|
| ConjugateGradient () |
|
template<typename MatrixDerived > |
| ConjugateGradient (const EigenBase< MatrixDerived > &A) |
|
| ~ConjugateGradient () |
|
template<typename Rhs , typename Dest > |
void | _solve_vector_with_guess_impl (const Rhs &b, Dest &x) const |
|
| IterativeSolverBase () |
|
| IterativeSolverBase (const EigenBase< MatrixDerived > &A) |
|
| IterativeSolverBase (IterativeSolverBase &&)=default |
|
| ~IterativeSolverBase () |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | analyzePattern (const EigenBase< MatrixDerived > &A) |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | factorize (const EigenBase< MatrixDerived > &A) |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | compute (const EigenBase< MatrixDerived > &A) |
|
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
|
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
|
RealScalar | tolerance () const |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | setTolerance (const RealScalar &tolerance) |
|
Preconditioner & | preconditioner () |
|
const Preconditioner & | preconditioner () const |
|
Index | maxIterations () const |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | setMaxIterations (Index maxIters) |
|
Index | iterations () const |
|
RealScalar | error () const |
|
const SolveWithGuess< ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >, Rhs, Guess > | solveWithGuess (const MatrixBase< Rhs > &b, const Guess &x0) const |
|
ComputationInfo | info () const |
|
void | _solve_with_guess_impl (const Rhs &b, SparseMatrixBase< DestDerived > &aDest) const |
|
std::enable_if_t< Rhs::ColsAtCompileTime !=1 &&DestDerived::ColsAtCompileTime !=1 > | _solve_with_guess_impl (const Rhs &b, MatrixBase< DestDerived > &aDest) const |
|
std::enable_if_t< Rhs::ColsAtCompileTime==1||DestDerived::ColsAtCompileTime==1 > | _solve_with_guess_impl (const Rhs &b, MatrixBase< DestDerived > &dest) const |
|
void | _solve_impl (const Rhs &b, Dest &x) const |
|
ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | derived () |
|
const ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ > & | derived () const |
|
| SparseSolverBase () |
|
| SparseSolverBase (SparseSolverBase &&other) |
|
| ~SparseSolverBase () |
|
Derived & | derived () |
|
const Derived & | derived () const |
|
template<typename Rhs > |
const Solve< Derived, Rhs > | solve (const MatrixBase< Rhs > &b) const |
|
template<typename Rhs > |
const Solve< Derived, Rhs > | solve (const SparseMatrixBase< Rhs > &b) const |
|
template<typename Rhs , typename Dest > |
void | _solve_impl (const SparseMatrixBase< Rhs > &b, SparseMatrixBase< Dest > &dest) const |
|
template<typename MatrixType_, int UpLo_, typename Preconditioner_>
class Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >
A conjugate gradient solver for sparse (or dense) self-adjoint problems.
This class allows to solve for A.x = b linear problems using an iterative conjugate gradient algorithm. The matrix A must be selfadjoint. The matrix A and the vectors x and b can be either dense or sparse.
- Template Parameters
-
MatrixType_ | the type of the matrix A, can be a dense or a sparse matrix. |
UpLo_ | the triangular part that will be used for the computations. It can be Lower, Upper , or Lower|Upper in which the full matrix entries will be considered. Default is Lower , best performance is Lower|Upper . |
Preconditioner_ | the type of the preconditioner. Default is DiagonalPreconditioner |
\implsparsesolverconcept
The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations and NumTraits<Scalar>::epsilon() for the tolerance.
The tolerance corresponds to the relative residual error: |Ax-b|/|b|
Performance: Even though the default value of UpLo_
is Lower
, significantly higher performance is achieved when using a complete matrix and Lower|Upper as the UpLo_ template parameter. Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled. See Eigen and multi-threading for details.
This class can be used as the direct solver classes. Here is a typical usage example:
SparseMatrix<double>
A(
n,
n);
ConjugateGradient<SparseMatrix<double>,
Lower|
Upper> cg;
std::cout << "#iterations: " << cg.iterations() << std::endl;
std::cout << "estimated error: " << cg.error() << std::endl;
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Scalar * b
Definition: benchVecAdd.cpp:17
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:47
@ Lower
Definition: Constants.h:211
@ Upper
Definition: Constants.h:213
list x
Definition: plotDoE.py:28
By default the iterations start with x=0 as an initial guess of the solution. One can control the start using the solveWithGuess() method.
ConjugateGradient can also be used in a matrix-free context, see the following example .
- See also
- class LeastSquaresConjugateGradient, class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
template<typename MatrixType_ , int UpLo_, typename Preconditioner_ >
template<typename Rhs , typename Dest >
void Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::_solve_vector_with_guess_impl |
( |
const Rhs & |
b, |
|
|
Dest & |
x |
|
) |
| const |
|
inline |
193 TransposeInput = (!MatrixWrapper::MatrixFree) && (
UpLo == (
Lower |
Upper)) && (!MatrixType::IsRowMajor) &&
196 typedef std::conditional_t<TransposeInput, Transpose<const ActualMatrixType>,
ActualMatrixType const&>
199 MATRIX_FREE_CONJUGATE_GRADIENT_IS_COMPATIBLE_WITH_UPPER_UNION_LOWER_MODE_ONLY);
200 typedef std::conditional_t<
UpLo == (
Lower |
Upper), RowMajorWrapper,
207 RowMajorWrapper row_mat(
matrix());
#define EIGEN_STATIC_ASSERT(X, MSG)
Definition: StaticAssert.h:26
ComputationInfo m_info
Definition: IterativeSolverBase.h:389
RealScalar m_error
Definition: IterativeSolverBase.h:387
Index m_iterations
Definition: IterativeSolverBase.h:388
const ActualMatrixType & matrix() const
Definition: IterativeSolverBase.h:374
internal::generic_matrix_wrapper< MatrixType > MatrixWrapper
Definition: IterativeSolverBase.h:371
Index maxIterations() const
Definition: IterativeSolverBase.h:251
MatrixWrapper::ActualMatrixType ActualMatrixType
Definition: IterativeSolverBase.h:372
Preconditioner m_preconditioner
Definition: IterativeSolverBase.h:382
RealScalar m_tolerance
Definition: IterativeSolverBase.h:385
@ Success
Definition: Constants.h:440
@ NoConvergence
Definition: Constants.h:444
constexpr bool check_implication(bool a, bool b)
Definition: Meta.h:740
EIGEN_DONT_INLINE void conjugate_gradient(const MatrixType &mat, const Rhs &rhs, Dest &x, const Preconditioner &precond, Index &iters, typename Dest::RealScalar &tol_error)
Definition: ConjugateGradient.h:30
Type
Type of JSON value.
Definition: rapidjson.h:513
@ IsComplex
Definition: NumTraits.h:176
References b, Eigen::internal::check_implication(), Eigen::internal::conjugate_gradient(), EIGEN_STATIC_ASSERT, Eigen::Lower, Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::m_error, Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::m_info, Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::m_iterations, Eigen::IterativeSolverBase< Derived >::m_preconditioner, Eigen::IterativeSolverBase< Derived >::m_tolerance, Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::matrix(), Eigen::IterativeSolverBase< Derived >::maxIterations(), Eigen::NoConvergence, Eigen::Success, Eigen::ConjugateGradient< MatrixType_, UpLo_, Preconditioner_ >::UpLo, Eigen::Upper, and plotDoE::x.