oomph::YoungLaplaceEquations Class Reference

#include <young_laplace_elements.h>

+ Inheritance diagram for oomph::YoungLaplaceEquations:

Public Types

typedef void(* SpineBaseFctPt) (const Vector< double > &x, Vector< double > &spine_base, Vector< Vector< double >> &dspine_base)
 Function pointer to "spine base" function. More...
 
typedef void(* SpineFctPt) (const Vector< double > &x, Vector< double > &spine, Vector< Vector< double >> &dspine)
 Function pointer to "spine" function. More...
 
- Public Types inherited from oomph::FiniteElement
typedef void(* SteadyExactSolutionFctPt) (const Vector< double > &, Vector< double > &)
 
typedef void(* UnsteadyExactSolutionFctPt) (const double &, const Vector< double > &, Vector< double > &)
 

Public Member Functions

 YoungLaplaceEquations ()
 
 YoungLaplaceEquations (const YoungLaplaceEquations &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const YoungLaplaceEquations &)=delete
 Broken assignment operator. More...
 
virtual double u (const unsigned &n) const
 
void output (std::ostream &outfile)
 Output with default number of plot points. More...
 
void output (std::ostream &outfile, const unsigned &n_plot)
 Output solution at nplot points in each coordinate direction. More...
 
void output_fct (std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
 Output exact soln at n_plot^2 plot points. More...
 
virtual void output_fct (std::ostream &outfile, const unsigned &n_plot, const double &time, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt)
 
void compute_error (std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
 Get error against and norm of exact solution. More...
 
void compute_error (std::ostream &outfile, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, double &error, double &norm)
 Dummy, time dependent error checker. More...
 
Datakappa_pt ()
 
bool use_spines () const
 
SpineBaseFctPtspine_base_fct_pt ()
 
SpineFctPtspine_fct_pt ()
 
void set_kappa (Data *kappa_pt)
 Set curvature data (and add it to the element's external Data) More...
 
double get_kappa () const
 Get curvature. More...
 
void get_flux (const Vector< double > &s, Vector< double > &flux) const
 Get flux: flux[i] = du/dx_i: Mainly used for error estimation. More...
 
virtual void get_spine_base (const Vector< double > &x, Vector< double > &spine_base, Vector< Vector< double >> &dspine_base) const
 
void get_spine (const Vector< double > &x, Vector< double > &spine, Vector< Vector< double >> &dspine) const
 
void position (const Vector< double > &s, Vector< double > &r) const
 Get position vector to meniscus at local coordinate s. More...
 
void exact_position (const Vector< double > &s, Vector< double > &r, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
 Get exact position vector to meniscus at local coordinate s. More...
 
void fill_in_contribution_to_residuals (Vector< double > &residuals)
 Add the element's contribution to its residual vector. More...
 
double interpolated_u (const Vector< double > &s) const
 Return FE representation of function value u(s) at local coordinate s. More...
 
unsigned self_test ()
 Self-test: Return 0 for OK. More...
 
- Public Member Functions inherited from oomph::FiniteElement
void set_dimension (const unsigned &dim)
 
void set_nodal_dimension (const unsigned &nodal_dim)
 
void set_nnodal_position_type (const unsigned &nposition_type)
 Set the number of types required to interpolate the coordinate. More...
 
void set_n_node (const unsigned &n)
 
int nodal_local_eqn (const unsigned &n, const unsigned &i) const
 
double dJ_eulerian_at_knot (const unsigned &ipt, Shape &psi, DenseMatrix< double > &djacobian_dX) const
 
 FiniteElement ()
 Constructor. More...
 
virtual ~FiniteElement ()
 
 FiniteElement (const FiniteElement &)=delete
 Broken copy constructor. More...
 
virtual bool local_coord_is_valid (const Vector< double > &s)
 Broken assignment operator. More...
 
virtual void move_local_coord_back_into_element (Vector< double > &s) const
 
void get_centre_of_gravity_and_max_radius_in_terms_of_zeta (Vector< double > &cog, double &max_radius) const
 
virtual void local_coordinate_of_node (const unsigned &j, Vector< double > &s) const
 
virtual void local_fraction_of_node (const unsigned &j, Vector< double > &s_fraction)
 
virtual double local_one_d_fraction_of_node (const unsigned &n1d, const unsigned &i)
 
virtual void set_macro_elem_pt (MacroElement *macro_elem_pt)
 
MacroElementmacro_elem_pt ()
 Access function to pointer to macro element. More...
 
void get_x (const Vector< double > &s, Vector< double > &x) const
 
void get_x (const unsigned &t, const Vector< double > &s, Vector< double > &x)
 
virtual void get_x_from_macro_element (const Vector< double > &s, Vector< double > &x) const
 
virtual void get_x_from_macro_element (const unsigned &t, const Vector< double > &s, Vector< double > &x)
 
virtual void set_integration_scheme (Integral *const &integral_pt)
 Set the spatial integration scheme. More...
 
Integral *const & integral_pt () const
 Return the pointer to the integration scheme (const version) More...
 
virtual void shape (const Vector< double > &s, Shape &psi) const =0
 
virtual void shape_at_knot (const unsigned &ipt, Shape &psi) const
 
virtual void dshape_local (const Vector< double > &s, Shape &psi, DShape &dpsids) const
 
virtual void dshape_local_at_knot (const unsigned &ipt, Shape &psi, DShape &dpsids) const
 
virtual void d2shape_local (const Vector< double > &s, Shape &psi, DShape &dpsids, DShape &d2psids) const
 
virtual void d2shape_local_at_knot (const unsigned &ipt, Shape &psi, DShape &dpsids, DShape &d2psids) const
 
virtual double J_eulerian (const Vector< double > &s) const
 
virtual double J_eulerian_at_knot (const unsigned &ipt) const
 
void check_J_eulerian_at_knots (bool &passed) const
 
void check_jacobian (const double &jacobian) const
 
double dshape_eulerian (const Vector< double > &s, Shape &psi, DShape &dpsidx) const
 
virtual double dshape_eulerian_at_knot (const unsigned &ipt, Shape &psi, DShape &dpsidx) const
 
virtual double dshape_eulerian_at_knot (const unsigned &ipt, Shape &psi, DShape &dpsi, DenseMatrix< double > &djacobian_dX, RankFourTensor< double > &d_dpsidx_dX) const
 
double d2shape_eulerian (const Vector< double > &s, Shape &psi, DShape &dpsidx, DShape &d2psidx) const
 
virtual double d2shape_eulerian_at_knot (const unsigned &ipt, Shape &psi, DShape &dpsidx, DShape &d2psidx) const
 
virtual void assign_nodal_local_eqn_numbers (const bool &store_local_dof_pt)
 
virtual void describe_local_dofs (std::ostream &out, const std::string &current_string) const
 
virtual void describe_nodal_local_dofs (std::ostream &out, const std::string &current_string) const
 
virtual void assign_all_generic_local_eqn_numbers (const bool &store_local_dof_pt)
 
Node *& node_pt (const unsigned &n)
 Return a pointer to the local node n. More...
 
Node *const & node_pt (const unsigned &n) const
 Return a pointer to the local node n (const version) More...
 
unsigned nnode () const
 Return the number of nodes. More...
 
virtual unsigned nnode_1d () const
 
double raw_nodal_position (const unsigned &n, const unsigned &i) const
 
double raw_nodal_position (const unsigned &t, const unsigned &n, const unsigned &i) const
 
double raw_dnodal_position_dt (const unsigned &n, const unsigned &i) const
 
double raw_dnodal_position_dt (const unsigned &n, const unsigned &j, const unsigned &i) const
 
double raw_nodal_position_gen (const unsigned &n, const unsigned &k, const unsigned &i) const
 
double raw_nodal_position_gen (const unsigned &t, const unsigned &n, const unsigned &k, const unsigned &i) const
 
double raw_dnodal_position_gen_dt (const unsigned &n, const unsigned &k, const unsigned &i) const
 
double raw_dnodal_position_gen_dt (const unsigned &j, const unsigned &n, const unsigned &k, const unsigned &i) const
 
double nodal_position (const unsigned &n, const unsigned &i) const
 
double nodal_position (const unsigned &t, const unsigned &n, const unsigned &i) const
 
double dnodal_position_dt (const unsigned &n, const unsigned &i) const
 Return the i-th component of nodal velocity: dx/dt at local node n. More...
 
double dnodal_position_dt (const unsigned &n, const unsigned &j, const unsigned &i) const
 
double nodal_position_gen (const unsigned &n, const unsigned &k, const unsigned &i) const
 
double nodal_position_gen (const unsigned &t, const unsigned &n, const unsigned &k, const unsigned &i) const
 
double dnodal_position_gen_dt (const unsigned &n, const unsigned &k, const unsigned &i) const
 
double dnodal_position_gen_dt (const unsigned &j, const unsigned &n, const unsigned &k, const unsigned &i) const
 
virtual void get_dresidual_dnodal_coordinates (RankThreeTensor< double > &dresidual_dnodal_coordinates)
 
virtual void disable_ALE ()
 
virtual void enable_ALE ()
 
virtual unsigned required_nvalue (const unsigned &n) const
 
unsigned nnodal_position_type () const
 
bool has_hanging_nodes () const
 
unsigned nodal_dimension () const
 Return the required Eulerian dimension of the nodes in this element. More...
 
virtual unsigned nvertex_node () const
 
virtual Nodevertex_node_pt (const unsigned &j) const
 
virtual Nodeconstruct_node (const unsigned &n)
 
virtual Nodeconstruct_node (const unsigned &n, TimeStepper *const &time_stepper_pt)
 
virtual Nodeconstruct_boundary_node (const unsigned &n)
 
virtual Nodeconstruct_boundary_node (const unsigned &n, TimeStepper *const &time_stepper_pt)
 
int get_node_number (Node *const &node_pt) const
 
virtual Nodeget_node_at_local_coordinate (const Vector< double > &s) const
 
double raw_nodal_value (const unsigned &n, const unsigned &i) const
 
double raw_nodal_value (const unsigned &t, const unsigned &n, const unsigned &i) const
 
double nodal_value (const unsigned &n, const unsigned &i) const
 
double nodal_value (const unsigned &t, const unsigned &n, const unsigned &i) const
 
unsigned dim () const
 
virtual ElementGeometry::ElementGeometry element_geometry () const
 Return the geometry type of the element (either Q or T usually). More...
 
virtual double interpolated_x (const Vector< double > &s, const unsigned &i) const
 Return FE interpolated coordinate x[i] at local coordinate s. More...
 
virtual double interpolated_x (const unsigned &t, const Vector< double > &s, const unsigned &i) const
 
virtual void interpolated_x (const Vector< double > &s, Vector< double > &x) const
 Return FE interpolated position x[] at local coordinate s as Vector. More...
 
virtual void interpolated_x (const unsigned &t, const Vector< double > &s, Vector< double > &x) const
 
virtual double interpolated_dxdt (const Vector< double > &s, const unsigned &i, const unsigned &t)
 
virtual void interpolated_dxdt (const Vector< double > &s, const unsigned &t, Vector< double > &dxdt)
 
unsigned ngeom_data () const
 
Datageom_data_pt (const unsigned &j)
 
void position (const unsigned &t, const Vector< double > &zeta, Vector< double > &r) const
 
void dposition_dt (const Vector< double > &zeta, const unsigned &t, Vector< double > &drdt)
 
virtual double zeta_nodal (const unsigned &n, const unsigned &k, const unsigned &i) const
 
void interpolated_zeta (const Vector< double > &s, Vector< double > &zeta) const
 
void locate_zeta (const Vector< double > &zeta, GeomObject *&geom_object_pt, Vector< double > &s, const bool &use_coordinate_as_initial_guess=false)
 
virtual void node_update ()
 
virtual void identify_field_data_for_interactions (std::set< std::pair< Data *, unsigned >> &paired_field_data)
 
virtual void identify_geometric_data (std::set< Data * > &geometric_data_pt)
 
virtual double s_min () const
 Min value of local coordinate. More...
 
virtual double s_max () const
 Max. value of local coordinate. More...
 
double size () const
 
virtual double compute_physical_size () const
 
virtual void point_output_data (const Vector< double > &s, Vector< double > &data)
 
void point_output (std::ostream &outfile, const Vector< double > &s)
 
virtual unsigned nplot_points_paraview (const unsigned &nplot) const
 
virtual unsigned nsub_elements_paraview (const unsigned &nplot) const
 
void output_paraview (std::ofstream &file_out, const unsigned &nplot) const
 
virtual void write_paraview_output_offset_information (std::ofstream &file_out, const unsigned &nplot, unsigned &counter) const
 
virtual void write_paraview_type (std::ofstream &file_out, const unsigned &nplot) const
 
virtual void write_paraview_offsets (std::ofstream &file_out, const unsigned &nplot, unsigned &offset_sum) const
 
virtual unsigned nscalar_paraview () const
 
virtual void scalar_value_paraview (std::ofstream &file_out, const unsigned &i, const unsigned &nplot) const
 
virtual void scalar_value_fct_paraview (std::ofstream &file_out, const unsigned &i, const unsigned &nplot, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt) const
 
virtual void scalar_value_fct_paraview (std::ofstream &file_out, const unsigned &i, const unsigned &nplot, const double &time, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt) const
 
virtual std::string scalar_name_paraview (const unsigned &i) const
 
virtual void output (const unsigned &t, std::ostream &outfile, const unsigned &n_plot) const
 
virtual void output (FILE *file_pt)
 
virtual void output (FILE *file_pt, const unsigned &n_plot)
 
virtual void output_fct (std::ostream &outfile, const unsigned &n_plot, const double &time, const SolutionFunctorBase &exact_soln) const
 Output a time-dependent exact solution over the element. More...
 
virtual void get_s_plot (const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
 
virtual std::string tecplot_zone_string (const unsigned &nplot) const
 
virtual void write_tecplot_zone_footer (std::ostream &outfile, const unsigned &nplot) const
 
virtual void write_tecplot_zone_footer (FILE *file_pt, const unsigned &nplot) const
 
virtual unsigned nplot_points (const unsigned &nplot) const
 
virtual void compute_error (FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error, double &norm)
 Calculate the norm of the error and that of the exact solution. More...
 
virtual void compute_error (FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, double &error, double &norm)
 Calculate the norm of the error and that of the exact solution. More...
 
virtual void compute_error (FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, Vector< double > &error, Vector< double > &norm)
 
virtual void compute_error (FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, Vector< double > &error, Vector< double > &norm)
 
virtual void compute_error (std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, Vector< double > &error, Vector< double > &norm)
 
virtual void compute_error (std::ostream &outfile, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, Vector< double > &error, Vector< double > &norm)
 
virtual void compute_abs_error (std::ostream &outfile, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt, double &error)
 
void integrate_fct (FiniteElement::SteadyExactSolutionFctPt integrand_fct_pt, Vector< double > &integral)
 Integrate Vector-valued function over element. More...
 
void integrate_fct (FiniteElement::UnsteadyExactSolutionFctPt integrand_fct_pt, const double &time, Vector< double > &integral)
 Integrate Vector-valued time-dep function over element. More...
 
virtual void build_face_element (const int &face_index, FaceElement *face_element_pt)
 
virtual unsigned get_bulk_node_number (const int &face_index, const unsigned &i) const
 
virtual int face_outer_unit_normal_sign (const int &face_index) const
 Get the sign of the outer unit normal on the face given by face_index. More...
 
virtual unsigned nnode_on_face () const
 
void face_node_number_error_check (const unsigned &i) const
 Range check for face node numbers. More...
 
virtual CoordinateMappingFctPt face_to_bulk_coordinate_fct_pt (const int &face_index) const
 
virtual BulkCoordinateDerivativesFctPt bulk_coordinate_derivatives_fct_pt (const int &face_index) const
 
- Public Member Functions inherited from oomph::GeneralisedElement
 GeneralisedElement ()
 Constructor: Initialise all pointers and all values to zero. More...
 
virtual ~GeneralisedElement ()
 Virtual destructor to clean up any memory allocated by the object. More...
 
 GeneralisedElement (const GeneralisedElement &)=delete
 Broken copy constructor. More...
 
void operator= (const GeneralisedElement &)=delete
 Broken assignment operator. More...
 
Data *& internal_data_pt (const unsigned &i)
 Return a pointer to i-th internal data object. More...
 
Data *const & internal_data_pt (const unsigned &i) const
 Return a pointer to i-th internal data object (const version) More...
 
Data *& external_data_pt (const unsigned &i)
 Return a pointer to i-th external data object. More...
 
Data *const & external_data_pt (const unsigned &i) const
 Return a pointer to i-th external data object (const version) More...
 
unsigned long eqn_number (const unsigned &ieqn_local) const
 
int local_eqn_number (const unsigned long &ieqn_global) const
 
unsigned add_external_data (Data *const &data_pt, const bool &fd=true)
 
bool external_data_fd (const unsigned &i) const
 
void exclude_external_data_fd (const unsigned &i)
 
void include_external_data_fd (const unsigned &i)
 
void flush_external_data ()
 Flush all external data. More...
 
void flush_external_data (Data *const &data_pt)
 Flush the object addressed by data_pt from the external data array. More...
 
unsigned ninternal_data () const
 Return the number of internal data objects. More...
 
unsigned nexternal_data () const
 Return the number of external data objects. More...
 
unsigned ndof () const
 Return the number of equations/dofs in the element. More...
 
void dof_vector (const unsigned &t, Vector< double > &dof)
 Return the vector of dof values at time level t. More...
 
void dof_pt_vector (Vector< double * > &dof_pt)
 Return the vector of pointers to dof values. More...
 
void set_internal_data_time_stepper (const unsigned &i, TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data)
 
void assign_internal_eqn_numbers (unsigned long &global_number, Vector< double * > &Dof_pt)
 
void describe_dofs (std::ostream &out, const std::string &current_string) const
 
void add_internal_value_pt_to_map (std::map< unsigned, double * > &map_of_value_pt)
 
virtual void assign_local_eqn_numbers (const bool &store_local_dof_pt)
 
virtual void complete_setup_of_dependencies ()
 
virtual void get_residuals (Vector< double > &residuals)
 
virtual void get_jacobian (Vector< double > &residuals, DenseMatrix< double > &jacobian)
 
virtual void get_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &mass_matrix)
 
virtual void get_jacobian_and_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
 
virtual void get_dresiduals_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam)
 
virtual void get_djacobian_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
 
virtual void get_djacobian_and_dmass_matrix_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam)
 
virtual void get_hessian_vector_products (Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
 
virtual void get_inner_products (Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
 
virtual void get_inner_product_vectors (Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
 
virtual void compute_norm (Vector< double > &norm)
 
virtual void compute_norm (double &norm)
 
virtual unsigned ndof_types () const
 
virtual void get_dof_numbers_for_unknowns (std::list< std::pair< unsigned long, unsigned >> &dof_lookup_list) const
 
- Public Member Functions inherited from oomph::GeomObject
 GeomObject ()
 Default constructor. More...
 
 GeomObject (const unsigned &ndim)
 
 GeomObject (const unsigned &nlagrangian, const unsigned &ndim)
 
 GeomObject (const unsigned &nlagrangian, const unsigned &ndim, TimeStepper *time_stepper_pt)
 
 GeomObject (const GeomObject &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const GeomObject &)=delete
 Broken assignment operator. More...
 
virtual ~GeomObject ()
 (Empty) destructor More...
 
unsigned nlagrangian () const
 Access function to # of Lagrangian coordinates. More...
 
unsigned ndim () const
 Access function to # of Eulerian coordinates. More...
 
void set_nlagrangian_and_ndim (const unsigned &n_lagrangian, const unsigned &n_dim)
 Set # of Lagrangian and Eulerian coordinates. More...
 
TimeStepper *& time_stepper_pt ()
 
TimeSteppertime_stepper_pt () const
 
virtual void position (const double &t, const Vector< double > &zeta, Vector< double > &r) const
 
virtual void dposition (const Vector< double > &zeta, DenseMatrix< double > &drdzeta) const
 
virtual void d2position (const Vector< double > &zeta, RankThreeTensor< double > &ddrdzeta) const
 
virtual void d2position (const Vector< double > &zeta, Vector< double > &r, DenseMatrix< double > &drdzeta, RankThreeTensor< double > &ddrdzeta) const
 

Static Public Member Functions

static void allocate_vector_of_vectors (unsigned n_rows, unsigned n_cols, Vector< Vector< double >> &v)
 
static void scalar_times_vector (const double &lambda, const Vector< double > &v, Vector< double > &lambda_times_v)
 Multiply a vector by a scalar. More...
 
static double two_norm (const Vector< double > &v)
 2-norm of a vector More...
 
static double scalar_product (const Vector< double > &v1, const Vector< double > &v2)
 Scalar product between two vectors. More...
 
static void cross_product (const Vector< double > &v1, const Vector< double > &v2, Vector< double > &v_cross)
 Cross-product: v_cross= v1 x v2. More...
 
static void vector_sum (const Vector< double > &v1, const Vector< double > &v2, Vector< double > &vs)
 Vectorial sum of two vectors. More...
 

Protected Member Functions

virtual int u_local_eqn (const unsigned &n)
 
- Protected Member Functions inherited from oomph::FiniteElement
virtual void assemble_local_to_eulerian_jacobian (const DShape &dpsids, DenseMatrix< double > &jacobian) const
 
virtual void assemble_local_to_eulerian_jacobian2 (const DShape &d2psids, DenseMatrix< double > &jacobian2) const
 
virtual void assemble_eulerian_base_vectors (const DShape &dpsids, DenseMatrix< double > &interpolated_G) const
 
template<unsigned DIM>
double invert_jacobian (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 
virtual double invert_jacobian_mapping (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 
virtual double local_to_eulerian_mapping (const DShape &dpsids, DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 
double local_to_eulerian_mapping (const DShape &dpsids, DenseMatrix< double > &inverse_jacobian) const
 
virtual double local_to_eulerian_mapping_diagonal (const DShape &dpsids, DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 
virtual void dJ_eulerian_dnodal_coordinates (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
template<unsigned DIM>
void dJ_eulerian_dnodal_coordinates_templated_helper (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
virtual void d_dshape_eulerian_dnodal_coordinates (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
template<unsigned DIM>
void d_dshape_eulerian_dnodal_coordinates_templated_helper (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
virtual void transform_derivatives (const DenseMatrix< double > &inverse_jacobian, DShape &dbasis) const
 
void transform_derivatives_diagonal (const DenseMatrix< double > &inverse_jacobian, DShape &dbasis) const
 
virtual void transform_second_derivatives (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
template<unsigned DIM>
void transform_second_derivatives_template (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
template<unsigned DIM>
void transform_second_derivatives_diagonal (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
virtual void fill_in_jacobian_from_nodal_by_fd (Vector< double > &residuals, DenseMatrix< double > &jacobian)
 
void fill_in_jacobian_from_nodal_by_fd (DenseMatrix< double > &jacobian)
 
virtual void update_before_nodal_fd ()
 
virtual void reset_after_nodal_fd ()
 
virtual void update_in_nodal_fd (const unsigned &i)
 
virtual void reset_in_nodal_fd (const unsigned &i)
 
void fill_in_contribution_to_jacobian (Vector< double > &residuals, DenseMatrix< double > &jacobian)
 
template<>
double invert_jacobian (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 Zero-d specialisation of function to calculate inverse of jacobian mapping. More...
 
template<>
double invert_jacobian (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 One-d specialisation of function to calculate inverse of jacobian mapping. More...
 
template<>
double invert_jacobian (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 Two-d specialisation of function to calculate inverse of jacobian mapping. More...
 
template<>
double invert_jacobian (const DenseMatrix< double > &jacobian, DenseMatrix< double > &inverse_jacobian) const
 
template<>
void dJ_eulerian_dnodal_coordinates_templated_helper (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
template<>
void dJ_eulerian_dnodal_coordinates_templated_helper (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
template<>
void dJ_eulerian_dnodal_coordinates_templated_helper (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
template<>
void dJ_eulerian_dnodal_coordinates_templated_helper (const DenseMatrix< double > &jacobian, const DShape &dpsids, DenseMatrix< double > &djacobian_dX) const
 
template<>
void d_dshape_eulerian_dnodal_coordinates_templated_helper (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
template<>
void d_dshape_eulerian_dnodal_coordinates_templated_helper (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
template<>
void d_dshape_eulerian_dnodal_coordinates_templated_helper (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
template<>
void d_dshape_eulerian_dnodal_coordinates_templated_helper (const double &det_jacobian, const DenseMatrix< double > &jacobian, const DenseMatrix< double > &djacobian_dX, const DenseMatrix< double > &inverse_jacobian, const DShape &dpsids, RankFourTensor< double > &d_dpsidx_dX) const
 
template<>
void transform_second_derivatives_template (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
template<>
void transform_second_derivatives_template (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
template<>
void transform_second_derivatives_diagonal (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
template<>
void transform_second_derivatives_diagonal (const DenseMatrix< double > &jacobian, const DenseMatrix< double > &inverse_jacobian, const DenseMatrix< double > &jacobian2, DShape &dbasis, DShape &d2basis) const
 
- Protected Member Functions inherited from oomph::GeneralisedElement
unsigned add_internal_data (Data *const &data_pt, const bool &fd=true)
 
bool internal_data_fd (const unsigned &i) const
 
void exclude_internal_data_fd (const unsigned &i)
 
void include_internal_data_fd (const unsigned &i)
 
void clear_global_eqn_numbers ()
 
void add_global_eqn_numbers (std::deque< unsigned long > const &global_eqn_numbers, std::deque< double * > const &global_dof_pt)
 
virtual void assign_internal_and_external_local_eqn_numbers (const bool &store_local_dof_pt)
 
virtual void assign_additional_local_eqn_numbers ()
 
int internal_local_eqn (const unsigned &i, const unsigned &j) const
 
int external_local_eqn (const unsigned &i, const unsigned &j)
 
void fill_in_jacobian_from_internal_by_fd (Vector< double > &residuals, DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 
void fill_in_jacobian_from_internal_by_fd (DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 
void fill_in_jacobian_from_external_by_fd (Vector< double > &residuals, DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 
void fill_in_jacobian_from_external_by_fd (DenseMatrix< double > &jacobian, const bool &fd_all_data=false)
 
virtual void update_before_internal_fd ()
 
virtual void reset_after_internal_fd ()
 
virtual void update_in_internal_fd (const unsigned &i)
 
virtual void reset_in_internal_fd (const unsigned &i)
 
virtual void update_before_external_fd ()
 
virtual void reset_after_external_fd ()
 
virtual void update_in_external_fd (const unsigned &i)
 
virtual void reset_in_external_fd (const unsigned &i)
 
virtual void fill_in_contribution_to_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &mass_matrix)
 
virtual void fill_in_contribution_to_jacobian_and_mass_matrix (Vector< double > &residuals, DenseMatrix< double > &jacobian, DenseMatrix< double > &mass_matrix)
 
virtual void fill_in_contribution_to_dresiduals_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam)
 
virtual void fill_in_contribution_to_djacobian_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam)
 
virtual void fill_in_contribution_to_djacobian_and_dmass_matrix_dparameter (double *const &parameter_pt, Vector< double > &dres_dparam, DenseMatrix< double > &djac_dparam, DenseMatrix< double > &dmass_matrix_dparam)
 
virtual void fill_in_contribution_to_hessian_vector_products (Vector< double > const &Y, DenseMatrix< double > const &C, DenseMatrix< double > &product)
 
virtual void fill_in_contribution_to_inner_products (Vector< std::pair< unsigned, unsigned >> const &history_index, Vector< double > &inner_product)
 
virtual void fill_in_contribution_to_inner_product_vectors (Vector< unsigned > const &history_index, Vector< Vector< double >> &inner_product_vector)
 

Protected Attributes

unsigned Kappa_index
 Index of Kappa_pt in the element's storage of external Data. More...
 
SpineBaseFctPt Spine_base_fct_pt
 Pointer to spine base function: More...
 
SpineFctPt Spine_fct_pt
 Pointer to spine function: More...
 
- Protected Attributes inherited from oomph::FiniteElement
MacroElementMacro_elem_pt
 Pointer to the element's macro element (NULL by default) More...
 
- Protected Attributes inherited from oomph::GeomObject
unsigned NLagrangian
 Number of Lagrangian (intrinsic) coordinates. More...
 
unsigned Ndim
 Number of Eulerian coordinates. More...
 
TimeStepperGeom_object_time_stepper_pt
 

Private Attributes

DataKappa_pt
 

Additional Inherited Members

- Static Public Attributes inherited from oomph::FiniteElement
static double Tolerance_for_singular_jacobian = 1.0e-16
 Tolerance below which the jacobian is considered singular. More...
 
static bool Accept_negative_jacobian = false
 
static bool Suppress_output_while_checking_for_inverted_elements
 
- Static Public Attributes inherited from oomph::GeneralisedElement
static bool Suppress_warning_about_repeated_internal_data
 
static bool Suppress_warning_about_repeated_external_data = true
 
static double Default_fd_jacobian_step = 1.0e-8
 
- Static Protected Attributes inherited from oomph::FiniteElement
static const unsigned Default_Initial_Nvalue = 0
 Default value for the number of values at a node. More...
 
static const double Node_location_tolerance = 1.0e-14
 
static const unsigned N2deriv [] = {0, 1, 3, 6}
 
- Static Protected Attributes inherited from oomph::GeneralisedElement
static DenseMatrix< doubleDummy_matrix
 
static std::deque< double * > Dof_pt_deque
 

Detailed Description

A class for all isoparametric elements that solve the YoungLaplace equations.

\[ div (\frac{1}{W} \nabla u) = \kappa \]

with

\[ W^2=1+\|\nabla u\|^2 \]

These equations can either be solved in the above (cartesian) form, or in a parametric representation using the method of spines. See the theory write-up in the documentation for details. This class contains the generic maths. Shape functions, geometric mapping etc. must get implemented in derived class.

Member Typedef Documentation

◆ SpineBaseFctPt

typedef void(* oomph::YoungLaplaceEquations::SpineBaseFctPt) (const Vector< double > &x, Vector< double > &spine_base, Vector< Vector< double >> &dspine_base)

Function pointer to "spine base" function.

◆ SpineFctPt

typedef void(* oomph::YoungLaplaceEquations::SpineFctPt) (const Vector< double > &x, Vector< double > &spine, Vector< Vector< double >> &dspine)

Function pointer to "spine" function.

Constructor & Destructor Documentation

◆ YoungLaplaceEquations() [1/2]

oomph::YoungLaplaceEquations::YoungLaplaceEquations ( )
inline

Constructor: Initialise pointers to NULL, so by default prescribed kappa evaluates to zero, and no spines are used.

73  {
74  }
Data * Kappa_pt
Definition: young_laplace_elements.h:446
SpineFctPt Spine_fct_pt
Pointer to spine function:
Definition: young_laplace_elements.h:439
SpineBaseFctPt Spine_base_fct_pt
Pointer to spine base function:
Definition: young_laplace_elements.h:436

◆ YoungLaplaceEquations() [2/2]

oomph::YoungLaplaceEquations::YoungLaplaceEquations ( const YoungLaplaceEquations dummy)
delete

Broken copy constructor.

Member Function Documentation

◆ allocate_vector_of_vectors()

static void oomph::YoungLaplaceEquations::allocate_vector_of_vectors ( unsigned  n_rows,
unsigned  n_cols,
Vector< Vector< double >> &  v 
)
inlinestatic

Helper fct: Allocate storage for a vector of vectors of doubles to v(n_rows,n_cols) and initialise each component to 0.0.

342  {
343  v.resize(n_rows);
344  for (unsigned i = 0; i < n_rows; i++)
345  {
346  v[i].resize(n_cols);
347  for (unsigned j = 0; j < n_cols; j++)
348  {
349  v[i][j] = 0.0;
350  }
351  }
352  }
Array< int, Dynamic, 1 > v
Definition: Array_initializer_list_vector_cxx11.cpp:1
int i
Definition: BiCGSTAB_step_by_step.cpp:9
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References i, j, and v.

Referenced by exact_position(), oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), output(), and position().

◆ compute_error() [1/2]

void oomph::YoungLaplaceEquations::compute_error ( std::ostream &  outfile,
FiniteElement::SteadyExactSolutionFctPt  exact_soln_pt,
double error,
double norm 
)
virtual

Get error against and norm of exact solution.

Validate against exact solution

Solution is provided via function pointer. Plot error at a given number of plot points.

Calculate the cartesian coordinates of point on meniscus

Calculate the exact position

Reimplemented from oomph::FiniteElement.

547  {
548  // Initialise
549  error = 0.0;
550  norm = 0.0;
551 
552  // Vector of local coordinates
553  Vector<double> s(2);
554 
555  // Vector for coordinates
556  Vector<double> x(2);
557 
558  // Set the value of n_intpt
559  unsigned n_intpt = integral_pt()->nweight();
560 
561  // Tecplot
562  outfile << "ZONE" << std::endl;
563 
564  // Exact solution Vector (here a scalar)
565  Vector<double> exact_soln(1);
566 
567  // Loop over the integration points
568  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
569  {
570  // Assign values of s
571  for (unsigned i = 0; i < 2; i++)
572  {
573  s[i] = integral_pt()->knot(ipt, i);
574  }
575 
576  // Get the integral weight
577  double w = integral_pt()->weight(ipt);
578 
579  // Get jacobian of mapping
580  double J = J_eulerian(s);
581 
582  // Premultiply the weights and the Jacobian
583  double W = w * J;
584 
586  Vector<double> r(3, 0.0);
587  position(s, r);
588 
590  Vector<double> r_exact(3, 0.0);
591  exact_position(s, r_exact, exact_soln_pt);
592 
593  // Output x,y,...,error
594  for (unsigned i = 0; i < 2; i++)
595  {
596  outfile << r[i] << " ";
597  }
598 
599  for (unsigned i = 0; i < 2; i++)
600  {
601  outfile << r_exact[i] << " ";
602  }
603 
604  outfile << std::endl;
605 
606  // Add to error and norm
607  norm += 0.0;
608  for (unsigned i = 0; i < 2; i++)
609  {
610  error += (r[i] - r_exact[i]) * (r[i] - r_exact[i]) * W;
611  }
612  }
613  }
JacobiRotation< float > J
Definition: Jacobi_makeJacobi.cpp:3
RowVector3d w
Definition: Matrix_resize_int.cpp:3
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
virtual double J_eulerian(const Vector< double > &s) const
Definition: elements.cc:4103
virtual double knot(const unsigned &i, const unsigned &j) const =0
Return local coordinate s[j] of i-th integration point.
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
virtual double weight(const unsigned &i) const =0
Return weight of i-th integration point.
void exact_position(const Vector< double > &s, Vector< double > &r, FiniteElement::SteadyExactSolutionFctPt exact_soln_pt)
Get exact position vector to meniscus at local coordinate s.
Definition: young_laplace_elements.cc:48
void position(const Vector< double > &s, Vector< double > &r) const
Get position vector to meniscus at local coordinate s.
Definition: young_laplace_elements.cc:93
RealScalar s
Definition: level1_cplx_impl.h:130
void exact_soln(const double &time, const Vector< double > &x, Vector< double > &soln)
Definition: unstructured_two_d_curved.cc:301
r
Definition: UniformPSDSelfTest.py:20
int error
Definition: calibrate.py:297
@ W
Definition: quadtree.h:63
list x
Definition: plotDoE.py:28

References calibrate::error, exact_position(), ProblemParameters::exact_soln(), i, oomph::FiniteElement::integral_pt(), J, oomph::FiniteElement::J_eulerian(), oomph::Integral::knot(), oomph::Integral::nweight(), position(), UniformPSDSelfTest::r, s, w, oomph::QuadTreeNames::W, oomph::Integral::weight(), and plotDoE::x.

◆ compute_error() [2/2]

void oomph::YoungLaplaceEquations::compute_error ( std::ostream &  outfile,
FiniteElement::UnsteadyExactSolutionFctPt  exact_soln_pt,
const double time,
double error,
double norm 
)
inlinevirtual

Dummy, time dependent error checker.

Reimplemented from oomph::FiniteElement.

134  {
135  throw OomphLibError("These equations are steady => no time dependence",
138  }
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86

References OOMPH_CURRENT_FUNCTION, and OOMPH_EXCEPTION_LOCATION.

◆ cross_product()

static void oomph::YoungLaplaceEquations::cross_product ( const Vector< double > &  v1,
const Vector< double > &  v2,
Vector< double > &  v_cross 
)
inlinestatic

Cross-product: v_cross= v1 x v2.

397  {
398 #ifdef PARANOID
399  if ((v1.size() != v2.size()) || (v1.size() != 3))
400  {
401  throw OomphLibError("Vectors must be of dimension 3 for cross-product!",
404  }
405 #endif
406  v_cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
407  v_cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
408  v_cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
409  }
Map< RowVectorXf > v2(M2.data(), M2.size())
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())

References OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, v1(), and v2().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ exact_position()

void oomph::YoungLaplaceEquations::exact_position ( const Vector< double > &  s,
Vector< double > &  r,
FiniteElement::SteadyExactSolutionFctPt  exact_soln_pt 
)

Get exact position vector to meniscus at local coordinate s.

Get exact position vector to meniscus.

Get spines values

Global Eulerian cooordinates

52  {
53  // Get global coordinates
54  Vector<double> x(2);
55  interpolated_x(s, x);
56 
57  // Exact solution Vector (here a scalar)
58  Vector<double> exact_soln(1);
59 
60  // Get exact solution at this point
61  (*exact_soln_pt)(x, exact_soln);
62 
63  if (!use_spines())
64  {
65  r[0] = x[0];
66  r[1] = x[1];
67  r[2] = exact_soln[0];
68  }
69  else
70  {
72  Vector<double> spine_base(3, 0.0);
73  Vector<double> spine(3, 0.0);
74  Vector<Vector<double>> dspine_base;
75  allocate_vector_of_vectors(2, 3, dspine_base);
76  Vector<Vector<double>> dspine;
77  allocate_vector_of_vectors(2, 3, dspine);
78 
79  get_spine_base(x, spine_base, dspine_base);
80  get_spine(x, spine, dspine);
81 
83  for (unsigned j = 0; j < 3; j++)
84  {
85  r[j] = spine_base[j] + exact_soln[0] * spine[j];
86  }
87  }
88  }
virtual double interpolated_x(const Vector< double > &s, const unsigned &i) const
Return FE interpolated coordinate x[i] at local coordinate s.
Definition: elements.cc:3962
static void allocate_vector_of_vectors(unsigned n_rows, unsigned n_cols, Vector< Vector< double >> &v)
Definition: young_laplace_elements.h:339
virtual void get_spine_base(const Vector< double > &x, Vector< double > &spine_base, Vector< Vector< double >> &dspine_base) const
Definition: young_laplace_elements.h:241
void get_spine(const Vector< double > &x, Vector< double > &spine, Vector< Vector< double >> &dspine) const
Definition: young_laplace_elements.h:269
bool use_spines() const
Definition: young_laplace_elements.h:151

References allocate_vector_of_vectors(), ProblemParameters::exact_soln(), get_spine(), get_spine_base(), oomph::FiniteElement::interpolated_x(), j, UniformPSDSelfTest::r, s, use_spines(), and plotDoE::x.

Referenced by compute_error(), and output_fct().

◆ fill_in_contribution_to_residuals()

void oomph::YoungLaplaceEquations::fill_in_contribution_to_residuals ( Vector< double > &  residuals)
virtual

Add the element's contribution to its residual vector.

Compute element residual vector. Pure version without hanging nodes.

"Simple" case

Spine case

Get the unnormalized normal

Reimplemented from oomph::GeneralisedElement.

138  {
139  // Find out how many nodes there are
140  unsigned n_node = nnode();
141 
142  // Set up memory for the shape functions
143  Shape psi(n_node);
144  DShape dpsidzeta(n_node, 2);
145 
146  // Set the value of n_intpt
147  unsigned n_intpt = integral_pt()->nweight();
148 
149  // Integers to store the local equation numbers
150  int local_eqn = 0;
151 
152  // Loop over the integration points
153  for (unsigned ipt = 0; ipt < n_intpt; ipt++)
154  {
155  // Get the integral weight
156  double w = integral_pt()->weight(ipt);
157 
158  // Call the derivatives of the shape and test functions
159  double J = dshape_eulerian_at_knot(ipt, psi, dpsidzeta);
160 
161  // Premultiply the weights and the Jacobian
162  double W = w * J;
163 
164  // Calculate local values of displacement along spine and its derivatives
165  // Allocate and initialise to zero
166  double interpolated_u = 0.0;
167  Vector<double> interpolated_zeta(2, 0.0);
168  Vector<double> interpolated_dudzeta(2, 0.0);
169 
170  // Calculate function value and derivatives:
171  //-----------------------------------------
172  // Loop over nodes
173  for (unsigned l = 0; l < n_node; l++)
174  {
175  interpolated_u += u(l) * psi(l);
176  // Loop over directions
177  for (unsigned j = 0; j < 2; j++)
178  {
179  interpolated_zeta[j] += nodal_position(l, j) * psi(l);
180  interpolated_dudzeta[j] += u(l) * dpsidzeta(l, j);
181  }
182  }
183 
184 
185  // Allocation and definition of variables necessary for
186  // further calculations
187 
190  double nonlinearterm = 1.0;
191  double sqnorm = 0.0;
192 
195 
196  // Derivs of position vector w.r.t. global intrinsic coords
197  Vector<Vector<double>> dRdzeta;
198  allocate_vector_of_vectors(2, 3, dRdzeta);
199 
200  // Unnormalised normal
201  Vector<double> N_unnormalised(3, 0.0);
202 
203  // Spine and spine basis vectors, entries initialised to zero
204  Vector<double> spine_base(3, 0.0), spine(3, 0.0);
205 
206  // Derivative of spine basis vector w.r.t to the intrinsic
207  // coordinates: dspine_base[i,j] = j-th component of the deriv.
208  // of the spine basis vector w.r.t. to the i-th global intrinsic
209  // coordinate
210  Vector<Vector<double>> dspine_base;
211  allocate_vector_of_vectors(2, 3, dspine_base);
212 
213  // Derivative of spine vector w.r.t to the intrinsic
214  // coordinates: dspine[i,j] = j-th component of the deriv.
215  // of the spine vector w.r.t. to the i-th global intrinsic
216  // coordinate
217  Vector<Vector<double>> dspine;
218  allocate_vector_of_vectors(2, 3, dspine);
219 
220  // Vector v_\alpha contains the numerator of the variations of the
221  // area element {\cal A}^{1/2} w.r.t. the components of dR/d\zeta_\alpha
222  Vector<double> area_variation_numerator_0(3, 0.0);
223  Vector<double> area_variation_numerator_1(3, 0.0);
224 
225  // Vector position
226  Vector<double> r(3, 0.0);
227 
228  // No spines
229  //---------
230  if (!use_spines())
231  {
232  for (unsigned j = 0; j < 2; j++)
233  {
234  sqnorm += interpolated_dudzeta[j] * interpolated_dudzeta[j];
235  }
236  nonlinearterm = 1.0 / sqrt(1.0 + sqnorm);
237  }
238 
239  // Spines
240  //------
241  else
242  {
243  // Get the spines
244  get_spine_base(interpolated_zeta, spine_base, dspine_base);
245  get_spine(interpolated_zeta, spine, dspine);
246 
247  // calculation of dR/d\zeta_\alpha
248  for (unsigned alpha = 0; alpha < 2; alpha++)
249  {
250  // Product rule for d(u {\bf S} ) / d \zeta_\alpha
251  Vector<double> dudzeta_times_spine(3, 0.0);
253  interpolated_dudzeta[alpha], spine, dudzeta_times_spine);
254 
255  Vector<double> u_times_dspinedzeta(3, 0.0);
257  interpolated_u, dspine[alpha], u_times_dspinedzeta);
258 
259  Vector<double> d_u_times_spine_dzeta(3, 0.0);
260  vector_sum(
261  dudzeta_times_spine, u_times_dspinedzeta, d_u_times_spine_dzeta);
262 
263  // Add derivative of spine base
264  vector_sum(d_u_times_spine_dzeta, dspine_base[alpha], dRdzeta[alpha]);
265  }
266 
268  cross_product(dRdzeta[0], dRdzeta[1], N_unnormalised);
269 
270  // Tmp storage
271  Vector<double> v_tmp_1(3, 0.0);
272  Vector<double> v_tmp_2(3, 0.0);
273 
274  // Calculation of
275  // |dR/d\zeta_1|^2 dR/d\zeta_0 - <dR/d\zeta_0,dR/d\zeta_1>dR/d\zeta_1
276  scalar_times_vector(pow(two_norm(dRdzeta[1]), 2), dRdzeta[0], v_tmp_1);
278  -1 * scalar_product(dRdzeta[0], dRdzeta[1]), dRdzeta[1], v_tmp_2);
279  vector_sum(v_tmp_1, v_tmp_2, area_variation_numerator_0);
280 
281  // Calculation of
282  // |dR/d\zeta_0|^2 dR/d\zeta_1 - <dR/d\zeta_0,dR/d\zeta_1>dR/d\zeta_0
283  scalar_times_vector(pow(two_norm(dRdzeta[0]), 2), dRdzeta[1], v_tmp_1);
285  -1 * scalar_product(dRdzeta[0], dRdzeta[1]), dRdzeta[0], v_tmp_2);
286  vector_sum(v_tmp_1, v_tmp_2, area_variation_numerator_1);
287 
288  // Global Eulerian cooordinates
289  for (unsigned j = 0; j < 3; j++)
290  {
291  r[j] = spine_base[j] + interpolated_u * spine[j];
292  }
293  }
294 
295 
296  // Assemble residuals
297  //-------------------
298 
299  // Loop over the test (shape) functions
300  for (unsigned l = 0; l < n_node; l++)
301  {
302  // Get the local equation
303  local_eqn = u_local_eqn(l);
304 
305  /*IF it's not a boundary condition*/
306  if (local_eqn >= 0)
307  {
308  // "simple" calculation case
309  if (!use_spines())
310  {
311  // Add source term: The curvature
312  residuals[local_eqn] += get_kappa() * psi(l) * W;
313 
314  // The YoungLaplace bit itself
315  for (unsigned k = 0; k < 2; k++)
316  {
317  residuals[local_eqn] +=
318  nonlinearterm * interpolated_dudzeta[k] * dpsidzeta(l, k) * W;
319  }
320  }
321 
322  // Spine calculation case
323  else
324  {
325  // Calculation of d(u S)/d\zeta_0
326  //-------------------------------
327  Vector<double> v_tmp_1(3, 0.0);
328  scalar_times_vector(dpsidzeta(l, 0), spine, v_tmp_1);
329 
330  Vector<double> v_tmp_2(3, 0.0);
331  scalar_times_vector(psi(l), dspine[0], v_tmp_2);
332 
333  Vector<double> d_uS_dzeta0(3, 0.0);
334  vector_sum(v_tmp_1, v_tmp_2, d_uS_dzeta0);
335 
336  // Add contribution to residual
337  residuals[local_eqn] +=
338  W * scalar_product(area_variation_numerator_0, d_uS_dzeta0) /
339  two_norm(N_unnormalised);
340 
341  // Calculation of d(u S)/d\zeta_1
342  scalar_times_vector(dpsidzeta(l, 1), spine, v_tmp_1);
343  scalar_times_vector(psi(l), dspine[1], v_tmp_2);
344  Vector<double> d_uS_dzeta1(3, 0.0);
345  vector_sum(v_tmp_1, v_tmp_2, d_uS_dzeta1);
346 
347  // Add contribution to residual
348  residuals[local_eqn] +=
349  W * scalar_product(area_variation_numerator_1, d_uS_dzeta1) /
350  two_norm(N_unnormalised);
351 
352  // Curvature contribution to the residual : kappa N S test
353  residuals[local_eqn] += W * (get_kappa()) *
354  scalar_product(N_unnormalised, spine) *
355  psi(l);
356  }
357  }
358  }
359 
360  } // End of loop over integration points
361  }
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
void interpolated_zeta(const Vector< double > &s, Vector< double > &zeta) const
Definition: elements.cc:4675
unsigned nnode() const
Return the number of nodes.
Definition: elements.h:2210
double nodal_position(const unsigned &n, const unsigned &i) const
Definition: elements.h:2317
virtual double dshape_eulerian_at_knot(const unsigned &ipt, Shape &psi, DShape &dpsidx) const
Definition: elements.cc:3325
static double two_norm(const Vector< double > &v)
2-norm of a vector
Definition: young_laplace_elements.h:368
static void scalar_times_vector(const double &lambda, const Vector< double > &v, Vector< double > &lambda_times_v)
Multiply a vector by a scalar.
Definition: young_laplace_elements.h:355
static double scalar_product(const Vector< double > &v1, const Vector< double > &v2)
Scalar product between two vectors.
Definition: young_laplace_elements.h:381
double interpolated_u(const Vector< double > &s) const
Return FE representation of function value u(s) at local coordinate s.
Definition: young_laplace_elements.h:309
virtual int u_local_eqn(const unsigned &n)
Definition: young_laplace_elements.h:427
virtual double u(const unsigned &n) const
Definition: young_laplace_elements.h:84
double get_kappa() const
Get curvature.
Definition: young_laplace_elements.h:192
static void cross_product(const Vector< double > &v1, const Vector< double > &v2, Vector< double > &v_cross)
Cross-product: v_cross= v1 x v2.
Definition: young_laplace_elements.h:394
static void vector_sum(const Vector< double > &v1, const Vector< double > &v2, Vector< double > &vs)
Vectorial sum of two vectors.
Definition: young_laplace_elements.h:412
RealScalar alpha
Definition: level1_cplx_impl.h:151
char char char int int * k
Definition: level2_impl.h:374
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625

References allocate_vector_of_vectors(), alpha, cross_product(), oomph::FiniteElement::dshape_eulerian_at_knot(), get_kappa(), get_spine(), get_spine_base(), oomph::FiniteElement::integral_pt(), interpolated_u(), oomph::FiniteElement::interpolated_zeta(), J, j, k, oomph::FiniteElement::nnode(), oomph::FiniteElement::nodal_position(), oomph::Integral::nweight(), Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, scalar_product(), scalar_times_vector(), sqrt(), two_norm(), u(), u_local_eqn(), use_spines(), vector_sum(), w, oomph::QuadTreeNames::W, and oomph::Integral::weight().

◆ get_flux()

void oomph::YoungLaplaceEquations::get_flux ( const Vector< double > &  s,
Vector< double > &  flux 
) const
inline

Get flux: flux[i] = du/dx_i: Mainly used for error estimation.

209  {
210  // Find out how many nodes there are in the element
211  unsigned n_node = nnode();
212 
213  // Set up memory for the shape (same as test functions)
214  Shape psi(n_node);
215  DShape dpsidx(n_node, 2);
216 
217  // Call the derivatives of the shape (same as test functions)
218  dshape_eulerian(s, psi, dpsidx);
219 
220  // Initialise to zero
221  for (unsigned j = 0; j < 2; j++)
222  {
223  flux[j] = 0.0;
224  }
225 
226  // Loop over nodes
227  for (unsigned l = 0; l < n_node; l++)
228  {
229  // Loop over derivative directions
230  for (unsigned j = 0; j < 2; j++)
231  {
232  flux[j] += u(l) * dpsidx(l, j);
233  }
234  }
235  }
double dshape_eulerian(const Vector< double > &s, Shape &psi, DShape &dpsidx) const
Definition: elements.cc:3298
void flux(const double &time, const Vector< double > &x, double &flux)
Get flux applied along boundary x=0.
Definition: pretend_melt.cc:59

References oomph::FiniteElement::dshape_eulerian(), ProblemParameters::flux(), j, oomph::FiniteElement::nnode(), s, and u().

Referenced by oomph::RefineableYoungLaplaceEquations::get_Z2_flux().

◆ get_kappa()

double oomph::YoungLaplaceEquations::get_kappa ( ) const
inline

Get curvature.

No kappa has been set: return zero (the default)

193  {
195  if (Kappa_pt == 0)
196  {
197  return 0.0;
198  }
199  else
200  {
201  // Get prescribed kappa value
202  return Kappa_pt->value(0);
203  }
204  }
double value(const unsigned &i) const
Definition: nodes.h:293

References Kappa_pt, and oomph::Data::value().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ get_spine()

void oomph::YoungLaplaceEquations::get_spine ( const Vector< double > &  x,
Vector< double > &  spine,
Vector< Vector< double >> &  dspine 
) const
inline

Get spine vector field: Defaults to standard cartesian representation if no spine base fct pointers have been set. dspine[i][j] = d spine[j] / dx_i

272  {
273  // If no spine function has been set, default to vertical spines
274  // emanating from x[0](,x[1])
275  if (Spine_fct_pt == 0)
276  {
277  // Initialise all to zero
278  for (unsigned i = 0; i < 3; i++)
279  {
280  spine[i] = 0.0;
281  for (unsigned j = 0; j < 2; j++)
282  {
283  dspine[i][j] = 0.0;
284  }
285  }
286  // Overwrite vertical component
287  spine[2] = 1.0;
288  }
289  else
290  {
291  // Get spine
292  (*Spine_fct_pt)(x, spine, dspine);
293  }
294  }

References i, j, Spine_fct_pt, and plotDoE::x.

Referenced by exact_position(), oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), output(), and position().

◆ get_spine_base()

virtual void oomph::YoungLaplaceEquations::get_spine_base ( const Vector< double > &  x,
Vector< double > &  spine_base,
Vector< Vector< double >> &  dspine_base 
) const
inlinevirtual

Get spine base vector field: Defaults to standard cartesian representation if no spine base fct pointers have been set. dspine_B[i][j] = d spine_B[j] / dx_i

245  {
246  // If no spine function has been set, default to vertical spines
247  // emanating from x[0](,x[1])
248  if (Spine_base_fct_pt == 0)
249  {
250  for (unsigned i = 0; i < 3; i++)
251  {
252  spine_base[i] = x[i];
253  for (unsigned j = 0; j < 2; j++)
254  {
255  dspine_base[i][j] = 0.0;
256  }
257  }
258  }
259  else
260  {
261  // Get spine
262  (*Spine_base_fct_pt)(x, spine_base, dspine_base);
263  }
264  }

References i, j, Spine_base_fct_pt, and plotDoE::x.

Referenced by exact_position(), oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), output(), and position().

◆ interpolated_u()

double oomph::YoungLaplaceEquations::interpolated_u ( const Vector< double > &  s) const
inline

Return FE representation of function value u(s) at local coordinate s.

310  {
311  // Find number of nodes
312  unsigned n_node = nnode();
313 
314  // Local shape function
315  Shape psi(n_node);
316 
317  // Find values of shape function
318  shape(s, psi);
319 
320  // Initialise value of u
321  double interpolated_u = 0.0;
322 
323  // Loop over the local nodes and sum
324  for (unsigned l = 0; l < n_node; l++)
325  {
326  interpolated_u += u(l) * psi[l];
327  }
328 
329  return (interpolated_u);
330  }
virtual void shape(const Vector< double > &s, Shape &psi) const =0

References oomph::FiniteElement::nnode(), s, oomph::FiniteElement::shape(), and u().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), output(), and position().

◆ kappa_pt()

Data* oomph::YoungLaplaceEquations::kappa_pt ( )
inline

Access function: Pointer Data object that stores kappa (const version – kappa must be set with set_kappa() which also ensures that the Data object is added to the element's external Data.

145  {
146  return Kappa_pt;
147  }

References Kappa_pt.

Referenced by oomph::RefineableYoungLaplaceEquations::further_build(), and set_kappa().

◆ operator=()

void oomph::YoungLaplaceEquations::operator= ( const YoungLaplaceEquations )
delete

Broken assignment operator.

◆ output() [1/2]

void oomph::YoungLaplaceEquations::output ( std::ostream &  outfile)
inlinevirtual

Output with default number of plot points.

Reimplemented from oomph::FiniteElement.

Reimplemented in oomph::QYoungLaplaceElement< NNODE_1D >.

91  {
92  unsigned n_plot = 5;
93  output(outfile, n_plot);
94  }
void output(std::ostream &outfile)
Output with default number of plot points.
Definition: young_laplace_elements.h:90

Referenced by oomph::QYoungLaplaceElement< NNODE_1D >::output().

◆ output() [2/2]

void oomph::YoungLaplaceEquations::output ( std::ostream &  outfile,
const unsigned n_plot 
)
virtual

Output solution at nplot points in each coordinate direction.

Output FE representation of soln at n_plot^2 plot points

Reimplemented from oomph::FiniteElement.

Reimplemented in oomph::QYoungLaplaceElement< NNODE_1D >.

394  {
395  // Vector of local coordinates
396  Vector<double> s(2);
397 
398  // Tecplot header info
399  outfile << tecplot_zone_string(nplot);
400 
401  // Loop over plot points
402  unsigned num_plot_points = nplot_points(nplot);
403  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
404  {
405  // Get local coordinates of plot point
406  get_s_plot(iplot, nplot, s);
407 
408  // Compute intrinsic coordinates
409  Vector<double> xx(2, 0.0);
410  for (unsigned i = 0; i < 2; i++)
411  {
412  xx[i] = interpolated_x(s, i);
413  }
414 
415  // Calculate the cartesian coordinates of point on meniscus
416  Vector<double> r(3, 0.0);
417 
418  // Position
419  if (use_spines())
420  {
421  position(s, r);
422  }
423  else
424  {
425  r[0] = xx[0];
426  r[1] = xx[1];
427  r[2] = interpolated_u(s);
428  }
429 
430  // Output positon on meniscus
431  for (unsigned i = 0; i < 3; i++)
432  {
433  outfile << r[i] << " ";
434  }
435 
436  // Get spine stuff
437  Vector<double> spine_base(3, 0.0), spine(3, 0.0);
438  Vector<Vector<double>> dspine_base;
439  allocate_vector_of_vectors(2, 3, dspine_base);
440  Vector<Vector<double>> dspine;
441  allocate_vector_of_vectors(2, 3, dspine);
442 
443  // Get the spines
444  if (use_spines())
445  {
446  get_spine_base(xx, spine_base, dspine_base);
447  get_spine(xx, spine, dspine);
448  }
449 
450 
451  // Output spine base
452  for (unsigned i = 0; i < 3; i++)
453  {
454  outfile << spine_base[i] << " ";
455  }
456 
457  // Output spines
458  for (unsigned i = 0; i < 3; i++)
459  {
460  outfile << spine[i] << " ";
461  }
462 
463 
464  // Output intrinsic coordinates
465  for (unsigned i = 0; i < 2; i++)
466  {
467  outfile << xx[i] << " ";
468  }
469 
470  // Output unknown
471  outfile << interpolated_u(s) << " ";
472 
473 
474  // Done
475  outfile << std::endl;
476  }
477 
478  // Write tecplot footer (e.g. FE connectivity lists)
479  write_tecplot_zone_footer(outfile, nplot);
480  }
virtual std::string tecplot_zone_string(const unsigned &nplot) const
Definition: elements.h:3161
virtual void get_s_plot(const unsigned &i, const unsigned &nplot, Vector< double > &s, const bool &shifted_to_interior=false) const
Definition: elements.h:3148
virtual unsigned nplot_points(const unsigned &nplot) const
Definition: elements.h:3186
virtual void write_tecplot_zone_footer(std::ostream &outfile, const unsigned &nplot) const
Definition: elements.h:3174

References allocate_vector_of_vectors(), oomph::FiniteElement::get_s_plot(), get_spine(), get_spine_base(), i, interpolated_u(), oomph::FiniteElement::interpolated_x(), oomph::FiniteElement::nplot_points(), position(), UniformPSDSelfTest::r, s, oomph::FiniteElement::tecplot_zone_string(), use_spines(), and oomph::FiniteElement::write_tecplot_zone_footer().

◆ output_fct() [1/2]

virtual void oomph::YoungLaplaceEquations::output_fct ( std::ostream &  outfile,
const unsigned n_plot,
const double time,
FiniteElement::UnsteadyExactSolutionFctPt  exact_soln_pt 
)
inlinevirtual

Output exact soln at n_plot^2 plot points (dummy time-dependent version to keep intel compiler happy)

Reimplemented from oomph::FiniteElement.

Reimplemented in oomph::QYoungLaplaceElement< NNODE_1D >.

115  {
116  throw OomphLibError("These equations are steady => no time dependence",
119  }

References OOMPH_CURRENT_FUNCTION, and OOMPH_EXCEPTION_LOCATION.

◆ output_fct() [2/2]

void oomph::YoungLaplaceEquations::output_fct ( std::ostream &  outfile,
const unsigned nplot,
FiniteElement::SteadyExactSolutionFctPt  exact_soln_pt 
)
virtual

Output exact soln at n_plot^2 plot points.

Output exact solution

Solution is provided via function pointer. Plot at a given number of plot points.

Calculate the cartesian coordinates of point on meniscus

Reimplemented from oomph::FiniteElement.

Reimplemented in oomph::QYoungLaplaceElement< NNODE_1D >.

493  {
494  // Vector of local coordinates
495  Vector<double> s(2);
496 
497  // Vector for coordinates
498  Vector<double> x(2);
499 
500  // Tecplot header info
501  outfile << tecplot_zone_string(nplot);
502 
503  // Exact solution Vector (here a scalar)
504  Vector<double> exact_soln(1);
505 
506  // Loop over plot points
507  unsigned num_plot_points = nplot_points(nplot);
508  for (unsigned iplot = 0; iplot < num_plot_points; iplot++)
509  {
510  // Get local coordinates of plot point
511  get_s_plot(iplot, nplot, s);
512 
513  // Get x position as Vector
514  interpolated_x(s, x);
515 
517  Vector<double> r_exact(3, 0.0);
518  exact_position(s, r_exact, exact_soln_pt);
519 
520  // Output x_exact,y_exact,z_exact
521  for (unsigned i = 0; i < 3; i++)
522  {
523  outfile << r_exact[i] << " ";
524  }
525 
526  // Done
527  outfile << std::endl;
528  }
529 
530  // Write tecplot footer (e.g. FE connectivity lists)
531  write_tecplot_zone_footer(outfile, nplot);
532  }

References exact_position(), ProblemParameters::exact_soln(), oomph::FiniteElement::get_s_plot(), i, oomph::FiniteElement::interpolated_x(), oomph::FiniteElement::nplot_points(), s, oomph::FiniteElement::tecplot_zone_string(), oomph::FiniteElement::write_tecplot_zone_footer(), and plotDoE::x.

Referenced by oomph::QYoungLaplaceElement< NNODE_1D >::output_fct().

◆ position()

void oomph::YoungLaplaceEquations::position ( const Vector< double > &  s,
Vector< double > &  r 
) const
virtual

Get position vector to meniscus at local coordinate s.

Get position vector to meniscus.

Get spines values

Global Eulerian cooordinates

Reimplemented from oomph::FiniteElement.

95  {
96  // Get global coordinates
97  Vector<double> x(2);
98  interpolated_x(s, x);
99 
100  // Displacement along spine (or cartesian displacement)
101  double u = interpolated_u(s);
102 
103  // cartesian calculation case
104  if (!use_spines())
105  {
106  r[0] = x[0];
107  r[1] = x[1];
108  r[2] = u;
109  }
110  // spine case
111  else
112  {
114  Vector<double> spine_base(3, 0.0);
115  Vector<double> spine(3, 0.0);
116  Vector<Vector<double>> dspine_base;
117  allocate_vector_of_vectors(2, 3, dspine_base);
118  Vector<Vector<double>> dspine;
119  allocate_vector_of_vectors(2, 3, dspine);
120 
121  get_spine_base(x, spine_base, dspine_base);
122  get_spine(x, spine, dspine);
123 
125  for (unsigned j = 0; j < 3; j++)
126  {
127  r[j] = spine_base[j] + u * spine[j];
128  }
129  }
130  }

References allocate_vector_of_vectors(), get_spine(), get_spine_base(), interpolated_u(), oomph::FiniteElement::interpolated_x(), j, UniformPSDSelfTest::r, s, u(), use_spines(), and plotDoE::x.

Referenced by compute_error(), and output().

◆ scalar_product()

static double oomph::YoungLaplaceEquations::scalar_product ( const Vector< double > &  v1,
const Vector< double > &  v2 
)
inlinestatic

Scalar product between two vectors.

383  {
384  double scalar = 0.0;
385  unsigned n = v1.size();
386  for (unsigned i = 0; i < n; i++)
387  {
388  scalar += v1[i] * v2[i];
389  }
390  return scalar;
391  }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11

References i, n, v1(), and v2().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ scalar_times_vector()

static void oomph::YoungLaplaceEquations::scalar_times_vector ( const double lambda,
const Vector< double > &  v,
Vector< double > &  lambda_times_v 
)
inlinestatic

Multiply a vector by a scalar.

358  {
359  unsigned n = v.size();
360  for (unsigned i = 0; i < n; i++)
361  {
362  lambda_times_v[i] = lambda * v[i];
363  }
364  }
cout<< "The eigenvalues of A are:"<< endl<< ces.eigenvalues()<< endl;cout<< "The matrix of eigenvectors, V, is:"<< endl<< ces.eigenvectors()<< endl<< endl;complex< float > lambda
Definition: ComplexEigenSolver_compute.cpp:9

References i, lambda, n, and v.

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ self_test()

unsigned oomph::YoungLaplaceEquations::self_test ( )
virtual

Self-test: Return 0 for OK.

Reimplemented from oomph::FiniteElement.

368  {
369  bool passed = true;
370 
371  // Check lower-level stuff
372  if (FiniteElement::self_test() != 0)
373  {
374  passed = false;
375  }
376 
377  // Return verdict
378  if (passed)
379  {
380  return 0;
381  }
382  else
383  {
384  return 1;
385  }
386  }
virtual unsigned self_test()
Definition: elements.cc:4440

References oomph::FiniteElement::self_test().

◆ set_kappa()

void oomph::YoungLaplaceEquations::set_kappa ( Data kappa_pt)
inline

Set curvature data (and add it to the element's external Data)

173  {
174 #ifdef PARANOID
175  if (kappa_pt->nvalue() != 1)
176  {
177  throw OomphLibError("kappa must only store a single value!",
180  }
181 #endif
182 
183  // Make a local copy
184  Kappa_pt = kappa_pt;
185 
186  // Add to external data and store index in this storage scheme
188  }
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
unsigned add_external_data(Data *const &data_pt, const bool &fd=true)
Definition: elements.cc:307
unsigned Kappa_index
Index of Kappa_pt in the element's storage of external Data.
Definition: young_laplace_elements.h:433
Data * kappa_pt()
Definition: young_laplace_elements.h:144

References oomph::GeneralisedElement::add_external_data(), Kappa_index, kappa_pt(), Kappa_pt, oomph::Data::nvalue(), OOMPH_CURRENT_FUNCTION, and OOMPH_EXCEPTION_LOCATION.

Referenced by oomph::RefineableYoungLaplaceEquations::further_build().

◆ spine_base_fct_pt()

SpineBaseFctPt& oomph::YoungLaplaceEquations::spine_base_fct_pt ( )
inline

Access function to function pointer that specifies spine base vector field

159  {
160  return Spine_base_fct_pt;
161  }

References Spine_base_fct_pt.

Referenced by oomph::RefineableYoungLaplaceEquations::further_build().

◆ spine_fct_pt()

SpineFctPt& oomph::YoungLaplaceEquations::spine_fct_pt ( )
inline

Access function to function pointer that specifies spine vector field

167  {
168  return Spine_fct_pt;
169  }

References Spine_fct_pt.

Referenced by oomph::RefineableYoungLaplaceEquations::further_build().

◆ two_norm()

static double oomph::YoungLaplaceEquations::two_norm ( const Vector< double > &  v)
inlinestatic

2-norm of a vector

369  {
370  double norm = 0.0;
371  unsigned n = v.size();
372  for (unsigned i = 0; i < n; i++)
373  {
374  norm += v[i] * v[i];
375  }
376  return sqrt(norm);
377  }

References i, n, sqrt(), and v.

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ u()

virtual double oomph::YoungLaplaceEquations::u ( const unsigned n) const
inlinevirtual

Access function: Nodal function value at local node n Uses suitably interpolated value for hanging nodes.

85  {
86  return nodal_value(n, 0);
87  }
double nodal_value(const unsigned &n, const unsigned &i) const
Definition: elements.h:2593

References n, and oomph::FiniteElement::nodal_value().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), get_flux(), oomph::RefineableYoungLaplaceEquations::get_interpolated_values(), interpolated_u(), and position().

◆ u_local_eqn()

virtual int oomph::YoungLaplaceEquations::u_local_eqn ( const unsigned n)
inlineprotectedvirtual

Get the local equation number of the (one and only) unknown stored at local node n (returns -1 if value is pinned). Can be overloaded in derived multiphysics elements.

428  {
429  return nodal_local_eqn(n, 0);
430  }
int nodal_local_eqn(const unsigned &n, const unsigned &i) const
Definition: elements.h:1432

References n, and oomph::FiniteElement::nodal_local_eqn().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

◆ use_spines()

bool oomph::YoungLaplaceEquations::use_spines ( ) const
inline

Use spines or not? (Based on availability of function pointers to to spine and spine base vector fields)

152  {
153  return (Spine_fct_pt != 0);
154  }

References Spine_fct_pt.

Referenced by exact_position(), oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), fill_in_contribution_to_residuals(), output(), and position().

◆ vector_sum()

static void oomph::YoungLaplaceEquations::vector_sum ( const Vector< double > &  v1,
const Vector< double > &  v2,
Vector< double > &  vs 
)
inlinestatic

Vectorial sum of two vectors.

415  {
416  unsigned n = v1.size();
417  for (unsigned i = 0; i < n; i++)
418  {
419  vs[i] = v1[i] + v2[i];
420  }
421  }

References i, n, v1(), and v2().

Referenced by oomph::RefineableYoungLaplaceEquations::fill_in_contribution_to_residuals(), and fill_in_contribution_to_residuals().

Member Data Documentation

◆ Kappa_index

unsigned oomph::YoungLaplaceEquations::Kappa_index
protected

Index of Kappa_pt in the element's storage of external Data.

Referenced by set_kappa().

◆ Kappa_pt

Data* oomph::YoungLaplaceEquations::Kappa_pt
private

Pointer to Data item that stores kappa as its first value – private to ensure that it must be set with set_kappa(...) which adds the Data to the element's internal Data!

Referenced by get_kappa(), kappa_pt(), and set_kappa().

◆ Spine_base_fct_pt

SpineBaseFctPt oomph::YoungLaplaceEquations::Spine_base_fct_pt
protected

◆ Spine_fct_pt

SpineFctPt oomph::YoungLaplaceEquations::Spine_fct_pt
protected

The documentation for this class was generated from the following files: