUNCTION, and OOMPH_EXCEPTION_LOCATION.

◆ setup_outflow_impedance_elements() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::setup_outflow_impedance_elements ( )
private

◆ switch_off_wall_oscillations() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::switch_off_wall_oscillations ( )
inline

Function to switch off wall oscillations.

330  {
332  }
void enable_remain_steady_at_maximum_amplitude()
Definition: flux_control.cc:153

◆ switch_off_wall_oscillations() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::switch_off_wall_oscillations ( )
inline

Function to switch off wall oscillations.

◆ unsteady_run() [1/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::unsteady_run ( string  directory_for_data,
double  nstep,
const bool validation_run = false 
)

Run unsteady problem.

1438 {
1439  // Set volume flux consistent with Re
1440  Prescribed_volume_flux = 1.0;
1441 
1442  // Pressure/applied traction on the left boundary: This is consistent with
1443  // steady Poiseuille flow
1446 
1447  DocInfo doc_info;
1448  doc_info.set_directory(directory_for_data);
1449 
1450  // Open a trace file
1451  ofstream trace_file;
1452  char filename[100];
1453  sprintf(filename,"%s/trace.dat",doc_info.directory().c_str());
1454  trace_file.open(filename);
1455 
1456  // Number of timesteps per period
1457  unsigned nsteps_per_period=40;
1458 
1459  //Timestep:
1460  double dt=Period/double(nsteps_per_period);
1461 
1462  if (validation_run)
1463  {
1464  nstep=10;
1465  dt=0.25;
1466  }
1467 
1468  oomph_info << "Timestep=" << dt << "\n";
1469 
1470  // Start time
1471  double t_min=0.0;
1472 
1473  // Initialise timestep and set initial conditions
1474  time_pt()->time()=t_min;
1475  initialise_dt(dt);
1477 
1478  // Output the initial solution
1479  doc_solution(doc_info, trace_file);
1480 
1481  // Step number
1482  doc_info.number()++;
1483 
1484  // Set targets for spatial adaptivity
1485  bulk_mesh_pt()->max_permitted_error()=1.0e-3;
1486  bulk_mesh_pt()->min_permitted_error()=1.0e-5;
1487 
1488  // Setup impedance tube so its initial conditions
1489  // correspond to an impulsive start from the current flow rate
1491  {
1492  double q_initial=Womersley_impedance_tube_pt->
1493  total_volume_flux_into_impedance_tube();
1494  oomph_info << "q_initial=" << q_initial << "\n";
1496  dt,
1497  q_initial,
1498  new BDF<2>);
1499  }
1500 
1501  // Timestepping loop
1502  for (unsigned istep=0;istep<nstep;istep++)
1503  {
1504  oomph_info << "\n\nNewton solve: " << istep << "\n";
1505  oomph_info << "-----------------\n";
1506 
1507  // Solve the problem
1509 
1510  // Outpt the solution
1511  doc_solution(doc_info, trace_file);
1512 
1513  // Step number
1514  doc_info.number()++;
1515  }
1516 
1517  trace_file.close();
1518 
1519 }
void set_initial_condition()
Apply initial conditions.
Definition: collapsible_channel.cc:653
void doc_solution(DocInfo &doc_info, ofstream &trace_file)
Doc the solution.
Definition: collapsible_channel.cc:543
Definition: oomph_utilities.h:499
void set_directory(const std::string &directory)
Definition: oomph_utilities.cc:298
void initialise_dt(const double &dt)
Definition: problem.cc:13231
void unsteady_newton_solve(const double &dt)
Definition: problem.cc:10953
void setup()
Definition: womersley_elements.h:1187
double P_up
Default pressure on the left boundary.
Definition: fsi_collapsible_channel.cc:183

References oomph::DocInfo::directory(), MergeRestartFiles::filename, GlobalPhysicalParameters::L_impedance, Global_Parameters::Ldown, Global_Parameters::Lup, oomph::DocInfo::number(), oomph::oomph_info, Global_Physical_Variables::P_up, Global_Physical_Variables::Period, GlobalPhysicalParameters::Prescribed_volume_flux, Global_Physical_Variables::ReSt, and oomph::DocInfo::set_directory().

◆ unsteady_run() [2/2]

template<class ELEMENT >
void CollapsibleChannelProblem< ELEMENT >::unsteady_run ( string  directory_for_data,
double  nstep,
const bool validation_run = false 
)

Run unsteady problem.

Member Data Documentation

◆ Amplitude

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Amplitude
private

Amplitude of osciallation.

◆ Bulk_mesh_id

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Bulk_mesh_id
private

Id of the fluid bulk mesh.

◆ Bulk_mesh_pt [1/3]

template<class ELEMENT >
RefineableCollapsibleChannelMesh< ELEMENT > * CollapsibleChannelProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ Bulk_mesh_pt [2/3]

template<class ELEMENT >
MyAlgebraicCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ Bulk_mesh_pt [3/3]

template<class ELEMENT >
ElasticRefineableCollapsibleChannelMesh<ELEMENT>* CollapsibleChannelProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ Constitutive_law_pt

template<class ELEMENT >
ConstitutiveLaw* CollapsibleChannelProblem< ELEMENT >::Constitutive_law_pt
private

Constitutive law used to determine the mesh deformation.

◆ Inflow_traction_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Inflow_traction_mesh_pt
private

Pointer to the "surface" mesh that contains the applied traction elements at the inflow

◆ L_impedance

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::L_impedance
private

Length of optional impedance tube.

◆ Lagrange_multiplier_mesh_pt

template<class ELEMENT >
SolidMesh* CollapsibleChannelProblem< ELEMENT >::Lagrange_multiplier_mesh_pt
private

Pointers to meshes of Lagrange multiplier elements.

◆ Lcollapsible

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Lcollapsible
private

x-length in the "collapsible" part of the channel

◆ Ldown

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Ldown
private

x-length in the downstream part of the channel

◆ Left_node_pt

template<class ELEMENT >
Node * CollapsibleChannelProblem< ELEMENT >::Left_node_pt
private

Pointer to the left control node.

◆ Lup

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Lup
private

x-length in the upstream part of the channel

◆ Ly

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Ly
private

Transverse length.

◆ Ncollapsible

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Ncollapsible
private

Number of elements in the x direction in the "collapsible" part of the channel

◆ Ndown

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Ndown
private

Number of elements in the x direction in the downstream part of the channel.

◆ Nup

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Nup
private

Number of elements in the x direction in the upstream part of the channel.

◆ Ny

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Ny
private

Number of elements across the channel.

◆ Outflow_flux_control_master_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Outflow_flux_control_master_mesh_pt
private

Pointer to mesh containing the net flux control element (only!)

◆ Outflow_flux_control_sub_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Outflow_flux_control_sub_mesh_pt
private

Pointer to mesh of flux control elements at outflow.

◆ Outflow_impedance_master_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Outflow_impedance_master_mesh_pt
private

Pointer to the master impedance mesh when using flux control elements.

◆ Outflow_impedance_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Outflow_impedance_mesh_pt
private

Pointer to the impedance mesh.

◆ Outflow_type

template<class ELEMENT >
unsigned CollapsibleChannelProblem< ELEMENT >::Outflow_type
private

Outflow boundary type: 0: prescribed flux boundary conditions 1: impedance boundary conditions 2: prescribed outflow Otherwise we have pressure driven flow with zero pressure at outlet

◆ Period

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Period
private

Period of oscillation.

◆ Prescribed_volume_flux

template<class ELEMENT >
double CollapsibleChannelProblem< ELEMENT >::Prescribed_volume_flux
private

Prescribed volume flux: set to -1 for value consistent with Re.

◆ Right_node_pt

template<class ELEMENT >
Node * CollapsibleChannelProblem< ELEMENT >::Right_node_pt
private

Pointer to right control node.

◆ Surface_mesh_pt

template<class ELEMENT >
Mesh * CollapsibleChannelProblem< ELEMENT >::Surface_mesh_pt
private

Pointer to the "surface" mesh that contains the applied traction elements

◆ Wall_pt

template<class ELEMENT >
OscillatingWall * CollapsibleChannelProblem< ELEMENT >::Wall_pt
private

Pointer to the geometric object that parametrises the "collapsible" wall.

◆ Womersley_impedance_tube_pt

template<class ELEMENT >
WomersleyOutflowImpedanceTube< QWomersleyElement< 1, 3 >, 1 > * CollapsibleChannelProblem< ELEMENT >::Womersley_impedance_tube_pt
private

Pointer to impendance tube.


The documentation for this class was generated from the following files: