![]() |
|
Jacobi preconditioner for LeastSquaresConjugateGradient. More...
#include <BasicPreconditioners.h>
Inheritance diagram for Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >:Public Member Functions | |
| LeastSquareDiagonalPreconditioner () | |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner (const MatType &mat) | |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | analyzePattern (const MatType &) |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | factorize (const MatType &mat) |
| template<typename MatType > | |
| LeastSquareDiagonalPreconditioner & | compute (const MatType &mat) |
| ComputationInfo | info () |
Public Member Functions inherited from Eigen::DiagonalPreconditioner< Scalar_ > | |
| DiagonalPreconditioner () | |
| template<typename MatType > | |
| DiagonalPreconditioner (const MatType &mat) | |
| EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
| EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
| template<typename MatType > | |
| DiagonalPreconditioner & | analyzePattern (const MatType &) |
| template<typename MatType > | |
| DiagonalPreconditioner & | factorize (const MatType &mat) |
| template<typename MatType > | |
| DiagonalPreconditioner & | compute (const MatType &mat) |
| template<typename Rhs , typename Dest > | |
| void | _solve_impl (const Rhs &b, Dest &x) const |
| template<typename Rhs > | |
| const Solve< DiagonalPreconditioner, Rhs > | solve (const MatrixBase< Rhs > &b) const |
| ComputationInfo | info () |
Private Types | |
| typedef Scalar_ | Scalar |
| typedef NumTraits< Scalar >::Real | RealScalar |
| typedef DiagonalPreconditioner< Scalar_ > | Base |
Private Attributes | |
| Vector | m_invdiag |
Additional Inherited Members | |
Public Types inherited from Eigen::DiagonalPreconditioner< Scalar_ > | |
| enum | { ColsAtCompileTime = Dynamic , MaxColsAtCompileTime = Dynamic } |
| typedef Vector::StorageIndex | StorageIndex |
Protected Attributes inherited from Eigen::DiagonalPreconditioner< Scalar_ > | |
| Vector | m_invdiag |
| bool | m_isInitialized |
Jacobi preconditioner for LeastSquaresConjugateGradient.
This class allows to approximately solve for A' A x = A' b problems assuming A' A is a diagonal matrix. In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
| Scalar_ | the type of the scalar. |
\implsparsesolverconcept
The diagonal entries are pre-inverted and stored into a dense vector.
|
private |
|
private |
|
private |
|
inline |
|
inlineexplicit |
References Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::compute().
|
inline |
|
inline |
References Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::factorize().
Referenced by Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::LeastSquareDiagonalPreconditioner().
|
inline |
References Eigen::numext::abs2(), Eigen::SparseMatrix< Scalar_, Options_, StorageIndex_ >::cols(), j, Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::m_invdiag, Eigen::DiagonalPreconditioner< Scalar_ >::m_isInitialized, Eigen::SparseMatrix< Scalar_, Options_, StorageIndex_ >::outerSize(), Eigen::PlainObjectBase< Derived >::resize(), Eigen::PlainObjectBase< Derived >::setZero(), and Eigen::SparseMatrixBase< Derived >::squaredNorm().
Referenced by Eigen::LeastSquareDiagonalPreconditioner< Scalar_ >::compute().
|
inline |
References Eigen::Success.
|
private |