RefineablePeriodicLoadProblem< ELEMENT > Class Template Reference

Periodic loading problem. More...

+ Inheritance diagram for RefineablePeriodicLoadProblem< ELEMENT >:

Public Member Functions

 RefineablePeriodicLoadProblem (const unsigned &nx, const unsigned &ny, const double &lx, const double &ly)
 
void actions_before_newton_solve ()
 Update before solve is empty. More...
 
void actions_after_newton_solve ()
 Update after solve is empty. More...
 
void actions_before_adapt ()
 Actions before adapt: Wipe the mesh of traction elements. More...
 
void actions_after_adapt ()
 Actions after adapt: Rebuild the mesh of traction elements. More...
 
void doc_solution (DocInfo &doc_info)
 Doc the solution. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Member Functions

void assign_traction_elements ()
 Allocate traction elements on the top surface. More...
 
void delete_traction_elements ()
 Kill traction elements on the top surface. More...
 

Private Attributes

TreeBasedRefineableMeshBaseBulk_mesh_pt
 Pointer to the (refineable!) bulk mesh. More...
 
MeshSurface_mesh_pt
 Pointer to the mesh of traction elements. More...
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT>
class RefineablePeriodicLoadProblem< ELEMENT >

Periodic loading problem.

Constructor & Destructor Documentation

◆ RefineablePeriodicLoadProblem()

template<class ELEMENT >
RefineablePeriodicLoadProblem< ELEMENT >::RefineablePeriodicLoadProblem ( const unsigned nx,
const unsigned ny,
const double lx,
const double ly 
)

Constructor: Pass number of elements in x and y directions and lengths.

Problem constructor: Pass number of elements in the coordinate directions and the domain sizes.

168 {
169  // Create the mesh
171 
172  // Create/set error estimator
174 
175  // Make the mesh periodic in the x-direction by setting the nodes on
176  // right boundary (boundary 1) to be the periodic counterparts of
177  // those on the left one (boundary 3).
178  unsigned n_node = Bulk_mesh_pt->nboundary_node(1);
179  for(unsigned n=0;n<n_node;n++)
180  {
183  }
184 
185 
186  // Now establish the new neighbours (created by "wrapping around"
187  // the domain) in the TreeForst representation of the mesh
188 
189  // Get pointers to tree roots associated with elements on the
190  // left and right boundaries
191  Vector<TreeRoot*> left_root_pt(ny);
192  Vector<TreeRoot*> right_root_pt(ny);
193  for(unsigned i=0;i<ny;i++)
194  {
195  left_root_pt[i] =
196  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(i*nx))->
197  tree_pt()->root_pt();
198  right_root_pt[i] =
199  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(nx-1+i*nx))->
200  tree_pt()->root_pt();
201  }
202 
203  // Switch on QuadTreeNames for enumeration of directions
204  using namespace QuadTreeNames;
205 
206  //Set the neighbour and periodicity
207  for(unsigned i=0;i<ny;i++)
208  {
209  // The western neighbours of the elements on the left
210  // boundary are those on the right
211  left_root_pt[i]->neighbour_pt(W) = right_root_pt[i];
212  left_root_pt[i]->set_neighbour_periodic(W);
213 
214  // The eastern neighbours of the elements on the right
215  // boundary are those on the left
216  right_root_pt[i]->neighbour_pt(E) = left_root_pt[i];
217  right_root_pt[i]->set_neighbour_periodic(E);
218  } // done
219 
220 
221  //Create the surface mesh of traction elements
222  Surface_mesh_pt=new Mesh;
224 
225  // Set the boundary conditions for this problem: All nodes are
226  // free by default -- just pin & set the ones that have Dirichlet
227  // conditions here
228  unsigned ibound=0;
229  unsigned num_nod=Bulk_mesh_pt->nboundary_node(ibound);
230  for (unsigned inod=0;inod<num_nod;inod++)
231  {
232  // Get pointer to node
233  Node* nod_pt=Bulk_mesh_pt->boundary_node_pt(ibound,inod);
234 
235  // Pinned in x & y at the bottom and set value
236  nod_pt->pin(0);
237  nod_pt->pin(1);
238 
239  // Check which boundary conditions to set and set them
241  {
242  // Set both displacements to zero
243  nod_pt->set_value(0,0);
244  nod_pt->set_value(1,0);
245  }
246  else
247  {
248  // Extract nodal coordinates from node:
249  Vector<double> x(2);
250  x[0]=nod_pt->x(0);
251  x[1]=nod_pt->x(1);
252 
253  // Compute the value of the exact solution at the nodal point
254  Vector<double> u(2);
256 
257  // Assign these values to the nodal values at this node
258  nod_pt->set_value(0,u[0]);
259  nod_pt->set_value(1,u[1]);
260  };
261  } // end_loop_over_boundary_nodes
262 
263  // Complete the problem setup to make the elements fully functional
264 
265  // Loop over the elements
266  unsigned n_el = Bulk_mesh_pt->nelement();
267  for(unsigned e=0;e<n_el;e++)
268  {
269  // Cast to a bulk element
270  ELEMENT *el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
271 
272  // Set the elasticity tensor
273  el_pt->elasticity_tensor_pt() = &Global_Parameters::E;
274  }// end loop over elements
275 
276 
277  // Do selective refinement of one element so that we can test
278  // whether periodic hanging nodes work: Choose a single element
279  // (the zero-th one) as the to-be-refined element.
280  // This creates a hanging node on the periodic boundary
281  Vector<unsigned> refine_pattern(1,0);
282  Bulk_mesh_pt->refine_selected_elements(refine_pattern);
283 
284  // Add the submeshes to the problem
287 
288  // Now build the global mesh
290 
291  // Assign equation numbers
292  cout << assign_eqn_numbers() << " equations assigned" << std::endl;
293 } // end of constructor
int i
Definition: BiCGSTAB_step_by_step.cpp:9
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Array< double, 1, 3 > e(1./3., 0.5, 2.)
void assign_traction_elements()
Allocate traction elements on the top surface.
Definition: refineable_periodic_load.cc:300
Mesh * Surface_mesh_pt
Pointer to the mesh of traction elements.
Definition: refineable_periodic_load.cc:155
TreeBasedRefineableMeshBase * Bulk_mesh_pt
Pointer to the (refineable!) bulk mesh.
Definition: refineable_periodic_load.cc:152
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
Definition: mesh.h:67
unsigned long nboundary_node(const unsigned &ibound) const
Return number of nodes on a particular boundary.
Definition: mesh.h:833
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
Node *& boundary_node_pt(const unsigned &b, const unsigned &n)
Return pointer to node n on boundary b.
Definition: mesh.h:493
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
Definition: nodes.h:906
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
virtual void make_periodic(Node *const &node_pt)
Definition: nodes.cc:2257
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
ErrorEstimator *& spatial_error_estimator_pt()
Access to spatial error estimator.
Definition: refineable_mesh.h:143
Definition: rectangular_quadmesh.template.h:326
virtual void refine_selected_elements(const Vector< unsigned > &elements_to_be_refined)
Definition: refineable_mesh.cc:1816
Definition: error_estimator.h:266
bool Finite
Definition: periodic_load.cc:49
void exact_solution(const double &time, const Vector< double > &x, Vector< double > &u)
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:203
double E
Define the non-dimensional Young's modulus.
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:49
double E
Elastic modulus.
Definition: TwenteMeshGluing.cpp:68
const double ly
Definition: ConstraintElementsUnitTest.cpp:34
const double lx
Definition: ConstraintElementsUnitTest.cpp:33
const unsigned nx
Definition: ConstraintElementsUnitTest.cpp:30
const unsigned ny
Definition: ConstraintElementsUnitTest.cpp:31
@ W
Definition: quadtree.h:63
list x
Definition: plotDoE.py:28

References Global_Physical_Variables::E, e(), Global_Parameters::E, Global_Parameters::exact_solution(), Global_Parameters::Finite, i, Mesh_Parameters::lx, Mesh_Parameters::ly, n, Mesh_Parameters::nx, Mesh_Parameters::ny, oomph::Data::pin(), oomph::Data::set_value(), oomph::QuadTreeNames::W, plotDoE::x, and oomph::Node::x().

Member Function Documentation

◆ actions_after_adapt()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::actions_after_adapt ( )
inlinevirtual

Actions after adapt: Rebuild the mesh of traction elements.

Reimplemented from oomph::Problem.

118  {
119  // Create traction elements
121 
122  // Rebuild the Problem's global mesh from its various sub-meshes
124  }
void rebuild_global_mesh()
Definition: problem.cc:1533

◆ actions_after_newton_solve()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::actions_after_newton_solve ( )
inlinevirtual

Update after solve is empty.

Reimplemented from oomph::Problem.

104 {}

◆ actions_before_adapt()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::actions_before_adapt ( )
inlinevirtual

Actions before adapt: Wipe the mesh of traction elements.

Reimplemented from oomph::Problem.

108  {
109  // Kill the traction elements and wipe surface mesh
111 
112  // Rebuild the Problem's global mesh from its various sub-meshes
114  }
void delete_traction_elements()
Kill traction elements on the top surface.
Definition: refineable_periodic_load.cc:135

◆ actions_before_newton_solve()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::actions_before_newton_solve ( )
inlinevirtual

Update before solve is empty.

Reimplemented from oomph::Problem.

101 {}

◆ assign_traction_elements()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::assign_traction_elements
private

Allocate traction elements on the top surface.

Make traction elements along the top boundary of the bulk mesh.

301 {
302 
303  // How many bulk elements are next to boundary 2 (the top boundary)?
304  unsigned bound=2;
305  unsigned n_neigh = Bulk_mesh_pt->nboundary_element(bound);
306 
307  // Now loop over bulk elements and create the face elements
308  for(unsigned n=0;n<n_neigh;n++)
309  {
310  // Create the face element
311  FiniteElement *traction_element_pt
315 
316  // Add to mesh
317  Surface_mesh_pt->add_element_pt(traction_element_pt);
318  }
319 
320  // Now set function pointer to applied traction
321  unsigned n_traction = Surface_mesh_pt->nelement();
322  for(unsigned e=0;e<n_traction;e++)
323  {
324  // Cast to a surface element
328 
329  // Set the applied traction
331  }// end loop over traction elements
332 
333 
334 } // end of assign_traction_elements
Definition: elements.h:1313
Definition: linear_elasticity_traction_elements.h:77
void(*&)(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction) traction_fct_pt()
Reference to the traction function pointer.
Definition: linear_elasticity_traction_elements.h:170
int face_index_at_boundary(const unsigned &b, const unsigned &e) const
Definition: mesh.h:896
unsigned nboundary_element(const unsigned &b) const
Return number of finite elements that are adjacent to boundary b.
Definition: mesh.h:878
FiniteElement * boundary_element_pt(const unsigned &b, const unsigned &e) const
Return pointer to e-th finite element on boundary b.
Definition: mesh.h:840
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
void periodic_traction(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &result)
The traction function.
Definition: periodic_load.cc:76

References e(), n, Global_Parameters::periodic_traction(), and oomph::LinearElasticityTractionElement< ELEMENT >::traction_fct_pt.

◆ delete_traction_elements()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::delete_traction_elements ( )
inlineprivate

Kill traction elements on the top surface.

136  {
137  // How many surface elements are in the surface mesh
138  unsigned n_element = Surface_mesh_pt->nelement();
139 
140  // Loop over the traction elements
141  for(unsigned e=0;e<n_element;e++)
142  {
143  // Kill surface element
144  delete Surface_mesh_pt->element_pt(e);
145  }
146 
147  // Wipe the mesh
149  }
void flush_element_and_node_storage()
Definition: mesh.h:407

References e().

◆ doc_solution()

template<class ELEMENT >
void RefineablePeriodicLoadProblem< ELEMENT >::doc_solution ( DocInfo doc_info)

Doc the solution.

341 {
342  ofstream some_file;
343  char filename[100];
344 
345  // Number of plot points
346  unsigned npts=5;
347 
348  // Output solution
349  sprintf(filename,"%s/soln.dat",doc_info.directory().c_str());
350  some_file.open(filename);
351  Bulk_mesh_pt->output(some_file,npts);
352  some_file.close();
353 
354  // Output exact solution
355  sprintf(filename,"%s/exact_soln.dat",doc_info.directory().c_str());
356  some_file.open(filename);
357  Bulk_mesh_pt->output_fct(some_file,npts,
359  some_file.close();
360 
361  // Doc error
362  double error=0.0;
363  double norm=0.0;
364  sprintf(filename,"%s/error.dat",doc_info.directory().c_str());
365  some_file.open(filename);
366  Bulk_mesh_pt->compute_error(some_file,
368  error,norm);
369  some_file.close();
370 
371 // Doc error norm:
372  cout << "\nNorm of error " << sqrt(error) << std::endl;
373  cout << "Norm of solution : " << sqrt(norm) << std::endl << std::endl;
374  cout << std::endl;
375 
376 
377 } // end_of_doc_solution
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
void output_fct(std::ostream &outfile, const unsigned &n_plot, FiniteElement::SteadyExactSolutionFctPt)
Output a given Vector function at f(n_plot) points in each element.
Definition: mesh.cc:2199
virtual void compute_error(std::ostream &outfile, FiniteElement::UnsteadyExactSolutionFctPt exact_soln_pt, const double &time, double &error, double &norm)
Definition: mesh.h:1140
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
string filename
Definition: MergeRestartFiles.py:39
int error
Definition: calibrate.py:297

References oomph::DocInfo::directory(), calibrate::error, Global_Parameters::exact_solution(), MergeRestartFiles::filename, and sqrt().

Member Data Documentation

◆ Bulk_mesh_pt

template<class ELEMENT >
TreeBasedRefineableMeshBase* RefineablePeriodicLoadProblem< ELEMENT >::Bulk_mesh_pt
private

Pointer to the (refineable!) bulk mesh.

◆ Surface_mesh_pt

template<class ELEMENT >
Mesh* RefineablePeriodicLoadProblem< ELEMENT >::Surface_mesh_pt
private

Pointer to the mesh of traction elements.


The documentation for this class was generated from the following file: