block.cpp File Reference
#include "main.h"

Classes

struct  unwind_test_impl< BaseXpr, Xpr, Depth >
 
struct  unwind_test_impl< BaseXpr, Xpr, 4 >
 

Functions

template<typename MatrixType , typename Index , typename Scalar >
std::enable_if_t<!NumTraits< typename MatrixType::Scalar >::IsComplex, typename MatrixType::Scalarblock_real_only (const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar &s1)
 
template<typename MatrixType , typename Index , typename Scalar >
std::enable_if_t< NumTraits< typename MatrixType::Scalar >::IsComplex, typename MatrixType::Scalarblock_real_only (const MatrixType &, Index, Index, Index, Index, const Scalar &)
 
template<typename T1 , typename T2 >
std::enable_if_t< internal::is_same< T1, T2 >::value, boolis_same_block (const T1 &a, const T2 &b)
 
template<typename MatrixType >
std::enable_if_t<((MatrixType::Flags &RowMajorBit)==0), void > check_left_top (const MatrixType &m, Index r, Index c, Index rows, Index)
 
template<typename MatrixType >
std::enable_if_t<((MatrixType::Flags &RowMajorBit) !=0), void > check_left_top (const MatrixType &m, Index r, Index c, Index, Index cols)
 
template<typename MatrixType >
void block (const MatrixType &m)
 
template<typename MatrixType >
std::enable_if_t< MatrixType::IsVectorAtCompileTime, void > compare_using_data_and_stride (const MatrixType &m)
 
template<typename MatrixType >
std::enable_if_t<!MatrixType::IsVectorAtCompileTime, void > compare_using_data_and_stride (const MatrixType &m)
 
template<typename MatrixType >
void data_and_stride (const MatrixType &m)
 
template<typename BaseXpr >
void unwind_test (const BaseXpr &)
 
 EIGEN_DECLARE_TEST (block)
 

Function Documentation

◆ block()

template<typename MatrixType >
void block ( const MatrixType m)
52  {
53  typedef typename MatrixType::Scalar Scalar;
54  typedef typename MatrixType::RealScalar RealScalar;
58  typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
59 
60  Index rows = m.rows();
61  Index cols = m.cols();
62 
63  MatrixType m1 = MatrixType::Random(rows, cols), m1_copy = m1, m2 = MatrixType::Random(rows, cols), m3(rows, cols),
64  ones = MatrixType::Ones(rows, cols);
65  VectorType v1 = VectorType::Random(rows);
66 
67  Scalar s1 = internal::random<Scalar>();
68 
69  Index r1 = internal::random<Index>(0, rows - 1);
70  Index r2 = internal::random<Index>(r1, rows - 1);
71  Index c1 = internal::random<Index>(0, cols - 1);
72  Index c2 = internal::random<Index>(c1, cols - 1);
73 
74  block_real_only(m1, r1, r2, c1, c1, s1);
75 
76  // test fill logic with innerpanel and non-innerpanel blocks
77  m1.row(r1).setConstant(s1);
78  VERIFY_IS_CWISE_EQUAL(m1.row(r1), DynamicVectorType::Constant(cols, s1).transpose());
79  m1 = m1_copy;
80  m1.col(c1).setConstant(s1);
81  VERIFY_IS_CWISE_EQUAL(m1.col(c1), DynamicVectorType::Constant(rows, s1));
82  m1 = m1_copy;
83  // test setZero logic with innerpanel and non-innerpanel blocks
84  m1.row(r1).setZero();
86  m1 = m1_copy;
87  m1.col(c1).setZero();
89  m1 = m1_copy;
90 
91  // check row() and col()
92  VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
93  // check operator(), both constant and non-constant, on row() and col()
94  m1 = m1_copy;
95  m1.row(r1) += s1 * m1_copy.row(r2);
96  VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
97  // check nested block xpr on lhs
98  m1.row(r1).row(0) += s1 * m1_copy.row(r2);
99  VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
100  m1 = m1_copy;
101  m1.col(c1) += s1 * m1_copy.col(c2);
102  VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
103  m1.col(c1).col(0) += s1 * m1_copy.col(c2);
104  VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
105 
106  check_left_top(m1, r1, c1, rows, cols);
107 
108  // check block()
110  b1(0, 0) = m1(r1, c1);
111 
112  RowVectorType br1(m1.block(r1, 0, 1, cols));
113  VectorType bc1(m1.block(0, c1, rows, 1));
114  VERIFY_IS_EQUAL(b1, m1.block(r1, c1, 1, 1));
115  VERIFY_IS_EQUAL(m1.row(r1), br1);
116  VERIFY_IS_EQUAL(m1.col(c1), bc1);
117  // check operator(), both constant and non-constant, on block()
118  m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1) = s1 * m2.block(0, 0, r2 - r1 + 1, c2 - c1 + 1);
119  m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1)(r2 - r1, c2 - c1) = m2.block(0, 0, r2 - r1 + 1, c2 - c1 + 1)(0, 0);
120 
121  const Index BlockRows = 2;
122  const Index BlockCols = 5;
123 
124  if (rows >= 5 && cols >= 8) {
125  // test fixed block() as lvalue
126  m1.template block<BlockRows, BlockCols>(1, 1) *= s1;
127  // test operator() on fixed block() both as constant and non-constant
128  m1.template block<BlockRows, BlockCols>(1, 1)(0, 3) = m1.template block<2, 5>(1, 1)(1, 2);
129  // check that fixed block() and block() agree
130  Matrix<Scalar, Dynamic, Dynamic> b = m1.template block<BlockRows, BlockCols>(3, 3);
131  VERIFY_IS_EQUAL(b, m1.block(3, 3, BlockRows, BlockCols));
132 
133  // same tests with mixed fixed/dynamic size
134  m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols) *= s1;
135  m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols)(0, 3) = m1.template block<2, 5>(1, 1)(1, 2);
136  Matrix<Scalar, Dynamic, Dynamic> b2 = m1.template block<Dynamic, BlockCols>(3, 3, 2, 5);
137  VERIFY_IS_EQUAL(b2, m1.block(3, 3, BlockRows, BlockCols));
138 
139  VERIFY(is_same_block(m1.block(3, 3, BlockRows, BlockCols),
140  m1.block(3, 3, fix<Dynamic>(BlockRows), fix<Dynamic>(BlockCols))));
141  VERIFY(is_same_block(m1.template block<BlockRows, Dynamic>(1, 1, BlockRows, BlockCols),
142  m1.block(1, 1, fix<BlockRows>, BlockCols)));
143  VERIFY(is_same_block(m1.template block<BlockRows, BlockCols>(1, 1, BlockRows, BlockCols),
144  m1.block(1, 1, fix<BlockRows>(), fix<BlockCols>)));
145  VERIFY(is_same_block(m1.template block<BlockRows, BlockCols>(1, 1, BlockRows, BlockCols),
146  m1.block(1, 1, fix<BlockRows>, fix<BlockCols>(BlockCols))));
147  }
148 
149  if (rows > 2) {
150  // test sub vectors
151  VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0, 0, 2, 1));
152  VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
153  VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0, 2));
154  VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
155  Index i = rows - 2;
156  VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i, 0, 2, 1));
157  VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
158  VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i, 2));
159  VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
160  i = internal::random<Index>(0, rows - 2);
161  VERIFY_IS_EQUAL(v1.segment(i, 2), v1.template segment<2>(i));
162  }
163 
164  // stress some basic stuffs with block matrices
165  VERIFY_IS_EQUAL(numext::real(ones.col(c1).sum()), RealScalar(rows));
166  VERIFY_IS_EQUAL(numext::real(ones.row(r1).sum()), RealScalar(cols));
167 
168  VERIFY_IS_EQUAL(numext::real(ones.col(c1).dot(ones.col(c2))), RealScalar(rows));
169  VERIFY_IS_EQUAL(numext::real(ones.row(r1).dot(ones.row(r2))), RealScalar(cols));
170 
171  // check that linear accessors works on blocks
172  m1 = m1_copy;
173 
174  // now test some block-inside-of-block.
175 
176  // expressions with direct access
177  VERIFY_IS_EQUAL((m1.block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2)),
178  (m1.block(r2, c2, rows - r2, cols - c2)));
179  VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)), (m1.row(r1).segment(c1, c2 - c1 + 1)));
180  VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0)), (m1.col(c1).segment(r1, r2 - r1 + 1)));
181  VERIFY_IS_EQUAL((m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0)),
182  (m1.row(r1).segment(c1, c2 - c1 + 1)).transpose());
183  VERIFY_IS_EQUAL((m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0)),
184  (m1.row(r1).segment(c1, c2 - c1 + 1)).transpose());
185 
186  // expressions without direct access
187  VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2)),
188  ((m1 + m2).block(r2, c2, rows - r2, cols - c2)));
189  VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)),
190  ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1)));
191  VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0)),
192  ((m1 + m2).eval().row(r1).segment(c1, c2 - c1 + 1)));
193  VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0)),
194  ((m1 + m2).col(c1).segment(r1, r2 - r1 + 1)));
195  VERIFY_IS_APPROX(((m1 + m2).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0)),
196  ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1)).transpose());
197  VERIFY_IS_APPROX(((m1 + m2).transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0)),
198  ((m1 + m2).row(r1).segment(c1, c2 - c1 + 1)).transpose());
199  VERIFY_IS_APPROX(((m1 + m2).template block<Dynamic, 1>(r1, c1, r2 - r1 + 1, 1)),
200  ((m1 + m2).eval().col(c1).eval().segment(r1, r2 - r1 + 1)));
201  VERIFY_IS_APPROX(((m1 + m2).template block<1, Dynamic>(r1, c1, 1, c2 - c1 + 1)),
202  ((m1 + m2).eval().row(r1).eval().segment(c1, c2 - c1 + 1)));
203  VERIFY_IS_APPROX(((m1 + m2).transpose().template block<1, Dynamic>(c1, r1, 1, r2 - r1 + 1)),
204  ((m1 + m2).eval().col(c1).eval().segment(r1, r2 - r1 + 1)).transpose());
205  VERIFY_IS_APPROX((m1 + m2).row(r1).eval(), (m1 + m2).eval().row(r1));
206  VERIFY_IS_APPROX((m1 + m2).adjoint().col(r1).eval(), (m1 + m2).adjoint().eval().col(r1));
207  VERIFY_IS_APPROX((m1 + m2).adjoint().row(c1).eval(), (m1 + m2).adjoint().eval().row(c1));
208  VERIFY_IS_APPROX((m1 * 1).row(r1).segment(c1, c2 - c1 + 1).eval(), m1.row(r1).eval().segment(c1, c2 - c1 + 1).eval());
209  VERIFY_IS_APPROX(m1.col(c1).reverse().segment(r1, r2 - r1 + 1).eval(),
210  m1.col(c1).reverse().eval().segment(r1, r2 - r1 + 1).eval());
211 
212  VERIFY_IS_APPROX((m1 * 1).topRows(r1), m1.topRows(r1));
213  VERIFY_IS_APPROX((m1 * 1).leftCols(c1), m1.leftCols(c1));
214  VERIFY_IS_APPROX((m1 * 1).transpose().topRows(c1), m1.transpose().topRows(c1));
215  VERIFY_IS_APPROX((m1 * 1).transpose().leftCols(r1), m1.transpose().leftCols(r1));
216  VERIFY_IS_APPROX((m1 * 1).transpose().middleRows(c1, c2 - c1 + 1), m1.transpose().middleRows(c1, c2 - c1 + 1));
217  VERIFY_IS_APPROX((m1 * 1).transpose().middleCols(r1, r2 - r1 + 1), m1.transpose().middleCols(r1, r2 - r1 + 1));
218 
219  // evaluation into plain matrices from expressions with direct access (stress MapBase)
220  DynamicMatrixType dm;
221  DynamicVectorType dv;
222  dm.setZero();
223  dm = m1.block(r1, c1, rows - r1, cols - c1).block(r2 - r1, c2 - c1, rows - r2, cols - c2);
224  VERIFY_IS_EQUAL(dm, (m1.block(r2, c2, rows - r2, cols - c2)));
225  dm.setZero();
226  dv.setZero();
227  dm = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).row(0).transpose();
228  dv = m1.row(r1).segment(c1, c2 - c1 + 1);
229  VERIFY_IS_EQUAL(dv, dm);
230  dm.setZero();
231  dv.setZero();
232  dm = m1.col(c1).segment(r1, r2 - r1 + 1);
233  dv = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).col(0);
234  VERIFY_IS_EQUAL(dv, dm);
235  dm.setZero();
236  dv.setZero();
237  dm = m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).transpose().col(0);
238  dv = m1.row(r1).segment(c1, c2 - c1 + 1);
239  VERIFY_IS_EQUAL(dv, dm);
240  dm.setZero();
241  dv.setZero();
242  dm = m1.row(r1).segment(c1, c2 - c1 + 1).transpose();
243  dv = m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1).col(0);
244  VERIFY_IS_EQUAL(dv, dm);
245 
246  VERIFY_IS_EQUAL((m1.template block<Dynamic, 1>(1, 0, 0, 1)), m1.block(1, 0, 0, 1));
247  VERIFY_IS_EQUAL((m1.template block<1, Dynamic>(0, 1, 1, 0)), m1.block(0, 1, 1, 0));
248  VERIFY_IS_EQUAL(((m1 * 1).template block<Dynamic, 1>(1, 0, 0, 1)), m1.block(1, 0, 0, 1));
249  VERIFY_IS_EQUAL(((m1 * 1).template block<1, Dynamic>(0, 1, 1, 0)), m1.block(0, 1, 1, 0));
250 
251  VERIFY_IS_EQUAL(m1.template subVector<Horizontal>(r1), m1.row(r1));
252  VERIFY_IS_APPROX((m1 + m1).template subVector<Horizontal>(r1), (m1 + m1).row(r1));
253  VERIFY_IS_EQUAL(m1.template subVector<Vertical>(c1), m1.col(c1));
254  VERIFY_IS_APPROX((m1 + m1).template subVector<Vertical>(c1), (m1 + m1).col(c1));
255  VERIFY_IS_EQUAL(m1.template subVectors<Horizontal>(), m1.rows());
256  VERIFY_IS_EQUAL(m1.template subVectors<Vertical>(), m1.cols());
257 
258  if (rows >= 2 || cols >= 2) {
259  VERIFY_IS_EQUAL(int(m1.middleCols(0, 0).IsRowMajor), int(m1.IsRowMajor));
260  VERIFY_IS_EQUAL(m1.middleCols(0, 0).outerSize(), m1.IsRowMajor ? rows : 0);
261  VERIFY_IS_EQUAL(m1.middleCols(0, 0).innerSize(), m1.IsRowMajor ? 0 : rows);
262 
263  VERIFY_IS_EQUAL(int(m1.middleRows(0, 0).IsRowMajor), int(m1.IsRowMajor));
264  VERIFY_IS_EQUAL(m1.middleRows(0, 0).outerSize(), m1.IsRowMajor ? 0 : cols);
265  VERIFY_IS_EQUAL(m1.middleRows(0, 0).innerSize(), m1.IsRowMajor ? cols : 0);
266  }
267 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
MatrixXcf ones
Definition: ComplexEigenSolver_eigenvalues.cpp:1
Matrix3d m1
Definition: IOFormat.cpp:2
m col(1)
m row(1)
v tail< 2 >().setZero()
v head< 2 >().setZero()
MatrixType m2(n_dims)
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())
int rows
Definition: Tutorial_commainit_02.cpp:1
int cols
Definition: Tutorial_commainit_02.cpp:1
void adjoint(const MatrixType &m)
Definition: adjoint.cpp:85
Scalar * b
Definition: benchVecAdd.cpp:17
SCALAR Scalar
Definition: bench_gemm.cpp:45
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:46
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
std::enable_if_t<!NumTraits< typename MatrixType::Scalar >::IsComplex, typename MatrixType::Scalar > block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar &s1)
Definition: block.cpp:13
void block(const MatrixType &m)
Definition: block.cpp:52
std::enable_if_t<((MatrixType::Flags &RowMajorBit)==0), void > check_left_top(const MatrixType &m, Index r, Index c, Index rows, Index)
Definition: block.cpp:40
std::enable_if_t< internal::is_same< T1, T2 >::value, bool > is_same_block(const T1 &a, const T2 &b)
Definition: block.cpp:35
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186
float real
Definition: datatypes.h:10
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:13
int * m
Definition: level2_cplx_impl.h:294
#define VERIFY_IS_CWISE_EQUAL(a, b)
Definition: main.h:375
#define VERIFY(a)
Definition: main.h:362
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:367
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:83
void transpose()
Definition: skew_symmetric_matrix3.cpp:135
double Zero
Definition: pseudosolid_node_update_elements.cc:35
internal::nested_eval< T, 1 >::type eval(const T &xpr)
Definition: sparse_permutations.cpp:47
Definition: fft_test_shared.h:66

References adjoint(), b, block_real_only(), check_left_top(), col(), cols, eval(), head< 2 >(), i, is_same_block(), m, m1, m2(), ones, row(), rows, tail< 2 >(), anonymous_namespace{skew_symmetric_matrix3.cpp}::transpose(), v1(), VERIFY, VERIFY_IS_APPROX, VERIFY_IS_CWISE_EQUAL, VERIFY_IS_EQUAL, and oomph::PseudoSolidHelper::Zero.

Referenced by EIGEN_DECLARE_TEST().

◆ block_real_only() [1/2]

template<typename MatrixType , typename Index , typename Scalar >
std::enable_if_t<NumTraits<typename MatrixType::Scalar>::IsComplex, typename MatrixType::Scalar> block_real_only ( const MatrixType ,
Index  ,
Index  ,
Index  ,
Index  ,
const Scalar  
)
29  {
30  return Scalar(0);
31 }

◆ block_real_only() [2/2]

template<typename MatrixType , typename Index , typename Scalar >
std::enable_if_t<!NumTraits<typename MatrixType::Scalar>::IsComplex, typename MatrixType::Scalar> block_real_only ( const MatrixType m1,
Index  r1,
Index  r2,
Index  c1,
Index  c2,
const Scalar s1 
)
14  {
15  // check cwise-Functions:
16  VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
17  VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
18 
19  VERIFY_IS_APPROX(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).cwiseMin(s1),
20  m1.cwiseMin(s1).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1));
21  VERIFY_IS_APPROX(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1).cwiseMax(s1),
22  m1.cwiseMax(s1).block(r1, c1, r2 - r1 + 1, c2 - c1 + 1));
23 
24  return Scalar(0);
25 }

References m1, and VERIFY_IS_APPROX.

Referenced by block().

◆ check_left_top() [1/2]

template<typename MatrixType >
std::enable_if_t<((MatrixType::Flags & RowMajorBit) == 0), void> check_left_top ( const MatrixType m,
Index  r,
Index  c,
Index  rows,
Index   
)
41  {
42  if (c > 0) VERIFY_IS_EQUAL(m.leftCols(c).coeff(r + c * rows), m(r, c));
43 }
r
Definition: UniformPSDSelfTest.py:20
int c
Definition: calibrate.py:100

References calibrate::c, m, UniformPSDSelfTest::r, rows, and VERIFY_IS_EQUAL.

Referenced by block().

◆ check_left_top() [2/2]

template<typename MatrixType >
std::enable_if_t<((MatrixType::Flags & RowMajorBit) != 0), void> check_left_top ( const MatrixType m,
Index  r,
Index  c,
Index  ,
Index  cols 
)
47  {
48  if (r > 0) VERIFY_IS_EQUAL(m.topRows(r).coeff(c + r * cols), m(r, c));
49 }

References calibrate::c, cols, m, UniformPSDSelfTest::r, and VERIFY_IS_EQUAL.

◆ compare_using_data_and_stride() [1/2]

template<typename MatrixType >
std::enable_if_t<MatrixType::IsVectorAtCompileTime, void> compare_using_data_and_stride ( const MatrixType m)
270  {
271  Index rows = m.rows();
272  Index cols = m.cols();
273  Index size = m.size();
274  Index innerStride = m.innerStride();
275  Index rowStride = m.rowStride();
276  Index colStride = m.colStride();
277  const typename MatrixType::Scalar* data = m.data();
278 
279  for (int j = 0; j < cols; ++j)
280  for (int i = 0; i < rows; ++i) VERIFY(m.coeff(i, j) == data[i * rowStride + j * colStride]);
281 
282  VERIFY(innerStride == int((&m.coeff(1)) - (&m.coeff(0))));
283  for (int i = 0; i < size; ++i) VERIFY(m.coeff(i) == data[i * innerStride]);
284 }
int data[]
Definition: Map_placement_new.cpp:1
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References cols, data, i, j, m, rows, size, and VERIFY.

Referenced by data_and_stride().

◆ compare_using_data_and_stride() [2/2]

template<typename MatrixType >
std::enable_if_t<!MatrixType::IsVectorAtCompileTime, void> compare_using_data_and_stride ( const MatrixType m)
287  {
288  Index rows = m.rows();
289  Index cols = m.cols();
290  Index innerStride = m.innerStride();
291  Index outerStride = m.outerStride();
292  Index rowStride = m.rowStride();
293  Index colStride = m.colStride();
294  const typename MatrixType::Scalar* data = m.data();
295 
296  for (int j = 0; j < cols; ++j)
297  for (int i = 0; i < rows; ++i) VERIFY(m.coeff(i, j) == data[i * rowStride + j * colStride]);
298 
299  for (int j = 0; j < cols; ++j)
300  for (int i = 0; i < rows; ++i)
301  VERIFY(m.coeff(i, j) == data[(MatrixType::Flags & RowMajorBit) ? i * outerStride + j * innerStride
302  : j * outerStride + i * innerStride]);
303 }
const unsigned int RowMajorBit
Definition: Constants.h:70

References cols, data, i, j, m, Eigen::RowMajorBit, rows, and VERIFY.

◆ data_and_stride()

template<typename MatrixType >
void data_and_stride ( const MatrixType m)
306  {
307  Index rows = m.rows();
308  Index cols = m.cols();
309 
310  Index r1 = internal::random<Index>(0, rows - 1);
311  Index r2 = internal::random<Index>(r1, rows - 1);
312  Index c1 = internal::random<Index>(0, cols - 1);
313  Index c2 = internal::random<Index>(c1, cols - 1);
314 
315  MatrixType m1 = MatrixType::Random(rows, cols);
316  compare_using_data_and_stride(m1.block(r1, c1, r2 - r1 + 1, c2 - c1 + 1));
317  compare_using_data_and_stride(m1.transpose().block(c1, r1, c2 - c1 + 1, r2 - r1 + 1));
320  compare_using_data_and_stride(m1.row(r1).transpose());
321  compare_using_data_and_stride(m1.col(c1).transpose());
322 }
std::enable_if_t< MatrixType::IsVectorAtCompileTime, void > compare_using_data_and_stride(const MatrixType &m)
Definition: block.cpp:270

References cols, compare_using_data_and_stride(), m, m1, and rows.

Referenced by EIGEN_DECLARE_TEST().

◆ EIGEN_DECLARE_TEST()

EIGEN_DECLARE_TEST ( block  )
360  {
361  for (int i = 0; i < g_repeat; i++) {
363  CALL_SUBTEST_1(block(Matrix<float, 1, Dynamic>(internal::random(2, 50))));
364  CALL_SUBTEST_1(block(Matrix<float, Dynamic, 1>(internal::random(2, 50))));
365  CALL_SUBTEST_2(block(Matrix4d()));
366  CALL_SUBTEST_3(block(MatrixXcf(internal::random(2, 50), internal::random(2, 50))));
367  CALL_SUBTEST_4(block(MatrixXi(internal::random(2, 50), internal::random(2, 50))));
368  CALL_SUBTEST_5(block(MatrixXcd(internal::random(2, 50), internal::random(2, 50))));
369  CALL_SUBTEST_6(block(MatrixXf(internal::random(2, 50), internal::random(2, 50))));
370  CALL_SUBTEST_7(block(Matrix<int, Dynamic, Dynamic, RowMajor>(internal::random(2, 50), internal::random(2, 50))));
371 
373  CALL_SUBTEST_9(unwind_test(MatrixXf()));
374 
375 #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
376  CALL_SUBTEST_6(data_and_stride(MatrixXf(internal::random(5, 50), internal::random(5, 50))));
378  data_and_stride(Matrix<int, Dynamic, Dynamic, RowMajor>(internal::random(5, 50), internal::random(5, 50))));
379 #endif
380  }
381 }
void data_and_stride(const MatrixType &m)
Definition: block.cpp:306
void unwind_test(const BaseXpr &)
Definition: block.cpp:355
static int g_repeat
Definition: main.h:191
#define CALL_SUBTEST_6(FUNC)
Definition: split_test_helper.h:34
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
#define CALL_SUBTEST_8(FUNC)
Definition: split_test_helper.h:46
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
#define CALL_SUBTEST_7(FUNC)
Definition: split_test_helper.h:40
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
#define CALL_SUBTEST_9(FUNC)
Definition: split_test_helper.h:52

References block(), CALL_SUBTEST_1, CALL_SUBTEST_2, CALL_SUBTEST_3, CALL_SUBTEST_4, CALL_SUBTEST_5, CALL_SUBTEST_6, CALL_SUBTEST_7, CALL_SUBTEST_8, CALL_SUBTEST_9, data_and_stride(), Eigen::g_repeat, i, and unwind_test().

◆ is_same_block()

template<typename T1 , typename T2 >
std::enable_if_t<internal::is_same<T1, T2>::value, bool> is_same_block ( const T1 &  a,
const T2 &  b 
)
35  {
36  return a.isApprox(b);
37 }
const Scalar * a
Definition: level2_cplx_impl.h:32

References a, and b.

Referenced by block().

◆ unwind_test()

template<typename BaseXpr >
void unwind_test ( const BaseXpr &  )
355  {
356  BaseXpr xpr = BaseXpr::Random(100, 100);
358 }
static void run(Xpr &xpr)
Definition: block.cpp:326

References unwind_test_impl< BaseXpr, Xpr, Depth >::run().

Referenced by EIGEN_DECLARE_TEST().