MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT > Class Template Reference
+ Inheritance diagram for MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >:

Public Member Functions

 MortaringValidationProblem ()
 
void setup_multi_domain_interaction ()
 
void setup_refinement ()
 
void setup_elements ()
 
void build_constraint_elements ()
 
void add_mortaring_elements (Vector< ConstraintElement * > mortaring_elements)
 
void pin_dofs ()
 
void actions_before_adapt () override
 
void actions_after_adapt () override
 Actions that are to be performed after a mesh adaptation. More...
 
void verify_mortared_nodes_coincide ()
 
void set_output_distance ()
 
void set_do_not_output_distance ()
 
void output ()
 
void run ()
 
 MortaringValidationProblem ()
 
void setup_refinement ()
 
void setup_elements ()
 
void build_constraint_elements ()
 
void add_mortaring_elements (Vector< ConstraintElement * > mortaring_elements)
 
void pin_dofs ()
 
void actions_before_adapt () override
 
void actions_after_adapt () override
 Actions that are to be performed after a mesh adaptation. More...
 
void verify_mortared_nodes_coincide ()
 
void run ()
 
 MortaringValidationProblem (const unsigned flag)
 
Vector< ConstraintElement * > build_mortaring_elements ()
 
void add_mortaring_elements (Vector< ConstraintElement * > mortaring_elements)
 
void build_and_add_mortaring_elements ()
 
void actions_before_adapt ()
 
void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
void pin_mortared_status_dofs ()
 
void verify_mortared_nodes_coincide ()
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Public Attributes

Vector< SolidMesh * > Constituent_mesh_pt
 
SolidMeshNon_mortared_mesh_pt
 
MeshMortaring_mesh_pt
 
ConstitutiveLawConstitutive_law_pt
 
double Nu
 
double E
 
DocInfo doc_info
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_solve ()
 
virtual void actions_after_newton_solve ()
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_before_implicit_timestep ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual void set_initial_condition ()
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Constructor & Destructor Documentation

◆ MortaringValidationProblem() [1/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::MortaringValidationProblem ( )
inline
210  {
211  // Create the two meshes - location of second mesh is dependent on the test case flag
212  Constituent_mesh_pt.resize(2);
213 
215  0.0, MeshSize::x_length/2.0,
216  0.0, MeshSize::y_length,
217  0.0, MeshSize::z_length);
218 
219  double x_offset = 0.0, y_offset = 0.0, z_offset = 0.0;
220  x_offset = MeshSize::x_length/2.0;
221 
223  x_offset, x_offset+MeshSize::x_length/2.0,
224  y_offset, y_offset+MeshSize::y_length,
225  z_offset, z_offset+MeshSize::z_length);
226 
227  // Create the non-mortared mesh
229  0.0, MeshSize::x_length,
230  0.0, MeshSize::y_length,
231  0.0, MeshSize::z_length);
232 
233  for(auto m : {0,1})
234  {
235  // Disable refinemenet for all elements
236  for(unsigned e=0; e<Constituent_mesh_pt[m]->nelement(); e++)
237  {
238  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->finite_element_pt(e))->disable_refinement();
239  }
240 
241  // Enable refinement for the elements on the mortared boundary
242  const Vector<unsigned> mortared_bounds{2,4};
243  for(unsigned e=0; e<Constituent_mesh_pt[m]->nboundary_element(mortared_bounds[m]); e++)
244  {
245  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->boundary_element_pt(mortared_bounds[m], e))->enable_refinement();
246  }
247  }
248 
249  // Set refinement parameters
252 
253 
254  Max_residuals = 1e200;
255 
256  // Constitutve law
257  Nu = 0.3;
258  E = 1.0;
260 
261  // Pass to the elements
262  setup_elements();
263 
264  pin_dofs();
265 
266  Mortaring_mesh_pt = new Mesh;
267  // Add the mortaring elements to the mortaring mesh
269 
270  // There are two external meshes so we need to accept failure for each of the times we perform
271  // setup_multi_domain_interaction
273 
274 
275  // Add the mesh as a sub mesh
280  this->build_global_mesh();
281  this->assign_eqn_numbers();
282 
283  doc_info = DocInfo("RESLT_COMPARE_MORTARING_TO_NON_MORTARING");
284  doc_info.number() = 0;
285  output();
286  }
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Mesh * Mortaring_mesh_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:567
void pin_dofs()
Definition: MortaringCantileverCompareToNonMortaring.cpp:405
DocInfo doc_info
Definition: MortaringCantileverCompareToNonMortaring.cpp:571
SolidMesh * Non_mortared_mesh_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:566
void setup_refinement()
Definition: MortaringCantileverCompareToNonMortaring.cpp:337
void setup_elements()
Definition: MortaringCantileverCompareToNonMortaring.cpp:353
void build_constraint_elements()
Definition: MortaringCantileverCompareToNonMortaring.cpp:373
void setup_multi_domain_interaction()
Definition: MortaringCantileverCompareToNonMortaring.cpp:288
double Nu
Definition: MortaringCantileverCompareToNonMortaring.cpp:569
double E
Definition: MortaringCantileverCompareToNonMortaring.cpp:570
Vector< SolidMesh * > Constituent_mesh_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:565
void output()
Definition: MortaringCantileverCompareToNonMortaring.cpp:530
Definition: oomph_utilities.h:499
unsigned & number()
Number used (e.g.) for labeling output files.
Definition: oomph_utilities.h:554
Definition: constitutive_laws.h:699
Definition: mesh.h:67
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
double Max_residuals
Definition: problem.h:610
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
Definition: solid_cubic_mesh.h:17
Definition: error_estimator.h:266
int * m
Definition: level2_cplx_impl.h:294
ConstitutiveLaw * Constitutive_law_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:203
Z2ErrorEstimator * error_estimator_pt
Definition: MortaringCantileverCompareToNonMortaring.cpp:190
const double z_length
Definition: MortaringCantileverCompareToNonMortaring.cpp:198
const double y_length
Definition: MortaringCantileverCompareToNonMortaring.cpp:197
const double x_length
Definition: MortaringCantileverCompareToNonMortaring.cpp:196

References Constitutive::Constitutive_law_pt, Global_Physical_Variables::E, e(), MeshRefinement::error_estimator_pt, m, Constitutive_Parameters::Nu, oomph::output(), oomph::Multi_domain_functions::setup_multi_domain_interaction(), MeshSize::x_length, MeshSize::y_length, and MeshSize::z_length.

◆ MortaringValidationProblem() [2/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::MortaringValidationProblem ( )
inline
50  {
51  // Create the two meshes - location of second mesh is dependent on the test case flag
52  Constituent_mesh_pt.resize(2);
53 
55  0.0, 1.0,
56  0.0, 1.0,
57  0.0, 1.0);
58 
59  double x_offset = 0.0, y_offset = 0.0, z_offset = 0.0;
60  x_offset = 1.0;
61 
63  x_offset, x_offset+1.0,
64  y_offset, y_offset+1.0,
65  z_offset, z_offset+1.0);
66 
67  // Set refinement parameters
70 
71 
72  Max_residuals = 1e200;
73 
74  // Constitutve law
75  Nu = 0.3;
76  E = 1.0;
78 
79  // Pass to the elements
81 
82  pin_dofs();
83 
84  Mortaring_mesh_pt = new Mesh;
85  // Add the mortaring elements to the mortaring mesh
87 
88 
89  // Add the mesh as a sub mesh
93  this->build_global_mesh();
94  this->assign_eqn_numbers();
95 
96  // refine_uniformly();
97  }

References Constitutive::Constitutive_law_pt, Global_Physical_Variables::E, MeshRefinement::error_estimator_pt, and Constitutive_Parameters::Nu.

◆ MortaringValidationProblem() [3/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::MortaringValidationProblem ( const unsigned  flag)
inline
32  {
33  // Create the two meshes - location of second mesh is dependent on the test case flag
34  Constituent_mesh_pt.resize(2);
35 
37  0.0, 1.0,
38  0.0, 1.0,
39  0.0, 1.0);
40 
41  double x_offset = 0.0, y_offset = 0.0, z_offset = 0.0;
42  // Determine the offsets of the second mesh from the flag passed
43  switch(flag)
44  {
45  case 0:
46  x_offset = 1.0;
47  break;
48 
49  case 1:
50  x_offset = 1.0;
51  y_offset = 1.0;
52  break;
53 
54  case 2:
55  x_offset = 1.0;
56  y_offset = 1.0;
57  z_offset = 1.0;
58  break;
59 
60  case 3:
61  x_offset = 1.0;
62  y_offset = 0.5;
63  z_offset = 0.5;
64  break;
65 
66  case 4:
67  x_offset = 1.0;
68  y_offset = 0.5;
69  z_offset = 0.5;
70  // Move the top corner node so that it doesn't get mortared
71  for(unsigned l=0; l<Constituent_mesh_pt[0]->nnode(); l++)
72  {
73  Vector<double> x = {Constituent_mesh_pt[0]->node_pt(l)->x(0),Constituent_mesh_pt[0]->node_pt(l)->x(1),Constituent_mesh_pt[0]->node_pt(l)->x(2)};
74  if((x[0]-1.0)*(x[0]-1.0) + (x[1]-1.0)*(x[1]-1.0) + (x[2]-1.0)*(x[2]-1.0) < 1e-6)
75  {
76  Constituent_mesh_pt[0]->node_pt(l)->x(0) -= 1e-2;
77  Constituent_mesh_pt[0]->node_pt(l)->x(1) -= 1e-2;
78  Constituent_mesh_pt[0]->node_pt(l)->x(2) -= 1e-2;
79  break;
80  }
81  }
82  break;
83 
84  case 5:
85  x_offset = 1.0;
86  y_offset = 0.5;
87  z_offset = 0.5;
88  // Move the top corner node so that it doesn't get mortared
89  for(unsigned l=0; l<Constituent_mesh_pt[0]->nnode(); l++)
90  {
91  Vector<double> x = {Constituent_mesh_pt[0]->node_pt(l)->x(0),Constituent_mesh_pt[0]->node_pt(l)->x(1),Constituent_mesh_pt[0]->node_pt(l)->x(2)};
92  if((x[0]-1.0)*(x[0]-1.0) + (x[1]-1.0)*(x[1]-1.0) + (x[2]-0.5)*(x[2]-0.5) < 1e-6)
93  {
94  Constituent_mesh_pt[0]->node_pt(l)->x(0) -= 1e-2;
95  Constituent_mesh_pt[0]->node_pt(l)->x(1) -= 1e-2;
96  Constituent_mesh_pt[0]->node_pt(l)->x(2) -= 1e-2;
97  break;
98  }
99  }
100  break;
101 
102  case 6:
103  x_offset = 1.0;
104  y_offset = 0.5;
105  z_offset = 0.5;
106  // Move the top corner node so that it doesn't get mortared
107  for(unsigned l=0; l<Constituent_mesh_pt[0]->nnode(); l++)
108  {
109  Vector<double> x = {Constituent_mesh_pt[0]->node_pt(l)->x(0),Constituent_mesh_pt[0]->node_pt(l)->x(1),Constituent_mesh_pt[0]->node_pt(l)->x(2)};
110  if((x[0]-1.0)*(x[0]-1.0) + (x[1]-0.5)*(x[1]-0.5) + (x[2]-0.5)*(x[2]-0.5) < 1e-6)
111  {
112  Constituent_mesh_pt[0]->node_pt(l)->x(0) -= 1e-2;
113  Constituent_mesh_pt[0]->node_pt(l)->x(1) -= 1e-2;
114  Constituent_mesh_pt[0]->node_pt(l)->x(2) -= 1e-2;
115  break;
116  }
117  }
118  break;
119 
120  case 7:
121  x_offset = 1.0;
122  y_offset = 0.5;
123  z_offset = 0.5;
124  // Move the top corner node so that it doesn't get mortared
125  for(unsigned l=0; l<Constituent_mesh_pt[0]->nnode(); l++)
126  {
127  Vector<double> x = {Constituent_mesh_pt[0]->node_pt(l)->x(0),Constituent_mesh_pt[0]->node_pt(l)->x(1),Constituent_mesh_pt[0]->node_pt(l)->x(2)};
128  if((x[0]-1.0)*(x[0]-1.0) + (x[1]-0.5)*(x[1]-0.5) + (x[2]-1.0)*(x[2]-1.0) < 1e-6)
129  {
130  Constituent_mesh_pt[0]->node_pt(l)->x(0) -= 1e-2;
131  Constituent_mesh_pt[0]->node_pt(l)->x(1) -= 1e-2;
132  Constituent_mesh_pt[0]->node_pt(l)->x(2) -= 1e-2;
133  break;
134  }
135  }
136  break;
137 
138  default:
139  throw OomphLibError("Not a valid validation flag",
142  }
143  // We need to re-assign the lagrangian coordinates because it is these the mortaring procedures use to find where the node is, not the current coordinate
144  Constituent_mesh_pt[0]->set_lagrangian_nodal_coordinates();
146  x_offset, x_offset+1.0,
147  y_offset, y_offset+1.0,
148  z_offset, z_offset+1.0);
149 
150  Max_residuals = 1e200;
151 
152  // Pin the mortared status dofs. These are just to keep track of which nodes should be mortared and which shouldn't
154 
155  // Set refinement parameters
157  double nu = 1.0;
158  ConstitutiveLaw* constitutive_law_pt = new GeneralisedHookean(&nu);
159  for(unsigned i=0; i<2; i++)
160  {
161  dynamic_cast<RefineableBrickMesh<ELEMENT>*>(Constituent_mesh_pt[i])->spatial_error_estimator_pt()=error_estimator_pt;
162  // Error targets for adaptive refinement
163  dynamic_cast<RefineableBrickMesh<ELEMENT>*>(Constituent_mesh_pt[i])->max_permitted_error()=0.1;
164  dynamic_cast<RefineableBrickMesh<ELEMENT>*>(Constituent_mesh_pt[i])->min_permitted_error()=0.01;
165 
166  // Tell the elements that they should report their mortared status
167  for(unsigned e=0; e<Constituent_mesh_pt[i]->nelement(); e++)
168  {
169  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Constituent_mesh_pt[i]->element_pt(e));
170 
171  el_pt->constitutive_law_pt() = constitutive_law_pt;
172 
173  // Set the mortared status of all nodes to 1 - this means all nodes should be mortared
174  for(unsigned l=0; l<Constituent_mesh_pt[i]->finite_element_pt(e)->nnode(); l++)
175  {
176  el_pt->set_mortared(l);
177  }
178  }
179  }
180 
181  // Attempt to refine the mortared mesh - accept failures, we know there are nodes selected which will not have a counterpart node
182  Mortaring_mesh_pt = new Mesh;
183  // Add the mortaring elements to the mortaring mesh
185 
186  // We have now build the mortaring elements. This first time we should set the mortared status of all nodes to 0
187  // and then set the status to 1 for all nodes which were mortared. This lets us see which nodes have been mortared
188  for(unsigned i=0; i<2; i++)
189  {
190  // Tell the elements that they should report their mortared status
191  for(unsigned e=0; e<Constituent_mesh_pt[i]->nelement(); e++)
192  {
193  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Constituent_mesh_pt[i]->element_pt(e));
194 
195  // Set the mortared status of all nodes to 1 - this means all nodes should be mortared
196  for(unsigned l=0; l<Constituent_mesh_pt[i]->finite_element_pt(e)->nnode(); l++)
197  {
198  el_pt->set_not_mortared(l);
199  }
200  }
201  }
202  // Now loop over all mortaring elements and set the mortared status of all nodes to 1
203  for(unsigned e=0; e<Mortaring_mesh_pt->nelement(); e++)
204  {
205  // At this point we know that all mortaring elements will be between pairs of nodes
207  for(unsigned l=0; l<2; l++)
208  {
209  m_el_pt->solid_node_pt(l)->set_value(m_el_pt->solid_node_pt(l)->nvalue() - 1, 1.0);
210  }
211  }
212 
213  // Add the constituent meshes as sub meshes
217  this->build_global_mesh();
218  this->assign_eqn_numbers();
219 
220  this->newton_solve();
222 
225 
226  this->newton_solve();
228  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
void build_and_add_mortaring_elements()
Definition: MortaringCubesUnitTest.cpp:270
void pin_mortared_status_dofs()
Definition: MortaringCubesUnitTest.cpp:297
void verify_mortared_nodes_coincide()
Definition: MortaringCantileverCompareToNonMortaring.cpp:457
Definition: constitutive_laws.h:471
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
GeneralisedElement *& element_pt(const unsigned long &e)
Return pointer to element e.
Definition: mesh.h:448
unsigned long nelement() const
Return number of elements in the mesh.
Definition: mesh.h:590
SolidNode * solid_node_pt(const unsigned &i)
Definition: node_node_constraint_elements.h:56
Definition: node_node_constraint_elements.h:75
Definition: oomph_definitions.h:222
void newton_solve()
Use Newton method to solve the problem.
Definition: problem.cc:8783
void refine_uniformly()
Definition: problem.h:2640
Definition: refineable_brick_mesh.h:61
list x
Definition: plotDoE.py:28
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86

References e(), MeshRefinement::error_estimator_pt, i, oomph::Data::nvalue(), OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, oomph::Data::set_value(), oomph::NodeNodeConstraintElement::solid_node_pt(), and plotDoE::x.

Member Function Documentation

◆ actions_after_adapt() [1/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_after_adapt ( )
inlinevirtual

Actions that are to be performed after a mesh adaptation.

Reimplemented from oomph::Problem.

288  {
289  // Pin the dof representing if each node is (to be) mortared
291  // re-create the mortaring elements
293  // rebuild mesh
295  }
void rebuild_global_mesh()
Definition: problem.cc:1533

◆ actions_after_adapt() [2/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_after_adapt ( )
inlineoverridevirtual

Actions that are to be performed after a mesh adaptation.

Reimplemented from oomph::Problem.

443  {
444  // add the mortaring elements back
446 
447  // rebuild mesh
449 
450  // To get the elements to re-compute the ipt to node mapping
451  setup_elements();
452 
453  // Setup multi domain interaction
455  }

References oomph::Multi_domain_functions::setup_multi_domain_interaction().

◆ actions_after_adapt() [3/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_after_adapt ( )
inlineoverridevirtual

Actions that are to be performed after a mesh adaptation.

Reimplemented from oomph::Problem.

179  {
180  // add the mortaring elements back
182  // rebuild mesh
184  }

◆ actions_before_adapt() [1/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_before_adapt ( )
inlinevirtual

Actions that are to be performed before a mesh adaptation. These might include removing any additional elements, such as traction boundary elements before the adaptation.

Reimplemented from oomph::Problem.

276  {
277  // Delete all mortaring elements
278  unsigned long Element_pt_range = Mortaring_mesh_pt->nelement();
279  for (unsigned long i = Element_pt_range; i > 0; i--)
280  {
281  delete Mortaring_mesh_pt->element_pt(i - 1);
282  }
283  // flush the mortaring mesh elements
285  }
void flush_element_storage()
Definition: mesh.h:423

References i.

◆ actions_before_adapt() [2/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_before_adapt ( )
inlineoverridevirtual

Actions that are to be performed before a mesh adaptation. These might include removing any additional elements, such as traction boundary elements before the adaptation.

Reimplemented from oomph::Problem.

431  {
432  // Delete all mortaring elements
433  unsigned long Element_pt_range = Mortaring_mesh_pt->nelement();
434  for (unsigned long i = Element_pt_range; i > 0; i--)
435  {
436  delete Mortaring_mesh_pt->element_pt(i - 1);
437  }
438  // flush the mortaring mesh elements
440  }

References i.

◆ actions_before_adapt() [3/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::actions_before_adapt ( )
inlineoverridevirtual

Actions that are to be performed before a mesh adaptation. These might include removing any additional elements, such as traction boundary elements before the adaptation.

Reimplemented from oomph::Problem.

167  {
168  // Delete all mortaring elements
169  unsigned long Element_pt_range = Mortaring_mesh_pt->nelement();
170  for (unsigned long i = Element_pt_range; i > 0; i--)
171  {
172  delete Mortaring_mesh_pt->element_pt(i - 1);
173  }
174  // flush the mortaring mesh elements
176  }

References i.

◆ add_mortaring_elements() [1/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::add_mortaring_elements ( Vector< ConstraintElement * >  mortaring_elements)
inline
398  {
399  for(unsigned e=0; e<mortaring_elements.size(); e++)
400  {
401  Mortaring_mesh_pt->add_element_pt(dynamic_cast<GeneralisedElement*>(mortaring_elements[e]));
402  }
403  }
Definition: elements.h:73
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617

References e().

◆ add_mortaring_elements() [2/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::add_mortaring_elements ( Vector< ConstraintElement * >  mortaring_elements)
inline
147  {
148  for(unsigned e=0; e<mortaring_elements.size(); e++)
149  {
150  Mortaring_mesh_pt->add_element_pt(dynamic_cast<GeneralisedElement*>(mortaring_elements[e]));
151  }
152  }

References e().

◆ add_mortaring_elements() [3/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::add_mortaring_elements ( Vector< ConstraintElement * >  mortaring_elements)
inline
263  {
264  for(unsigned e=0; e<mortaring_elements.size(); e++)
265  {
266  Mortaring_mesh_pt->add_element_pt(dynamic_cast<GeneralisedElement*>(mortaring_elements[e]));
267  }
268  }

References e().

◆ build_and_add_mortaring_elements()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::build_and_add_mortaring_elements ( )
inline
271  {
273  }
Vector< ConstraintElement * > build_mortaring_elements()
Definition: MortaringCubesUnitTest.cpp:231
void add_mortaring_elements(Vector< ConstraintElement * > mortaring_elements)
Definition: MortaringCantileverCompareToNonMortaring.cpp:397

◆ build_constraint_elements() [1/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::build_constraint_elements ( )
inline
374  {
375  // The boundary id on the m-th mesh
376  Vector<unsigned> bounds{2,4};
377 
378  Vector<Vector<Node*>> nodes_to_be_mortared_pt(2);
379  for(unsigned m : {0,1})
380  {
381  const unsigned n_bound_node = Constituent_mesh_pt[m]->nboundary_node(bounds[m]);
382  nodes_to_be_mortared_pt[m].resize(n_bound_node);
383  for(unsigned l=0; l<n_bound_node; l++)
384  {
385  nodes_to_be_mortared_pt[m][l] = Constituent_mesh_pt[m]->boundary_node_pt(bounds[m], l);
386  }
387  }
388  // we mortared boundary 2 of constituent mesh 0 to boundary 4 of constituent mesh 1
391  ELEMENT>
392  (this,
393  nodes_to_be_mortared_pt,
395  }
Definition: node_element_constraint_elements.h:16
Vector< ConstraintElement * > setup_constraint_elements_at_nodes(Problem *problem_pt, Vector< Vector< Node * >> node_pt, Vector< SolidMesh * > mesh_pt, const bool &accept_failure=false)
Definition: mortaring_helpers.h:169

References m, and MortaringHelpers::setup_constraint_elements_at_nodes().

◆ build_constraint_elements() [2/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::build_constraint_elements ( )
inline
123  {
124  // The boundary id on the m-th mesh
125  Vector<unsigned> bounds{2,4};
126 
127  Vector<Vector<Node*>> nodes_to_be_mortared_pt(2);
128  for(unsigned m : {0,1})
129  {
130  const unsigned n_bound_node = Constituent_mesh_pt[m]->nboundary_node(bounds[m]);
131  nodes_to_be_mortared_pt[m].resize(n_bound_node);
132  for(unsigned l=0; l<n_bound_node; l++)
133  {
134  nodes_to_be_mortared_pt[m][l] = Constituent_mesh_pt[m]->boundary_node_pt(bounds[m], l);
135  }
136  }
137  // we mortared bound 2 of constituent mesh 0 to bound 4 of constituent mesh 1
140  ELEMENT>
141  (this,
142  nodes_to_be_mortared_pt,
144  }

References m, and MortaringHelpers::setup_constraint_elements_at_nodes().

◆ build_mortaring_elements()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
Vector<ConstraintElement*> MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::build_mortaring_elements ( )
inline
232  {
233  // Get all nodes - we try and mortar them all
234  Vector<Vector<Node*>> nodes_to_be_mortared_pt(2);
235  for(unsigned m=0;m<2;m++)
236  {
237  for(unsigned l=0; l<Constituent_mesh_pt[m]->nnode(); l++)
238  {
239  // if the node is marked for mortaring then add it to the list
240  if(Constituent_mesh_pt[m]->node_pt(l)->value(Constituent_mesh_pt[m]->node_pt(l)->nvalue()-1) > 0.5)
241  {
242  nodes_to_be_mortared_pt[m].push_back(dynamic_cast<Node*>(Constituent_mesh_pt[m]->node_pt(l)));
243  }
244  }
245  }
246 
247  // Build and return the mortaring elements - we want to accept failure, hence true
250  ELEMENT>
251  (this,
252  nodes_to_be_mortared_pt,
254  true);
255 
256  std::cout << "Created " << mortaring_elements.size() << " mortaring elements" << std::endl;
257 
258  return mortaring_elements;
259  }
Definition: nodes.h:906
squared absolute value
Definition: GlobalFunctions.h:87

References m, MortaringHelpers::setup_constraint_elements_at_nodes(), and Eigen::value.

◆ output()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::output ( )
inline
531  {
532  Non_mortared_mesh_pt->output(doc_info.directory() + "/non_mortared_" + std::to_string(doc_info.number()++) + ".dat", 2);
533 
535  Non_mortared_mesh_pt->output(doc_info.directory() + "/error_" + std::to_string(doc_info.number()++) + ".dat", 2);
537 
538  for(unsigned m : {0,1})
539  {
540  Constituent_mesh_pt[m]->output(doc_info.directory() + "/mortared_mesh_" + std::to_string(m) + "_" + std::to_string(doc_info.number()++) + ".dat", 2);
541  }
542  }
void set_do_not_output_distance()
Definition: MortaringCantileverCompareToNonMortaring.cpp:522
void set_output_distance()
Definition: MortaringCantileverCompareToNonMortaring.cpp:514
std::string directory() const
Output directory.
Definition: oomph_utilities.h:524
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
std::string to_string(T object, unsigned float_precision=8)
Definition: oomph_utilities.h:189

References m, and oomph::StringConversion::to_string().

◆ pin_dofs() [1/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::pin_dofs ( )
inline
406  {
407  // Assign the dirichlet boundary conditions...
408 
409  // To the mortared mesh which is on the wall
410  for(unsigned n=0; n<Constituent_mesh_pt[0]->nboundary_node(4); n++)
411  {
412  SolidNode* node_pt = dynamic_cast<SolidNode*>(Constituent_mesh_pt[0]->boundary_node_pt(4, n));
413 
414  node_pt->pin_position(0);
415  node_pt->pin_position(1);
416  node_pt->pin_position(2);
417  }
418 
419  // To the non-mortared mesh
420  for(unsigned n=0; n<Non_mortared_mesh_pt->nboundary_node(4); n++)
421  {
422  SolidNode* node_pt = dynamic_cast<SolidNode*>(Non_mortared_mesh_pt->boundary_node_pt(4, n));
423 
424  node_pt->pin_position(0);
425  node_pt->pin_position(1);
426  node_pt->pin_position(2);
427  }
428  }
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
unsigned long nboundary_node(const unsigned &ibound) const
Return number of nodes on a particular boundary.
Definition: mesh.h:833
SolidNode * boundary_node_pt(const unsigned &b, const unsigned &n)
Return n-th SolidNodes on b-th boundary.
Definition: mesh.h:2612
Definition: nodes.h:1686
void pin_position(const unsigned &i)
Pin the nodal position.
Definition: nodes.h:1816

References n, and oomph::SolidNode::pin_position().

◆ pin_dofs() [2/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::pin_dofs ( )
inline
155  {
156  for(unsigned n=0; n<Constituent_mesh_pt[0]->nboundary_node(4); n++)
157  {
158  SolidNode* node_pt = dynamic_cast<SolidNode*>(Constituent_mesh_pt[0]->boundary_node_pt(4, n));
159 
160  node_pt->pin_position(0);
161  node_pt->pin_position(1);
162  node_pt->pin_position(2);
163  }
164  }

References n, and oomph::SolidNode::pin_position().

◆ pin_mortared_status_dofs()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::pin_mortared_status_dofs ( )
inline
298  {
299  for(unsigned i=0; i<2; i++)
300  {
301  // Pin the mortared status dof of all nodes
302  for(unsigned e=0; e<Constituent_mesh_pt[i]->nelement(); e++)
303  {
304  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[i]->element_pt(e))->pin_mortared_status_of_all_nodes();
305  }
306  }
307  }

References e(), and i.

◆ run() [1/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::run ( )
inline
545  {
546  for(unsigned i=0; i<8; i++)
547  {
548  std::cout << "Iteration: " << i << std::endl;
549  newton_solve(1);
550 
551  output();
552 
553  // Make spatial error requirements more stringent
554  // MeshRefinement::max_error/=2.0;
555  // MeshRefinement::min_error/=2.0;
558  setup_elements();
559 
560  // Check if mortared nodes spatially coincide
562  }
563  }
double gravity_magnitude
Definition: MortaringCantileverCompareToNonMortaring.cpp:177

References gravity::gravity_magnitude, i, and oomph::output().

◆ run() [2/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::run ( )
inline
244  {
245  for(unsigned i=0; i<2; i++)
246  {
247  newton_solve(1);
248 
249  // Make spatial error requirements more stringent
254  setup_elements();
255 
256  // Check if mortared nodes spatially coincide
258  }
259  }
double min_error
Definition: MortaringCantileverCompareToNonMortaring.cpp:189
double max_error
Definition: MortaringCantileverCompareToNonMortaring.cpp:188

References gravity::gravity_magnitude, i, MeshRefinement::max_error, and MeshRefinement::min_error.

◆ set_do_not_output_distance()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::set_do_not_output_distance ( )
inline
523  {
524  for(unsigned e=0; e<Non_mortared_mesh_pt->nelement(); e++)
525  {
526  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->set_do_not_output_distance();
527  }
528  }

References e().

◆ set_output_distance()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::set_output_distance ( )
inline
515  {
516  for(unsigned e=0; e<Non_mortared_mesh_pt->nelement(); e++)
517  {
518  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->set_output_distance();
519  }
520  }

References e().

◆ setup_elements() [1/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::setup_elements ( )
inline
354  {
355  for(unsigned m=0; m<2; m++)
356  {
357  for(unsigned e=0; e<Constituent_mesh_pt[m]->nelement(); e++)
358  {
359  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->element_pt(e))->constitutive_law_pt() = Constitutive::Constitutive_law_pt;
360  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->element_pt(e))->body_force_fct_pt() = &gravity::gravity;
361  }
362  }
363 
364  for(unsigned e=0; e<Non_mortared_mesh_pt->nelement(); e++)
365  {
366  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->constitutive_law_pt() = Constitutive::Constitutive_law_pt;
367  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->body_force_fct_pt() = &gravity::gravity;
368  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->set_communicator_pt(this->communicator_pt());
369  dynamic_cast<NON_MORTAR_ELEMENT*>(Non_mortared_mesh_pt->element_pt(e))->pre_compute_ipt_to_node_mapping();
370  }
371  }
OomphCommunicator * communicator_pt()
access function to the oomph-lib communicator
Definition: problem.h:1246
void gravity(const double &t, const Vector< double > &xi, Vector< double > &b)
Definition: MortaringCantileverCompareToNonMortaring.cpp:178

References Constitutive::Constitutive_law_pt, e(), gravity::gravity(), and m.

◆ setup_elements() [2/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::setup_elements ( )
inline
111  {
112  for(unsigned m=0; m<2; m++)
113  {
114  for(unsigned e=0; e<Constituent_mesh_pt[m]->nelement(); e++)
115  {
116  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->element_pt(e))->constitutive_law_pt() = Constitutive::Constitutive_law_pt;
117  dynamic_cast<ELEMENT*>(Constituent_mesh_pt[m]->element_pt(e))->body_force_fct_pt() = &gravity::gravity;
118  }
119  }
120  }

References Constitutive::Constitutive_law_pt, e(), gravity::gravity(), and m.

◆ setup_multi_domain_interaction()

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::setup_multi_domain_interaction ( )
inline
289  {
290  // The external element data is wiped before each setup_multi_domain_interaction
291  // We therefore need to store the external data for elements for which it has been set after the first setup_multi_domain_interaction
292  // Then we need to re-assign that data to the elements which have a null external element
293  const unsigned n_element = Non_mortared_mesh_pt->nelement();
294  Vector<Vector<FiniteElement*>> ext_elem_pt(n_element);
295  Vector<Vector<Vector<double>>> ext_elem_local_coord_pt(n_element);
296  for(unsigned e=0; e<n_element; e++)
297  {
298  const unsigned n_ipt = Non_mortared_mesh_pt->finite_element_pt(e)->integral_pt()->nweight();
299  ext_elem_pt[e].resize(n_ipt);
300  ext_elem_local_coord_pt[e].resize(n_ipt);
301  }
302 
304  Multi_domain_functions::setup_multi_domain_interaction<ELEMENT>(this, Non_mortared_mesh_pt, Constituent_mesh_pt[0], 0);
305 
306  // Store the external element data which is not null
307  for(unsigned e=0; e<n_element; e++)
308  {
309  const unsigned n_ipt = Non_mortared_mesh_pt->finite_element_pt(e)->integral_pt()->nweight();
310  for(unsigned ipt=0; ipt<n_ipt; ipt++)
311  {
313  {
314  ext_elem_pt[e][ipt] = dynamic_cast<ElementWithExternalElement*>(Non_mortared_mesh_pt->element_pt(e))->external_element_pt(0, ipt);
315  ext_elem_local_coord_pt[e][ipt] = dynamic_cast<ElementWithExternalElement*>(Non_mortared_mesh_pt->element_pt(e))->external_element_local_coord(0, ipt);
316  }
317  }
318  }
319 
320  Multi_domain_functions::setup_multi_domain_interaction<ELEMENT>(this, Non_mortared_mesh_pt, Constituent_mesh_pt[1], 0);
321 
322  // Restore the external element data to external data which is null
323  for(unsigned e=0; e<n_element; e++)
324  {
325  const unsigned n_ipt = Non_mortared_mesh_pt->finite_element_pt(e)->integral_pt()->nweight();
326  for(unsigned ipt=0; ipt<n_ipt; ipt++)
327  {
329  {
330  dynamic_cast<ElementWithExternalElement*>(Non_mortared_mesh_pt->element_pt(e))->external_element_pt(0, ipt) = ext_elem_pt[e][ipt];
331  dynamic_cast<ElementWithExternalElement*>(Non_mortared_mesh_pt->element_pt(e))->external_element_local_coord(0, ipt) = ext_elem_local_coord_pt[e][ipt];
332  }
333  }
334  }
335  }
Definition: element_with_external_element.h:56
FiniteElement *& external_element_pt(const unsigned &interaction_index, const unsigned &ipt)
Definition: element_with_external_element.h:107
Integral *const & integral_pt() const
Return the pointer to the integration scheme (const version)
Definition: elements.h:1963
virtual unsigned nweight() const =0
Return the number of integration points of the scheme.
FiniteElement * finite_element_pt(const unsigned &e) const
Definition: mesh.h:473
bool Accept_failed_locate_zeta_in_setup_multi_domain_interaction
Definition: multi_domain.cc:56

References oomph::Multi_domain_functions::Accept_failed_locate_zeta_in_setup_multi_domain_interaction, e(), and oomph::ElementWithExternalElement::external_element_pt().

◆ setup_refinement() [1/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::setup_refinement ( )
inline
338  {
339  for(unsigned m:{0,1})
340  {
341  dynamic_cast<RefineableSolidCubicMesh<ELEMENT>*>(Constituent_mesh_pt[m])->spatial_error_estimator_pt()=MeshRefinement::error_estimator_pt;
342  // Error targets for adaptive refinement
345  }
346 
348  // Error targets for adaptive refinement
351  }

References MeshRefinement::error_estimator_pt, m, MeshRefinement::max_error, and MeshRefinement::min_error.

◆ setup_refinement() [2/2]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::setup_refinement ( )
inline
100  {
101  for(unsigned m:{0,1})
102  {
103  dynamic_cast<RefineableSolidCubicMesh<ELEMENT>*>(Constituent_mesh_pt[m])->spatial_error_estimator_pt()=MeshRefinement::error_estimator_pt;
104  // Error targets for adaptive refinement
107  }
108  }

References MeshRefinement::error_estimator_pt, m, MeshRefinement::max_error, and MeshRefinement::min_error.

◆ verify_mortared_nodes_coincide() [1/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::verify_mortared_nodes_coincide ( )
inline
458  {
459  for(unsigned e=0; e<Mortaring_mesh_pt->nelement(); e++)
460  {
461  {
463  if(el_pt != 0)
464  {
465  // Get the nodes and check their distance
466  SolidNode* node0_pt = el_pt->solid_node_pt(0);
467  SolidNode* node1_pt = el_pt->solid_node_pt(1);
468 
469  double distance = 0.0;
470  for(unsigned i=0; i<3; i++)
471  {
472  distance += pow(node0_pt->x(i) - node1_pt->x(i), 2.0);
473  }
474  distance = sqrt(distance);
475 
476  // Assert that the distance is within the expected tolerance
477  helpers::check(distance, 0.0, 1e-10, "Distance between mortared nodes");
478 
479  // Go to the next mortaring element
480  continue;
481  }
482  }
483  // If we did not continue that means we need to try with a node-element mortaring element
484  {
486  if(el_pt != 0)
487  {
488  // Get the node and element and check their distance
489  SolidNode* node_pt = el_pt->solid_node_pt();
490 
491  Vector<double> x_in_elem(3, 0.0);
492  el_pt->position_in_element(x_in_elem);
493 
494  double distance = 0.0;
495  for(unsigned i=0; i<3; i++)
496  {
497  distance += pow(node_pt->x(i) - x_in_elem[i], 2.0);
498  }
499  distance = sqrt(distance);
500 
501  // Assert that the distance is within the expected tolerance
502  helpers::check(distance, 0.0, 1e-10, "Distance between mortared node and element");
503 
504  // Go to the next mortaring element
505  continue;
506  }
507 
508  // Should never get here but throw an error if we do
509  logger(FATAL, "Mortaring element was not of an expected type.");
510  }
511  }
512  }
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ FATAL
SolidNode * solid_node_pt()
Definition: node_element_constraint_elements.h:67
void position_in_element(Vector< double > &x)
Definition: node_element_constraint_elements.h:45
double & x(const unsigned &i)
Return the i-th nodal coordinate.
Definition: nodes.h:1060
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
void check(double real, double ideal, double error, std::string errorMessage)
Definition: TestHelpers.cc:16

References helpers::check(), e(), FATAL, i, logger, oomph::NodeElementSolidOnlyMortaringElement::position_in_element(), Eigen::bfloat16_impl::pow(), oomph::NodeElementSolidOnlyMortaringElement::solid_node_pt(), oomph::NodeNodeConstraintElement::solid_node_pt(), sqrt(), and oomph::Node::x().

◆ verify_mortared_nodes_coincide() [2/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::verify_mortared_nodes_coincide ( )
inline
187  {
188  for(unsigned e=0; e<Mortaring_mesh_pt->nelement(); e++)
189  {
190  {
192  if(el_pt != 0)
193  {
194  // Get the nodes and check their distance
195  SolidNode* node0_pt = el_pt->solid_node_pt(0);
196  SolidNode* node1_pt = el_pt->solid_node_pt(1);
197 
198  double distance = 0.0;
199  for(unsigned i=0; i<3; i++)
200  {
201  distance += pow(node0_pt->x(i) - node1_pt->x(i), 2.0);
202  }
203  distance = sqrt(distance);
204 
205  // Assert that the distance is within the expected tolerance
206  helpers::check(distance, 0.0, 1e-10, "Distance between mortared nodes");
207 
208  // Go to the next mortaring element
209  continue;
210  }
211  }
212  // If we did not continue that means we need to try with a node-element mortaring element
213  {
215  if(el_pt != 0)
216  {
217  // Get the node and element and check their distance
218  SolidNode* node_pt = el_pt->solid_node_pt();
219 
220  Vector<double> x_in_elem(3, 0.0);
221  el_pt->position_in_element(x_in_elem);
222 
223  double distance = 0.0;
224  for(unsigned i=0; i<3; i++)
225  {
226  distance += pow(node_pt->x(i) - x_in_elem[i], 2.0);
227  }
228  distance = sqrt(distance);
229 
230  // Assert that the distance is within the expected tolerance
231  helpers::check(distance, 0.0, 1e-10, "Distance between mortared node and element");
232 
233  // Go to the next mortaring element
234  continue;
235  }
236 
237  // Should never get here but throw an error if we do
238  logger(FATAL, "Mortaring element was not of an expected type.");
239  }
240  }
241  }

References helpers::check(), e(), FATAL, i, logger, oomph::NodeElementSolidOnlyMortaringElement::position_in_element(), Eigen::bfloat16_impl::pow(), oomph::NodeElementSolidOnlyMortaringElement::solid_node_pt(), oomph::NodeNodeConstraintElement::solid_node_pt(), sqrt(), and oomph::Node::x().

◆ verify_mortared_nodes_coincide() [3/3]

template<class ELEMENT , class NON_MORTAR_ELEMENT >
void MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::verify_mortared_nodes_coincide ( )
inline
310  {
311  for(unsigned e=0; e<Mortaring_mesh_pt->nelement(); e++)
312  {
313  {
315  if(el_pt != 0)
316  {
317  // Get the nodes and check their distance
318  SolidNode* node0_pt = el_pt->solid_node_pt(0);
319  SolidNode* node1_pt = el_pt->solid_node_pt(1);
320 
321  double distance = 0.0;
322  for(unsigned i=0; i<3; i++)
323  {
324  distance += pow(node0_pt->x(i) - node1_pt->x(i), 2.0);
325  }
326  distance = sqrt(distance);
327 
328  // Assert that the distance is within the expected tolerance
329  helpers::check(distance, 0.0, 1e-10, "Distance between mortared nodes");
330 
331  // Go to the next mortaring element
332  continue;
333  }
334  }
335  // If we did not continue that means we need to try with a node-element mortaring element
336  {
338  if(el_pt != 0)
339  {
340  // Get the node and element and check their distance
341  SolidNode* node_pt = el_pt->solid_node_pt();
342 
343  Vector<double> x_in_elem(3, 0.0);
344  el_pt->position_in_element(x_in_elem);
345 
346  double distance = 0.0;
347  for(unsigned i=0; i<3; i++)
348  {
349  distance += pow(node_pt->x(i) - x_in_elem[i], 2.0);
350  }
351  distance = sqrt(distance);
352 
353  // Assert that the distance is within the expected tolerance
354  helpers::check(distance, 0.0, 1e-10, "Distance between mortared node and element");
355  }
356 
357  // Should never get here but throw an error if we do
358  logger(FATAL, "Mortaring element was not of an expected type.");
359  }
360  }
361  }

References helpers::check(), e(), FATAL, i, logger, oomph::NodeElementSolidOnlyMortaringElement::position_in_element(), Eigen::bfloat16_impl::pow(), oomph::NodeElementSolidOnlyMortaringElement::solid_node_pt(), oomph::NodeNodeConstraintElement::solid_node_pt(), sqrt(), and oomph::Node::x().

Member Data Documentation

◆ Constituent_mesh_pt

template<class ELEMENT , class NON_MORTAR_ELEMENT >
Vector< SolidMesh * > MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::Constituent_mesh_pt

◆ Constitutive_law_pt

template<class ELEMENT , class NON_MORTAR_ELEMENT >
ConstitutiveLaw * MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::Constitutive_law_pt

◆ doc_info

template<class ELEMENT , class NON_MORTAR_ELEMENT >
DocInfo MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::doc_info

◆ E

template<class ELEMENT , class NON_MORTAR_ELEMENT >
double MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::E

◆ Mortaring_mesh_pt

template<class ELEMENT , class NON_MORTAR_ELEMENT >
Mesh * MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::Mortaring_mesh_pt

◆ Non_mortared_mesh_pt

template<class ELEMENT , class NON_MORTAR_ELEMENT >
SolidMesh* MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::Non_mortared_mesh_pt

◆ Nu

template<class ELEMENT , class NON_MORTAR_ELEMENT >
double MortaringValidationProblem< ELEMENT, NON_MORTAR_ELEMENT >::Nu

The documentation for this class was generated from the following files: