SegregationPeriodic Class Reference

This class does segregation problems in a periodic chute. More...

+ Inheritance diagram for SegregationPeriodic:

Public Member Functions

void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void write (std::ostream &os, bool print_all=false)
 This is the info call. More...
 
void setupInitialConditions () override
 
double getInfo (const BaseParticle &P) const override
 Allows the user to set what is written into the info column in the data file. More...
 
void actionsBeforeTimeStep () override
 This code requires you do not nothing special after each time step. More...
 
void write (std::ostream &os, bool print_all=false) const override
 This is the info call. More...
 
void setupInitialConditions () override
 
double getInfo (const BaseParticle &P) const override
 Allows the user to set what is written into the info column in the data file. More...
 
void actionsBeforeTimeStep () override
 This code requires you do not nothing special after each time step. More...
 
void write (std::ostream &os, bool print_all=false) const override
 This is the info call. More...
 
void setupInitialConditions () override
 
void setSizeRatio (double sizeRatio)
 
void setDensityRatio (double densityRatio)
 
double getSizeRatio ()
 
double getDensityRatio ()
 
double getInfo (const BaseParticle &P) const override
 Allows the user to set what is written into the info column in the data file. More...
 
void actionsBeforeTimeStep () override
 This code requires you do not nothing special after each time step. More...
 
void write (std::ostream &os, bool print_all=false) const override
 This is the info call. More...
 
void setupInitialConditions () override
 
void actionsBeforeTimeStep () override
 This code requires you do not nothing special after each time step. More...
 
void setupInitialConditions () override
 This is the info call. More...
 
void setSpeciesProperties ()
 
void createWalls ()
 
void createParticles (int numberOfSmallParticles, int numberOfLargeParticles)
 
void setChuteProperties ()
 
- Public Member Functions inherited from Chute
 Chute ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Chute (const DPMBase &other)
 Copy constructor, converts an existing DPMBase problem into a Chute problem. More...
 
 Chute (const MercuryBase &other)
 Copy constructor, converts an existing MercuryBase problem into a Chute problem. More...
 
 Chute (const Mercury3D &other)
 Copy constructor, converts an existing Mercury3D problem into a Chute problem. More...
 
 Chute (const Chute &other)
 Default copy constructor. More...
 
void constructor ()
 This is the actual constructor METHOD; it is called by all constructors above (except the default copy constructor). More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 This method can be used for reading object properties from a string. More...
 
void setupSideWalls ()
 Creates chute side walls (either solid or periodic) More...
 
void makeChutePeriodic ()
 This makes the chute periodic in Y. More...
 
bool getIsPeriodic () const
 Returns whether the chute is periodic in Y. More...
 
void setupInitialConditions () override
 Creates bottom, side walls and a particle insertion boundary. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads all chute properties from an istream. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 This function writes the Chute properties to an ostream, and adds the properties of ALL chute particles as well. More...
 
void setFixedParticleRadius (Mdouble fixedParticleRadius)
 Sets the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
Mdouble getFixedParticleRadius () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
void setFixedParticleSpacing (Mdouble fixedParticleSpacing)
 Sets the spacing of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
Mdouble getFixedParticleSpacing () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
void setRoughBottomType (RoughBottomType roughBottomType)
 Sets the type of rough bottom of the chute. More...
 
void setRoughBottomType (std::string roughBottomTypeString)
 Sets the type of rough bottom of the chute, using a string with the EXACT enum type as input. More...
 
RoughBottomType getRoughBottomType () const
 Returns the type of (rough) bottom of the chute. More...
 
void setChuteAngle (Mdouble chuteAngle)
 Sets gravity vector according to chute angle (in degrees) More...
 
void setChuteAngleAndMagnitudeOfGravity (Mdouble chuteAngle, Mdouble gravity)
 Sets gravity vector according to chute angle (in degrees) More...
 
Mdouble getChuteAngle () const
 Returns the chute angle (in radians) More...
 
Mdouble getChuteAngleDegrees () const
 Returns the chute angle (in degrees) More...
 
void setMaxFailed (unsigned int maxFailed)
 Sets the number of times a particle will be tried to be added to the insertion boundary. More...
 
unsigned int getMaxFailed () const
 Returns the number of times a particle will be tried to be added to the insertion boundary. More...
 
void setInflowParticleRadius (Mdouble inflowParticleRadius)
 Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow). More...
 
void setInflowParticleRadius (Mdouble minInflowParticleRadius, Mdouble maxInflowParticleRadius)
 Sets the minimum and maximum radius of the inflow particles. More...
 
void setMinInflowParticleRadius (Mdouble minInflowParticleRadius)
 sets the minimum radius of inflow particles More...
 
void setMaxInflowParticleRadius (Mdouble maxInflowParticleRadius)
 Sets the maximum radius of inflow particles. More...
 
Mdouble getInflowParticleRadius () const
 Returns the average radius of inflow particles. More...
 
Mdouble getMinInflowParticleRadius () const
 returns the minimum radius of inflow particles More...
 
Mdouble getMaxInflowParticleRadius () const
 Returns the maximum radius of inflow particles. More...
 
void setInflowHeight (Mdouble inflowHeight)
 Sets maximum inflow height (Z-direction) More...
 
Mdouble getInflowHeight () const
 Returns the maximum inflow height (Z-direction) More...
 
void setInflowVelocity (Mdouble inflowVelocity)
 Sets the average inflow velocity. More...
 
Mdouble getInflowVelocity () const
 Returns the average inflow velocity. More...
 
void setInflowVelocityVariance (Mdouble inflowVelocityVariance)
 Sets the inflow velocity variance. More...
 
Mdouble getInflowVelocityVariance () const
 Returns the inflow velocity variance. More...
 
void setChuteWidth (Mdouble chuteWidth)
 Sets the chute width (Y-direction) More...
 
Mdouble getChuteWidth () const
 Returns the chute width (Y-direction) More...
 
virtual void setChuteLength (Mdouble chuteLength)
 Sets the chute length (X-direction) More...
 
Mdouble getChuteLength () const
 Returns the chute length (X-direction) More...
 
void setInsertionBoundary (InsertionBoundary *insertionBoundary)
 Sets the chute insertion boundary. More...
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< intget1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
void initialiseSolve ()
 Beginning of the solve routine, before time stepping. More...
 
void finaliseSolve ()
 End of the solve routine, after time stepping. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURYDPM_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURYDPM_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURYDPM_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURYDPM_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURYDPM_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURYDPM_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURYDPM_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURYDPM_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 Returns a constant reference to an Interactions file. More...
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setVTKOutputDirectory (const std::string &dir)
 Sets the output directory of the VTK files. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
MERCURYDPM_DEPRECATED FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Mdouble getXCenter () const
 
Mdouble getYCenter () const
 
Mdouble getZCenter () const
 
Vec3D getCenter () const
 get center of domain More...
 
Vec3D getMin () const
 Returns the minimum coordinates of the problem domain. More...
 
Vec3D getMax () const
 Returns the maximum coordinates of the problem domain. More...
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 Sets the number of omp threads. More...
 
int getNumberOfOMPThreads () const
 Returns the number of omp threads. More...
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setBackgroundDrag (Mdouble backgroundDrag)
 Simple access function to turn on a background drag. The force of particleVelocity*drag is applied (note, it allowed to be negative i.e. create energy) More...
 
const Mdouble getBackgroundDrag () const
 Return the background drag. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy (Vec3D origin={0, 0, 0}) const
 Returns the global gravitational potential energy stored relative to a user-defined origin in the system. Note, if no origin is specified the real origin i.e. (0,0,0) is taken. More...
 
Mdouble getRotationalEnergy () const
 Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsignedgetNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 Handles the addition of particles to the particleHandler. More...
 
void writePythonFileForVTKVisualisation () const
 writes .py file for ParaView More...
 
void setWritePythonFileForVTKVisualisation (bool forceWritePythonFileForVTKVisualisation)
 
bool getWritePythonFileForVTKVisualisation () const
 
WallVTKWritergetWallVTKWriter ()
 

Private Attributes

double radius_s
 
double radius_l
 
double rho_0
 
double rho_1
 
double rho_2
 
double radius_0
 
double radius_1
 
double radius_2
 
SphericalParticle inflowParticle_
 
double sizeRatio_
 
double densityRatio_
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum class  ReadOptions : int { ReadAll , ReadNoInteractions , ReadNoParticlesAndInteractions }
 
enum class  DomainSplit {
  X , Y , Z , XY ,
  XZ , YZ , XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 
- Protected Member Functions inherited from Chute
void actionsBeforeTimeStep () override
 Calls Chute::cleanChute(). More...
 
void cleanChute ()
 Deletes all outflow particles once every 100 time steps. More...
 
virtual void createBottom ()
 Creates the chute bottom, which can be either flat or one of three flavours of rough. More...
 
virtual void addFlowParticlesCompactly ()
 Add initial flow particles in a dense packing. More...
 
virtual SphericalParticle createFlowParticle ()
 
void printTime () const override
 prints time, max time and number of particles More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeAllForces ()
 Computes all the forces acting on the particles using the BaseInteractable::setForce() and BaseInteractable::setTorque() More...
 
virtual void computeInternalForce (BaseParticle *, BaseParticle *)
 Computes the forces between two particles (internal in the sense that the sum over all these forces is zero i.e. fully modelled forces) More...
 
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
virtual void computeForcesDueToWalls (BaseParticle *, BaseWall *)
 Computes the forces on the particles due to the walls (normals are outward normals) More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
virtual void actionsAfterTimeStep ()
 A virtual function which allows to define operations to be executed after time step. More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void disableSoftStop ()
 This prevents the initialisation of the soft stop feature. More...
 
void discontinueSolve ()
 This discontinues the solve loop after the current time step is finished. More...
 

Detailed Description

This class does segregation problems in a periodic chute.

This class does segregation problems in a periodic chute It uses species to create two type of particles. One for the large and one for the small It the sets contact properties of the collisions such that coefficient of restitution and contact time are the same for all collisions.

This class does segregation problems in a periodic chute It uses species to create two type of partices. It the sets contact properties of the collisions such that coefficient of resitution and contact time are the same for all collisions.

Member Function Documentation

◆ actionsBeforeTimeStep() [1/5]

void SegregationPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

23 {};

◆ actionsBeforeTimeStep() [2/5]

void SegregationPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

This code requires you do not nothing special after each time step.

Reimplemented from DPMBase.

36 {};

◆ actionsBeforeTimeStep() [3/5]

void SegregationPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

This code requires you do not nothing special after each time step.

Reimplemented from DPMBase.

37 {};

◆ actionsBeforeTimeStep() [4/5]

void SegregationPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

This code requires you do not nothing special after each time step.

Reimplemented from DPMBase.

36 {};

◆ actionsBeforeTimeStep() [5/5]

void SegregationPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

This code requires you do not nothing special after each time step.

Reimplemented from DPMBase.

30  {
31  }

◆ createParticles()

void SegregationPeriodic::createParticles ( int  numberOfSmallParticles,
int  numberOfLargeParticles 
)
inline
152  {
153  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
156  numberOfLargeParticles--;
157 
158  //randomize particle position, zero initial velocity
162  inflowParticle_.setVelocity(Vec3D(0.0, 0.0, 0.0));
163 
164  //Add the new particle to the list of current particles
166  hGridRebuild();
167 
168  while ((numberOfSmallParticles > 0) && (numberOfLargeParticles > 0))
169  {
170  //random to see if want to generate a large or small particles, helps makes the initial conditions homogeneous
171  if (random.getRandomNumber(1.0, numberOfLargeParticles + numberOfSmallParticles) > numberOfLargeParticles)
172  {
173  //Generate a small particle: set radius to small radius subtract one off the list of small particles to be generated
176  numberOfSmallParticles--;
177  }
178  else
179  {
180  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
183  numberOfLargeParticles--;
184  }
185 
186  //randomize particle position, zero initial velocity
190  inflowParticle_.setVelocity(Vec3D(0.0, 0.0, 0.0));
191 
192  //Add the new particle to the list of current particles
194  }
195  }
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:360
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:621
void setVelocity(const Vec3D &velocity)
set the velocity of the BaseInteractable.
Definition: BaseInteractable.cc:328
virtual void setPosition(const Vec3D &position)
Sets the position of this BaseInteractable.
Definition: BaseInteractable.h:218
virtual void setRadius(Mdouble radius)
Sets the particle's radius_ (and adjusts the mass_ accordingly, based on the particle's species)
Definition: BaseParticle.cc:548
virtual void setSpecies(const ParticleSpecies *species)
Definition: BaseParticle.cc:798
Mdouble getXMin() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin.
Definition: DPMBase.h:603
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:610
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1433
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:616
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1443
RNG random
This is a random generator, often used for setting up the initial conditions etc.....
Definition: DPMBase.h:1438
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:622
Mdouble getZMax() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax.
Definition: DPMBase.h:634
Mdouble getZMin() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin.
Definition: DPMBase.h:628
void hGridRebuild()
This sets up the parameters required for the contact model.
Definition: MercuryBase.cc:183
Mdouble getRandomNumber()
This is a random generating routine can be used for initial positions.
Definition: RNG.cc:123
double radius_s
Definition: Chute/segregation.cpp:145
double radius_l
Definition: Chute/segregation.cpp:146
SphericalParticle inflowParticle_
Definition: TunuguntlaBokhoveThornton2014.cpp:336
Definition: Kernel/Math/Vector.h:30

◆ createWalls()

void SegregationPeriodic::createWalls ( )
inline
145  {
147  B0.set(Vec3D(1, 0, 0), getXMin(), getXMax());
149  }
BoundaryHandler boundaryHandler
An object of the class BoundaryHandler which concerns insertion and deletion of particles into or fro...
Definition: DPMBase.h:1458
Defines a pair of periodic walls. Inherits from BaseBoundary.
Definition: PeriodicBoundary.h:20
#define B0
Definition: main.h:126

References B0.

◆ getDensityRatio()

double SegregationPeriodic::getDensityRatio ( )
inline
341 {return densityRatio_;}
double densityRatio_
Definition: DensitySizeSeg_Belt_WarreJan_25_75.cpp:353

◆ getInfo() [1/3]

double SegregationPeriodic::getInfo ( const BaseParticle P) const
inlineoverridevirtual

Allows the user to set what is written into the info column in the data file.

Reimplemented from DPMBase.

30  {
31  return P.getIndSpecies();
32  }
double P
Uniform pressure.
Definition: TwenteMeshGluing.cpp:77

References Global_Physical_Variables::P.

◆ getInfo() [2/3]

double SegregationPeriodic::getInfo ( const BaseParticle P) const
inlineoverridevirtual

Allows the user to set what is written into the info column in the data file.

Reimplemented from DPMBase.

31  {
32  return P.getIndSpecies();
33  }

References Global_Physical_Variables::P.

◆ getInfo() [3/3]

double SegregationPeriodic::getInfo ( const BaseParticle P) const
inlineoverridevirtual

Allows the user to set what is written into the info column in the data file.

Reimplemented from DPMBase.

30  {
31  return P.getIndSpecies();
32  }

References Global_Physical_Variables::P.

◆ getSizeRatio()

double SegregationPeriodic::getSizeRatio ( )
inline
340 {return sizeRatio_;}
double sizeRatio_
Definition: DensitySizeSeg_Belt_WarreJan_25_75.cpp:352

◆ setChuteProperties()

void SegregationPeriodic::setChuteProperties ( )
inline
198  {
199  // Chute properties
203  setChuteLength(20.0);
204  setChuteWidth(10.0);
205  setZMax(10.0);
206  setMaxFailed(6);
208  }
@ MONOLAYER_DISORDERED
Definition: Chute.h:32
void setChuteWidth(Mdouble chuteWidth)
Sets the chute width (Y-direction)
Definition: Chute.cc:1018
void setRoughBottomType(RoughBottomType roughBottomType)
Sets the type of rough bottom of the chute.
Definition: Chute.cc:693
virtual void setChuteLength(Mdouble chuteLength)
Sets the chute length (X-direction)
Definition: Chute.cc:1038
void setMaxFailed(unsigned int maxFailed)
Sets the number of times a particle will be tried to be added to the insertion boundary.
Definition: Chute.cc:806
void setChuteAngleAndMagnitudeOfGravity(Mdouble chuteAngle, Mdouble gravity)
Sets gravity vector according to chute angle (in degrees)
Definition: Chute.cc:768
void makeChutePeriodic()
This makes the chute periodic in Y.
Definition: Chute.cc:611
void setFixedParticleRadius(Mdouble fixedParticleRadius)
Sets the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:632
void setZMax(Mdouble newZMax)
Sets the value of ZMax, the upper bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1208

References MONOLAYER_DISORDERED.

◆ setDensityRatio()

void SegregationPeriodic::setDensityRatio ( double  densityRatio)
inline
339 {densityRatio_ = densityRatio;}

◆ setSizeRatio()

void SegregationPeriodic::setSizeRatio ( double  sizeRatio)
inline
338 {sizeRatio_ = sizeRatio;}

◆ setSpeciesProperties()

void SegregationPeriodic::setSpeciesProperties ( )
inline
118  {
119  //Set the contact time (tc), restitution coefficient (r) and density (rho) for small for all particles
120  double tc = 1e-5;
121  double r = 0.88;
122  double rho = 6 / constants::pi;
123 
124  double mass_small = 4 / 3 * constants::pi * pow(radius_s, 3.0) * rho;
125  double mass_large = 4 / 3 * constants::pi * pow(radius_l, 3.0) * rho;
126 
129  auto S01 = speciesHandler.getMixedObject(S0, S1);
130 
131  S0->setDensity(rho);
132  S0->setCollisionTimeAndRestitutionCoefficient(tc, r, mass_small);
133  S0->setSlidingDissipation(S0->getDissipation()); // Set the tangential dissipation equal to the normal dissipation for small-small collisions
134  setInflowParticleRadius(0.5, 1.0);
135  S0->setSlidingFrictionCoefficient(0.5);
136  S1->setCollisionTimeAndRestitutionCoefficient(tc, r, mass_large);
137 
138  S1->setSlidingDissipation(S1->getDissipation()); // Set the tangential dissipation equal to the normal dissipation for large-large collision
139  S01->setCollisionTimeAndRestitutionCoefficient(tc, r, mass_small, mass_large);
140  S01->setSlidingDissipation(S01->getDissipation()); // Set the tangential dissipation equal to the normal dissipation for mixed collision
141 
142  }
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Species< LinearViscoelasticNormalSpecies, FrictionSpecies > LinearViscoelasticFrictionSpecies
Definition: LinearViscoelasticFrictionSpecies.h:12
void setInflowParticleRadius(Mdouble inflowParticleRadius)
Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow).
Definition: Chute.cc:827
std::enable_if<!std::is_pointer< typename U::MixedSpeciesType >::value, typename U::MixedSpeciesType * >::type getMixedObject(const U *S, const U *T)
Definition: SpeciesHandler.h:52
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:625
double S0
Strength of source function in inner region.
Definition: stefan_boltzmann.cc:148
double S1
Strength of source function in outer region.
Definition: stefan_boltzmann.cc:151
r
Definition: UniformPSDSelfTest.py:20
const Mdouble pi
Definition: ExtendedMath.h:23

References e(), constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, GlobalParameters::S0, and GlobalParameters::S1.

◆ setupInitialConditions() [1/5]

void SegregationPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This setup the intial conditions, generates small volume fraction of particles. Sets the program to be periodic in x.

Bug:
This code is not non-dimensionalised at the moment, should do this shortly, but at the moment

Reimplemented from DPMBase.

46 {
47 
48  //Check if the run has been done before. If yes, skip and start next run
49  if (FileExists(data_filename.str()))
50  {
51  //If it has move on to teh next run immedently
52  cout << "This run has been done " << endl;
53  launchNewRun("segregation",true);
54  exit(0);
55  }
56 
57 
58  //Set up a 10 by 10 study
59  vector<int> study_num=get2DParametersFromRunNumber(10,1);
60 
61 
62  //If study 0 is complete quit
63  if (study_num[0] > 0)
64  {
65  cout << "Study is complete " << endl;
66  exit(0);
67  }
68  else
69  //If the study is not complete save the data to disk and move on
70  {
72  launchNewRun("segregation");
73  }
74 
75  //Now setup the particles
76 
77  //Setup the base i.e. the chute particles
79 
80 
81 
82 
83 
84  //Set up the walls
85  set_NWallPeriodic(2);
86  WallsPeriodic[1].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), xmax);
87 
88 
89  //Number of small particles
90  int Ns=5000;
91  //Small partilce radius
92  radius_s=0.3e-3;
93  //Radius of large particles, changes from study to study.
94  radius_l=radius_s*(1.0+study_num[1]/10.0);
95  //Number of large partices, fixed to the keep the volume fraction of large and small paritlces equal.
96  int Nl=pow(radius_s/radius_l,3)*Ns;
97 
98 
99 
100 
101  while ((Ns>0) && (Nl>0))
102  {
103 
104 
105  //random to see if want to generate a large or small particles, helps makes the initial conditions homogenious
106  if (random(1.0,Nl+Ns) > Nl)
107  {
108  //Generate a small particle: set radius to small radius subtract one off the list of small particles to be generated
109  P0.Radius=radius_s;
110  Ns--;
111  }
112  else
113  {
114  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
115  P0.Radius=radius_l;
116  Nl--;
117  }
118 
119 
120  //P0.Radius = 0.3e-3*(1.0+(sqrt(2)-1.0)*temp);
121  P0.Angle.set_zero();
122  P0.AngularVelocity.set_zero();
123  P0.computeMass(Species);
124 
125  //randomize particle position, zero intial velocity
126  P0.Position.X = random(getXMin(),getXMax());
127  P0.Position.Y = random(getYMin(),getYMax());
128  P0.Position.Z = random(getZMin(),getZMax());
129  P0.Velocity = Vec3D(0.0,0.0,0.0);
130 
131 
132  //Add the new particle to the list of current particles
133  Particles.push_back (P0);
134 
135 
136  }
137 
138  //Write the info to the screen and save a copy to the disk
139  write(std::cout,false);
141 
142 }
void setupInitialConditions() override
Creates bottom, side walls and a particle insertion boundary.
Definition: Chute.cc:221
std::vector< int > get2DParametersFromRunNumber(int size_x, int size_y) const
This turns a counter into 2 indices which is a very useful feature for performing a 2D study....
Definition: DPMBase.cc:689
virtual void writeRestartFile()
Stores all the particle data for current save time step to a "restart" file, which is a file simply i...
Definition: DPMBase.cc:2979
int launchNewRun(const char *name, bool quick=false)
This launches a code from within this code. Please pass the name of the code to run.
Definition: DPMBase.cc:766
void write(std::ostream &os, bool print_all=false)
This is the info call.
Definition: Chute/segregation.cpp:26
Contains material and contact force properties.
Definition: Species.h:14
double P0
Definition: two_dim.cc:101

References Problem_Parameter::P0, Eigen::bfloat16_impl::pow(), Chute::setupInitialConditions(), and Eigen::TensorSycl::internal::write().

◆ setupInitialConditions() [2/5]

void SegregationPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This setup the intial conditions, generates volume fraction of particle 1. Sets the program to be periodic in x.

Bug:
This code is not non-dimensionalised at the moment, should do this shortly, but at the moment. Should swap this to Silbert particles shortly

Reimplemented from DPMBase.

60 {
61  setTime(4500.0);
62  logger(DEBUG,"Entering the Initial Conditions");
63  //Check if the run has been done before. If yes, skip and start next run
65  {
66  //If it has move on to teh next run immedently
67  logger(INFO, "This run has been done ");
68  //launch_new("density-size-segregation",true);
69  exit(0);
70  }
71 
72  //Set up a 12 by 12 study
73 
74  vector<int> study_num=get2DParametersFromRunNumber(12,12);
75 
76 
77  //If study 0 is complete quit
78  if (study_num[0] > 0)
79  {
80  logger(VERBOSE, "Study is complete ");
81  exit(0);
82  }
83  else
84 
85  //If the study is not complete save the data to disk and move on
86  {
87 
89  launchNewRun("segregation");
90  }
91 
92 
93 
94 
95  // PARTICLE PROPERTIES//
97 
98 
99  double shat = (0.2 + 0.1*study_num[1]); // d2/d1
100  double rhat = (0.2 + 0.1*study_num[2]); // rho2/rho1
101 
102 
103  //
104  // All the parameters are non-dimensional
105  // mean particle dia = 1 , mean particle mass = 1 and gravity g=1
106  // implying the mean particle density = 6/pi
107 
108  // Box dimensions, Volume of the box = L*W*H
109  double Vbox = 20.0*10.0*10.0;
110 
111  // volume fraction of species type-1
112  double phi = 0.5;
113 
114  // total volume occupied by the particles
115  //double Vp = Vbox*(constants::pi/6.);
116 
117  // particle diameters
118  double dm = 1.0; // mean particle
119  double d1 = 1./(phi + (1-phi)*shat); // species type-1
120  double d2 = d1*shat; // species type-2
121  double tolo = 1.e-12;
122  if (abs(d1 - d2) <= tolo)
123  {
124  d2 = d1 - 0.0001;
125  }
126 
127  // particle species radii
128  radius_0 = 0.5*dm; // mean particle
129  radius_1 = 0.5*d1;
130  radius_2 = 0.5*d2;
131 
132  // particle densities
133  rho_0 = 6./constants::pi;
134  rho_1 = (6./constants::pi)/(phi + (1-phi)*rhat);
135  rho_2 = rhat*rho_1;
136 
137  // no of particles
138  int N1 = (phi*Vbox)/pow(d1,3);
139  int N2 = ((1-phi)*Vbox)/pow(d2,3);
140 
141  //
142  double tc = 5.e-3;//0.005*pow(d,0.5);//1.e-2;//2.e-1;//1e-2;//5e-2;//5e-3;
143  double r = 0.88249690258;
144 
145  //
146  double mass_0 = 1.0;// mean particle mass
147  double mass_1 = 4./3.*constants::pi*pow(radius_1,3.0)*rho_1;
148  double mass_2 = 4./3.*constants::pi*pow(radius_2,3.0)*rho_2;
149  //
150 
151  double mass_00 = (mass_0*mass_0)/(mass_0 + mass_0);
152  double mass_10 = (mass_1*mass_0)/(mass_1 + mass_0);
153  double mass_20 = (mass_2*mass_0)/(mass_2 + mass_0);
154  double mass_11 = (mass_1*mass_1)/(mass_1 + mass_1);
155  double mass_22 = (mass_2*mass_2)/(mass_2 + mass_2);
156  double mass_12 = (mass_1*mass_2)/(mass_1 + mass_2);
157  //
158 
159  double gamma_n00 = -2.0*mass_00*log(r)/tc;
160  double gamma_n11 = -2.0*mass_11*log(r)/tc;
161  double gamma_n22 = -2.0*mass_22*log(r)/tc;
162  double gamma_n12 = -2.0*mass_12*log(r)/tc;
163  double gamma_n10 = -2.0*mass_10*log(r)/tc;
164  double gamma_n20 = -2.0*mass_20*log(r)/tc;
165  //
166  double const1 = pow(tc/constants::pi,2.0);
167  double k_n00 = mass_00*(1./const1 + pow(gamma_n00/(2*mass_00),2.0));
168  double k_n11 = mass_11*(1./const1 + pow(gamma_n11/(2*mass_11),2.0));
169  double k_n22 = mass_22*(1./const1 + pow(gamma_n22/(2*mass_22),2.0));
170  double k_n12 = mass_12*(1./const1 + pow(gamma_n12/(2*mass_12),2.0));
171  double k_n10 = mass_10*(1./const1 + pow(gamma_n10/(2*mass_10),2.0));
172  double k_n20 = mass_20*(1./const1 + pow(gamma_n20/(2*mass_20),2.0));
173  //
174 
178  auto S01 = speciesHandler.getMixedObject(S0, S1);
179  auto S02 = speciesHandler.getMixedObject(S0, S2);
180  auto S12 = speciesHandler.getMixedObject(S1, S2);
181  S0->setDensity(rho_0);
182  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
183  S0->setStiffness(k_n00);
184  S0->setSlidingStiffness((2.0/7.0)*k_n00);
185  S0->setDissipation(gamma_n00);
186  S0->setSlidingDissipation(S0->getDissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
188  //set_HGRID_cell_to_cell_ratio(1.00001*max(radius_1,radius_2)/min(radius_1,radius_2));
189  //set_HGRID_num_buckets_to_power(particleHandler.getNumberOfObjects());
190  S0->setSlidingFrictionCoefficient(0.5);
191  //
192  S1->setDensity(rho_1);
193  S1->setStiffness(k_n11);
194  double k_t=2.0/7.0*k_n11;
195  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
196  S1->setSlidingStiffness(k_t);
197  S1->setDissipation(gamma_n11);
198  S1->setSlidingFrictionCoefficient(0.5);
199  S1->setSlidingDissipation(S1->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 c
200  //
201  S2->setDensity(rho_2);
202  S2->setStiffness(k_n22);
203  k_t=2.0/7.0*k_n22;
204  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
205  S2->setSlidingStiffness(k_t);
206  S2->setDissipation(gamma_n22);
207  S2->setSlidingFrictionCoefficient(0.5);
208  S2->setSlidingDissipation(S2->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
209  //
210  S01->setStiffness(k_n10);
211  k_t=2.0/7.0*k_n10;
212  S01->setSlidingStiffness(k_t);
213  S01->setDissipation(gamma_n10);
214  S01->setSlidingDissipation(S01->getDissipation());
215  S01->setSlidingFrictionCoefficient(0.5);
216  //
217  S12->setStiffness(k_n12);
218  k_t=2.0/7.0*k_n12;
219  S12->setSlidingStiffness(k_t);
220  S12->setDissipation(gamma_n12);
221  S12->setSlidingDissipation(S12->getDissipation());
222  S12->setSlidingFrictionCoefficient(0.5);
223 //
224  S02->setStiffness(k_n20);
225  k_t=2.0/7.0*k_n20;
226  S02->setSlidingStiffness(k_t);
227  S02->setDissipation(gamma_n20);
228  S02->setSlidingDissipation(S02->getDissipation());
229  S02->setSlidingFrictionCoefficient(0.5);
230 
231  /*
232  setDensity(rho_1);
233  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
234  setStiffness(k_n11);//1978//2e5
235  setSlidingStiffness((2.0/7.0)*k_n11);
236  setDissipation(gamma_n11);//2.55//25
237  setSlidingDissipation(get_dissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
238  setInflowParticleRadius(0.5,1.0);
239  setSlidingFrictionCoefficient(0.5);
240  //
241  S1->setDensity(rho_2);
242  S1->setStiffness(k_n22);
243  double k_t=2.0/7.0*k_n22;
244  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
245  S1->setSlidingStiffness(k_t);
246  S1->setDissipation(gamma_n22);
247  S1->setSlidingFrictionCoefficient(0.5);
248  S1->setSlidingDissipation(S1->get_dissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
249  //
250  S01->setStiffness(k_n12);
251  k_t=2.0/7.0*k_n12;
252  S01->setSlidingStiffness(k_t);
253  S01->set_dissipation(gamma_n12);
254  S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->get_dissipation());
255  S01->setSlidingFrictionCoefficient(0.5);
256  //S01->setCollisionTimeAndRestitutionCoefficient(tc,r, mass_1,mass_2);
257  //S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->getDissipation());// Set the tangential dissipation equal to the normal disipation for mixed collision
258  */
259  //Setup the base i.e. the chute particles - This has to be done after the particle properties are set, but the inflow partilces are created.
260  //Chute::setupInitialConditions();
261 
262 // Walls.resize(Walls.size()+1);
263 // Walls.back().addObject(Vec3D(0.0,0.0,-1.0),-(getZMin()-0.5));
264  InfiniteWall w0;
265  w0.set(Vec3D(0.0,0.0,-1.0), Vec3D(0,0,getZMin()-0.5));
267 
268 
269  PeriodicBoundary b0;
270  b0.set(Vec3D(1.0,0.0,0.0), getXMin(), getXMax());
272 
273 // set_NWallPeriodic(2);
274 // WallsPeriodic[1].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
275 
276  // CREATE THE PARTICLES
277  while ((N1>0) && (N2>0))
278  {
279 
280 
281  //random to see if want to generate a large or small particles, helps makes the initial conditions homogenious
282  if (random.getRandomNumber(1.0,N1+N2) > N2)
283  {
284  //Generate a small particle: set radius to small radius subtract one off the list of small particles to be generated
287  N1--;
288  }
289  else
290  {
291  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
294  N2--;
295  }
296 
297 
298  //P0.get_Angle().set_zero();
299  //P0.setAngularVelocity(Vec3D(0.0,0.0,0.0));
300  //inflowParticle_.computeMass();
301 
302  //randomize particle position, zero intial velocity
306 
307  inflowParticle_.setVelocity(Vec3D(0.0, 0.0, 0.0));
308 
309 
310  //Add the new particle to the list of current particles
311  //d Particles.push_back (P0);
313 
314  logger(VERBOSE, "Create a particle ");
315 
316 
317  }
318 
319  //Write the info to the screen and save a copy to the disk
320 
321  logger(VERBOSE, "Finished creating particles");
322 
323 
324  write(std::cout, false);
326 
327  }
AnnoyingScalar abs(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:135
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ INFO
@ DEBUG
@ VERBOSE
File dataFile
An instance of class File to handle in- and output into a .data file.
Definition: DPMBase.h:1484
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1453
void setTime(Mdouble time)
Sets a new value for the current simulation time.
Definition: DPMBase.cc:827
const std::string & getName() const
Allows to access the file name, e.g., "problem.data".
Definition: File.cc:143
A infinite wall fills the half-space {point: (position_-point)*normal_<=0}.
Definition: InfiniteWall.h:27
void set(Vec3D normal, Vec3D point)
Defines a standard wall, given an outward normal vector s.t. normal*x=normal*point for all x of the w...
Definition: InfiniteWall.cc:97
void set(Vec3D normal, Mdouble distanceLeft, Mdouble distanceRight)
Defines a PeriodicBoundary by its normal and positions.
Definition: PeriodicBoundary.cc:63
double radius_1
Definition: TunuguntlaBokhoveThornton2014.cpp:334
double rho_2
Definition: TunuguntlaBokhoveThornton2014.cpp:332
double rho_1
Definition: TunuguntlaBokhoveThornton2014.cpp:331
double radius_0
Definition: TunuguntlaBokhoveThornton2014.cpp:333
double rho_0
Definition: TunuguntlaBokhoveThornton2014.cpp:330
double radius_2
Definition: TunuguntlaBokhoveThornton2014.cpp:335
#define min(a, b)
Definition: datatypes.h:22
#define max(a, b)
Definition: datatypes.h:23
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 log(const bfloat16 &a)
Definition: BFloat16.h:618
bool fileExists(const std::string &strFilename)
Function to check if a file exists, is used to check if a run has already need done.
Definition: FileIOHelpers.cc:77

References abs(), calibrate::dataFile, DEBUG, helpers::fileExists(), INFO, Eigen::bfloat16_impl::log(), logger, max, min, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, GlobalParameters::S0, GlobalParameters::S1, PeriodicBoundary::set(), InfiniteWall::set(), VERBOSE, and Eigen::TensorSycl::internal::write().

◆ setupInitialConditions() [3/5]

void SegregationPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This setup the intial conditions, generates volume fraction of particle 1. Sets the program to be periodic in x.

Bug:
This code is not non-dimensionalised at the moment, should do this shortly, but at the moment. Should swap this to Silbert particles shortly

Reimplemented from DPMBase.

61 {
62 /*
63  //Check if the run has been done before. If yes, skip and start next run
64  if (helpers::fileExists(dataFile.getName()))
65  {
66  //If it has move on to teh next run immedently
67  cout << "This run has been done " << endl;
68  //launch_new("density-size-segregation",true);
69  exit(0);
70  }
71 
72  //Set up a 12 by 12 study
73 
74  vector<int> study_num=get2DParametersFromRunNumber(12,12);
75 
76 
77  //If study 0 is complete quit
78  if (study_num[0] > 0)
79  {
80  cout << "Study is complete " << endl;
81  exit(0);
82  }
83  else
84 
85  //If the study is not complete save the data to disk and move on
86  {
87 
88  writeRestartFile();
89  launchNewRun("segregation");
90  }
91  */
92 
93 
94 
95  // PARTICLE PROPERTIES//
97 
98 
99  double shat = getSizeRatio(); // d2/d1
100  double rhat = getDensityRatio(); // rho2/rho1
101 
102 
103  //
104  // All the parameters are non-dimensional
105  // mean particle dia = 1 , mean particle mass = 1 and gravity g=1
106  // implying the mean particle density = 6/pi
107 
108  // Box dimensions, Volume of the box = L*W*H
109  double Vbox = 20.0*10.0*10.0;
110 
111  // volume fraction of species type-1
112  double phi = 0.75;
113 
114  // total volume occupied by the particles
115  //double Vp = Vbox*(constants::pi/6.);
116 
117  // particle diameters
118  double dm = 1.0; // mean particle
119  double d1 = 1./(phi + (1-phi)*shat); // species type-1
120  double d2 = d1*shat; // species type-2
121  double tolo = 1.e-12;
122  if (abs(d1 - d2) <= tolo)
123  {
124  d2 = d1 - 0.0001;
125  }
126 
127  // particle species radii
128  radius_0 = 0.5*dm; // mean particle
129  radius_1 = 0.5*d1;
130  radius_2 = 0.5*d2;
131 
132  // particle densities
133  rho_0 = 6./constants::pi;
134  rho_1 = (6./constants::pi)/(phi + (1-phi)*rhat);
135  rho_2 = rhat*rho_1;
136 
137  // no of particles
138  int N1 = (phi*Vbox)/pow(d1,3);
139  int N2 = ((1-phi)*Vbox)/pow(d2,3);
140 
141  //
142  double tc = 5.e-3;//0.005*pow(d,0.5);//1.e-2;//2.e-1;//1e-2;//5e-2;//5e-3;
143  double r = 0.88249690258;
144 
145  //
146  double mass_0 = 1.0;// mean particle mass
147  double mass_1 = 4./3.*constants::pi*pow(radius_1,3.0)*rho_1;
148  double mass_2 = 4./3.*constants::pi*pow(radius_2,3.0)*rho_2;
149  //
150 
151  double mass_00 = (mass_0*mass_0)/(mass_0 + mass_0);
152  double mass_10 = (mass_1*mass_0)/(mass_1 + mass_0);
153  double mass_20 = (mass_2*mass_0)/(mass_2 + mass_0);
154  double mass_11 = (mass_1*mass_1)/(mass_1 + mass_1);
155  double mass_22 = (mass_2*mass_2)/(mass_2 + mass_2);
156  double mass_12 = (mass_1*mass_2)/(mass_1 + mass_2);
157  //
158 
159  double gamma_n00 = -2.0*mass_00*log(r)/tc;
160  double gamma_n11 = -2.0*mass_11*log(r)/tc;
161  double gamma_n22 = -2.0*mass_22*log(r)/tc;
162  double gamma_n12 = -2.0*mass_12*log(r)/tc;
163  double gamma_n10 = -2.0*mass_10*log(r)/tc;
164  double gamma_n20 = -2.0*mass_20*log(r)/tc;
165  //
166  double const1 = pow(tc/constants::pi,2.0);
167  double k_n00 = mass_00*(1./const1 + pow(gamma_n00/(2*mass_00),2.0));
168  double k_n11 = mass_11*(1./const1 + pow(gamma_n11/(2*mass_11),2.0));
169  double k_n22 = mass_22*(1./const1 + pow(gamma_n22/(2*mass_22),2.0));
170  double k_n12 = mass_12*(1./const1 + pow(gamma_n12/(2*mass_12),2.0));
171  double k_n10 = mass_10*(1./const1 + pow(gamma_n10/(2*mass_10),2.0));
172  double k_n20 = mass_20*(1./const1 + pow(gamma_n20/(2*mass_20),2.0));
173  //
174 
178  auto S01 = speciesHandler.getMixedObject(S0, S1);
179  auto S02 = speciesHandler.getMixedObject(S0, S2);
180  auto S12 = speciesHandler.getMixedObject(S1, S2);
181  S0->setDensity(rho_0);
182  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
183  S0->setStiffness(k_n00);
184  S0->setSlidingStiffness((2.0/7.0)*k_n00);
185  S0->setDissipation(gamma_n00);
186  S0->setSlidingDissipation(S0->getDissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
188  //set_HGRID_cell_to_cell_ratio(1.00001*max(radius_1,radius_2)/min(radius_1,radius_2));
189  //set_HGRID_num_buckets_to_power(particleHandler.getNumberOfObjects());
190  S0->setSlidingFrictionCoefficient(0.5);
191  //
192  S1->setDensity(rho_1);
193  S1->setStiffness(k_n11);
194  double k_t=2.0/7.0*k_n11;
195  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
196  S1->setSlidingStiffness(k_t);
197  S1->setDissipation(gamma_n11);
198  S1->setSlidingFrictionCoefficient(0.5);
199  S1->setSlidingDissipation(S1->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 c
200  //
201  S2->setDensity(rho_2);
202  S2->setStiffness(k_n22);
203  k_t=2.0/7.0*k_n22;
204  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
205  S2->setSlidingStiffness(k_t);
206  S2->setDissipation(gamma_n22);
207  S2->setSlidingFrictionCoefficient(0.5);
208  S2->setSlidingDissipation(S2->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
209  //
210  S01->setStiffness(k_n10);
211  k_t=2.0/7.0*k_n10;
212  S01->setSlidingStiffness(k_t);
213  S01->setDissipation(gamma_n10);
214  S01->setSlidingDissipation(S01->getDissipation());
215  S01->setSlidingFrictionCoefficient(0.5);
216  //
217  S12->setStiffness(k_n12);
218  k_t=2.0/7.0*k_n12;
219  S12->setSlidingStiffness(k_t);
220  S12->setDissipation(gamma_n12);
221  S12->setSlidingDissipation(S12->getDissipation());
222  S12->setSlidingFrictionCoefficient(0.5);
223 //
224  S02->setStiffness(k_n20);
225  k_t=2.0/7.0*k_n20;
226  S02->setSlidingStiffness(k_t);
227  S02->setDissipation(gamma_n20);
228  S02->setSlidingDissipation(S02->getDissipation());
229  S02->setSlidingFrictionCoefficient(0.5);
230 
231  /*
232  setDensity(rho_1);
233  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
234  setStiffness(k_n11);//1978//2e5
235  setSlidingStiffness((2.0/7.0)*k_n11);
236  setDissipation(gamma_n11);//2.55//25
237  setSlidingDissipation(get_dissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
238  setInflowParticleRadius(0.5,1.0);
239  setSlidingFrictionCoefficient(0.5);
240  //
241  S1->setDensity(rho_2);
242  S1->setStiffness(k_n22);
243  double k_t=2.0/7.0*k_n22;
244  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
245  S1->setSlidingStiffness(k_t);
246  S1->setDissipation(gamma_n22);
247  S1->setSlidingFrictionCoefficient(0.5);
248  S1->setSlidingDissipation(S1->get_dissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
249  //
250  S01->setStiffness(k_n12);
251  k_t=2.0/7.0*k_n12;
252  S01->setSlidingStiffness(k_t);
253  S01->set_dissipation(gamma_n12);
254  S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->get_dissipation());
255  S01->setSlidingFrictionCoefficient(0.5);
256  //S01->setCollisionTimeAndRestitutionCoefficient(tc,r, mass_1,mass_2);
257  //S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->getDissipation());// Set the tangential dissipation equal to the normal disipation for mixed collision
258  */
259  //Setup the base i.e. the chute particles - This has to be done after the particle properties are set, but the inflow partilces are created.
260 
261 
264  setParticlesWriteVTK(true);
265 
266 // Walls.resize(Walls.size()+1);
267 // Walls.back().addObject(Vec3D(0.0,0.0,-1.0),-(getZMin()-0.5));
268  InfiniteWall w0;
269  w0.set(Vec3D(0.0,0.0,-1.0), Vec3D(0,0,getZMin()-0.5));
271 
272 
273  PeriodicBoundary b0;
274  b0.set(Vec3D(1.0,0.0,0.0), getXMin(), getXMax());
276 
277 // set_NWallPeriodic(2);
278 // WallsPeriodic[1].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
279 
280  // CREATE THE PARTICLES
281  int failCount = 0;
282  while ((N1>0) && (N2>0))
283  {
284  //random to see if want to generate a large or small particles, helps makes the initial conditions homogenious
285  if (random.getRandomNumber(1.0,N1+N2) > N2)
286  {
287  //Generate a small particle: set radius to small radius subtract one off the list of small particles to be generated
290  N1--;
291  }
292  else
293  {
294  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
297  N2--;
298  }
299 
300  // Initialise the velocity at zero
301  inflowParticle_.setVelocity(Vec3D(0.0,0.0,0.0));
302 
303  // insert particles only if they are not in contact, break out of the loop at failCount fails
304  do
305  {
306  //randomize particle position, zero intial velocity
310 
311  if (failCount > 1e3) // At 1e3 failed new positions we break out of the do-while loop
312  {
313  break;
314  }
315  failCount++;
316 
318  if (failCount > 1e3) // At 1e3 failed new positions we break out of the while loop
319  {
320  break;
321  }
322 
324  failCount = 0; // Reset the failCount to 0
325 
326  logger(DEBUG,"Created a single particle");
327  }
328  logger(INFO,"Finished creating particles");
329 
330 
331  //Write the info to the screen and save a copy to the disk
332  write(std::cout, false);
333 
335 
336  }
virtual void clear()
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: BaseHandler.h:536
void setParticlesWriteVTK(bool writeParticlesVTK)
Sets whether particles are written in a VTK file.
Definition: DPMBase.cc:933
bool checkParticleForInteraction(const BaseParticle &P) final
Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle.
Definition: MercuryBase.cc:573
double getDensityRatio()
Definition: DensitySizeSeg_Belt_WarreJan_25_75.cpp:341
double getSizeRatio()
Definition: DensitySizeSeg_Belt_WarreJan_25_75.cpp:340

References abs(), DEBUG, INFO, Eigen::bfloat16_impl::log(), logger, max, min, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, GlobalParameters::S0, GlobalParameters::S1, PeriodicBoundary::set(), InfiniteWall::set(), Chute::setupInitialConditions(), and Eigen::TensorSycl::internal::write().

◆ setupInitialConditions() [4/5]

void SegregationPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This setup the intial conditions, generates volume fraction of particle 1. Sets the program to be periodic in x.

Bug:
This code is not non-dimensionalised at the moment, should do this shortly, but at the moment. Should swap this to Silbert particles shortly

Reimplemented from DPMBase.

60 {
61 
62  //Check if the run has been done before. If yes, skip and start next run
64  {
65  //If it has move on to teh next run immedently
66  logger(INFO, "This run has been done ");
67  //launch_new("density-size-segregation",true);
68  exit(0);
69  }
70 
71  //Set up a 12 by 12 study
72 
73  vector<int> study_num=get2DParametersFromRunNumber(12,12);
74 
75 
76  //If study 0 is complete quit
77  if (study_num[0] > 0)
78  {
79  logger(INFO, "Study is complete ");
80  exit(0);
81  }
82  else
83 
84  //If the study is not complete save the data to disk and move on
85  {
86 
88  launchNewRun("segregation");
89  }
90 
91 
92 
93 
94  // PARTICLE PROPERTIES//
96 
97 
98  double shat = (0.2 + 0.1*study_num[1]); // d2/d1
99  double rhat = (0.2 + 0.1*study_num[2]); // rho2/rho1
100 
101 
102  //
103  // All the parameters are non-dimensional
104  // mean particle dia = 1 , mean particle mass = 1 and gravity g=1
105  // implying the mean particle density = 6/pi
106 
107  // Box dimensions, Volume of the box = L*W*H
108  double Vbox = 20.0*10.0*10.0;
109 
110  // volume fraction of species type-1
111  double phi = 0.5;
112 
113  // total volume occupied by the particles
114  //double Vp = Vbox*(constants::pi/6.);
115 
116  // particle diameters
117  double dm = 1.0; // mean particle
118  double d1 = 1./(phi + (1-phi)*shat); // species type-1
119  double d2 = d1*shat; // species type-2
120  double tolo = 1.e-12;
121  if (abs(d1 - d2) <= tolo)
122  {
123  d2 = d1 - 0.0001;
124  }
125 
126  // particle species radii
127  radius_0 = 0.5*dm; // mean particle
128  radius_1 = 0.5*d1;
129  radius_2 = 0.5*d2;
130 
131  // particle densities
132  rho_0 = 6./constants::pi;
133  rho_1 = (6./constants::pi)/(phi + (1-phi)*rhat);
134  rho_2 = rhat*rho_1;
135 
136  // no of particles
137  int N1 = (phi*Vbox)/pow(d1,3);
138  int N2 = ((1-phi)*Vbox)/pow(d2,3);
139 
140  //
141  double tc = 5.e-3;//0.005*pow(d,0.5);//1.e-2;//2.e-1;//1e-2;//5e-2;//5e-3;
142  double r = 0.88249690258;
143 
144  //
145  double mass_0 = 1.0;// mean particle mass
146  double mass_1 = 4./3.*constants::pi*pow(radius_1,3.0)*rho_1;
147  double mass_2 = 4./3.*constants::pi*pow(radius_2,3.0)*rho_2;
148  //
149 
150  double mass_00 = (mass_0*mass_0)/(mass_0 + mass_0);
151  double mass_10 = (mass_1*mass_0)/(mass_1 + mass_0);
152  double mass_20 = (mass_2*mass_0)/(mass_2 + mass_0);
153  double mass_11 = (mass_1*mass_1)/(mass_1 + mass_1);
154  double mass_22 = (mass_2*mass_2)/(mass_2 + mass_2);
155  double mass_12 = (mass_1*mass_2)/(mass_1 + mass_2);
156  //
157 
158  double gamma_n00 = -2.0*mass_00*log(r)/tc;
159  double gamma_n11 = -2.0*mass_11*log(r)/tc;
160  double gamma_n22 = -2.0*mass_22*log(r)/tc;
161  double gamma_n12 = -2.0*mass_12*log(r)/tc;
162  double gamma_n10 = -2.0*mass_10*log(r)/tc;
163  double gamma_n20 = -2.0*mass_20*log(r)/tc;
164  //
165  double const1 = pow(tc/constants::pi,2.0);
166  double k_n00 = mass_00*(1./const1 + pow(gamma_n00/(2*mass_00),2.0));
167  double k_n11 = mass_11*(1./const1 + pow(gamma_n11/(2*mass_11),2.0));
168  double k_n22 = mass_22*(1./const1 + pow(gamma_n22/(2*mass_22),2.0));
169  double k_n12 = mass_12*(1./const1 + pow(gamma_n12/(2*mass_12),2.0));
170  double k_n10 = mass_10*(1./const1 + pow(gamma_n10/(2*mass_10),2.0));
171  double k_n20 = mass_20*(1./const1 + pow(gamma_n20/(2*mass_20),2.0));
172  //
173 
177  auto S01 = speciesHandler.getMixedObject(S0, S1);
178  auto S02 = speciesHandler.getMixedObject(S0, S2);
179  auto S12 = speciesHandler.getMixedObject(S1, S2);
180  S0->setDensity(rho_0);
181  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
182  S0->setStiffness(k_n00);
183  S0->setSlidingStiffness((2.0/7.0)*k_n00);
184  S0->setDissipation(gamma_n00);
185  S0->setSlidingDissipation(S0->getDissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
187  //set_HGRID_cell_to_cell_ratio(1.00001*max(radius_1,radius_2)/min(radius_1,radius_2));
188  //set_HGRID_num_buckets_to_power(particleHandler.getNumberOfObjects());
189  S0->setSlidingFrictionCoefficient(0.5);
190  //
191  S1->setDensity(rho_1);
192  S1->setStiffness(k_n11);
193  double k_t=2.0/7.0*k_n11;
194  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
195  S1->setSlidingStiffness(k_t);
196  S1->setDissipation(gamma_n11);
197  S1->setSlidingFrictionCoefficient(0.5);
198  S1->setSlidingDissipation(S1->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 c
199  //
200  S2->setDensity(rho_2);
201  S2->setStiffness(k_n22);
202  k_t=2.0/7.0*k_n22;
203  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
204  S2->setSlidingStiffness(k_t);
205  S2->setDissipation(gamma_n22);
206  S2->setSlidingFrictionCoefficient(0.5);
207  S2->setSlidingDissipation(S2->getDissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
208  //
209  S01->setStiffness(k_n10);
210  k_t=2.0/7.0*k_n10;
211  S01->setSlidingStiffness(k_t);
212  S01->setDissipation(gamma_n10);
213  S01->setSlidingDissipation(S01->getDissipation());
214  S01->setSlidingFrictionCoefficient(0.5);
215  //
216  S12->setStiffness(k_n12);
217  k_t=2.0/7.0*k_n12;
218  S12->setSlidingStiffness(k_t);
219  S12->setDissipation(gamma_n12);
220  S12->setSlidingDissipation(S12->getDissipation());
221  S12->setSlidingFrictionCoefficient(0.5);
222 //
223  S02->setStiffness(k_n20);
224  k_t=2.0/7.0*k_n20;
225  S02->setSlidingStiffness(k_t);
226  S02->setDissipation(gamma_n20);
227  S02->setSlidingDissipation(S02->getDissipation());
228  S02->setSlidingFrictionCoefficient(0.5);
229 
230  /*
231  setDensity(rho_1);
232  //MD::setCollisionTimeAndRestitutionCoefficient(tc, r, mass_1);
233  setStiffness(k_n11);//1978//2e5
234  setSlidingStiffness((2.0/7.0)*k_n11);
235  setDissipation(gamma_n11);//2.55//25
236  setSlidingDissipation(get_dissipation());// Set the tangential dissipation equal to the normal disipation for 1-1 collsions
237  setInflowParticleRadius(0.5,1.0);
238  setSlidingFrictionCoefficient(0.5);
239  //
240  S1->setDensity(rho_2);
241  S1->setStiffness(k_n22);
242  double k_t=2.0/7.0*k_n22;
243  //setCollisionTimeAndRestitutionCoefficient(tc,r, mass_2);
244  S1->setSlidingStiffness(k_t);
245  S1->setDissipation(gamma_n22);
246  S1->setSlidingFrictionCoefficient(0.5);
247  S1->setSlidingDissipation(S1->get_dissipation());// Set the tangential dissipation equal to the normal disipation for 2-2 collision
248  //
249  S01->setStiffness(k_n12);
250  k_t=2.0/7.0*k_n12;
251  S01->setSlidingStiffness(k_t);
252  S01->set_dissipation(gamma_n12);
253  S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->get_dissipation());
254  S01->setSlidingFrictionCoefficient(0.5);
255  //S01->setCollisionTimeAndRestitutionCoefficient(tc,r, mass_1,mass_2);
256  //S01->setSlidingDissipation(speciesHandler.getMixedObject(1,0)->getDissipation());// Set the tangential dissipation equal to the normal disipation for mixed collision
257  */
258  //Setup the base i.e. the chute particles - This has to be done after the particle properties are set, but the inflow partilces are created.
260 
261 // Walls.resize(Walls.size()+1);
262 // Walls.back().addObject(Vec3D(0.0,0.0,-1.0),-(getZMin()-0.5));
263  InfiniteWall w0;
264  w0.set(Vec3D(0.0,0.0,-1.0), Vec3D(0,0,getZMin()-0.5));
266 
267 
268  PeriodicBoundary b0;
269  b0.set(Vec3D(1.0, 0.0, 0.0), getXMin(), getXMax());
271 
272 // set_NWallPeriodic(2);
273 // WallsPeriodic[1].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
274 
275  // CREATE THE PARTICLES
276  while ((N1 > 0) && (N2 > 0))
277  {
278 
279 
280  //random to see if want to generate a large or small particles, helps makes the initial conditions homogenious
281  if (random.getRandomNumber(1.0, N1 + N2) > N2)
282  {
283  //Generate a small particle: set radius to small radius subtract one off the list of small particles to be generated
286  N1--;
287  }
288  else
289  {
290  //Generate a large particle: set radius to large radius subtract one of the list of large particles to be generated
293  N2--;
294  }
295 
296 
297  //P0.get_Angle().set_zero();
298  //P0.setAngularVelocity(Vec3D(0.0,0.0,0.0));
299  //inflowParticle_.computeMass();
300 
301  //randomize particle position, zero intial velocity
305 
306  inflowParticle_.setVelocity(Vec3D(0.0, 0.0, 0.0));
307 
308 
309  //Add the new particle to the list of current particles
310  //d Particles.push_back (P0);
312 
313  logger(INFO, "Create a particle ");
314 
315 
316  }
317 
318  //Write the info to the screen and save a copy to the disk
319 
320  logger(INFO, "Finished creating particles");
321 
322 
323  write(std::cout, false);
325 
326  }

References abs(), calibrate::dataFile, helpers::fileExists(), INFO, Eigen::bfloat16_impl::log(), logger, max, min, constants::pi, Eigen::bfloat16_impl::pow(), UniformPSDSelfTest::r, GlobalParameters::S0, GlobalParameters::S1, PeriodicBoundary::set(), InfiniteWall::set(), Chute::setupInitialConditions(), and Eigen::TensorSycl::internal::write().

◆ setupInitialConditions() [5/5]

void SegregationPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This is the info call.

This setup the initial conditions, generates small volume fraction of particles. Sets the program to be periodic in x.

Bug:
This code is not non-dimensionalised at the moment, should do this shortly, but at the moment. Should swap this to Silbert particles shortly

Reimplemented from DPMBase.

54  {
55 
56  //Check if the run has been done before. If yes, skip and start next run
58  {
59  //If it has move on to the next run immediately
60  logger(INFO, "This run has been done ");
61  launchNewRun("./segregation", true);
62  exit(0);
63  }
64 
65  //Set up a 10 by 10 study
66  vector<int> study_num = get2DParametersFromRunNumber(10, 1);
67 
68 
69  /*
70  This part was in setupInitialConditions, but then creates an infinite loop of setting up initial conditions.
71  It might be better to put it in tasksAfterSolve, or something like that.
72  //If study 0 is complete quit
73  if (study_num[0] > 0)
74  {
75  cout << "Study is complete " << endl;
76  exit(0);
77  }
78  else //If the study is not complete save the data to disk and move on
79  {
80  writeRestartFile();
81  launchNewRun("./segregation");
82  }*/
83 
84  //CREATE THE WALLS//
86  createWalls();
87 
88  // PARTICLE PROPERTIES//
90 
91  //Number of small particles
92  int numberOfSmallParticles = 10;
93  //Small particle radius
94  radius_s = 0.5;
95  //Radius of large particles, changes from study to study.
96  radius_l = radius_s * (1.0 + study_num[1] / 10.0);
97  //Number of large particles, fixed to the keep the volume fraction of large and small particles equal.
98  int numberOfLargeParticles = pow(radius_s / radius_l, 3) * numberOfSmallParticles;
99 
101 
102  //Setup the base i.e. the chute particles - This has to be done after the particle properties are set, but before the inflow particles are created.
104 
105  // CREATE THE PARTICLES
106  createParticles(numberOfSmallParticles, numberOfLargeParticles);
107 
108  //Write the info to the screen and save a copy to the disk
109  logger(INFO, "Finished creating particles");
110  write(std::cout, false);
112 
114 
115  }
void setSpeciesProperties()
Definition: Segregation/segregation.cpp:117
void createWalls()
Definition: Segregation/segregation.cpp:144
void createParticles(int numberOfSmallParticles, int numberOfLargeParticles)
Definition: Segregation/segregation.cpp:151
void setChuteProperties()
Definition: Segregation/segregation.cpp:197

References calibrate::dataFile, helpers::fileExists(), INFO, logger, Eigen::bfloat16_impl::pow(), Chute::setupInitialConditions(), and Eigen::TensorSycl::internal::write().

◆ write() [1/4]

void SegregationPeriodic::write ( std::ostream &  os,
bool  print_all = false 
)
inline

This is the info call.

27 {
28  os << "This is a segregation chute code problem " << endl;
29  os << "\n \n \n"<< endl;
30 
31 
32  MercuryBase::write(os, print_all);
33 
34  os << "Large particle size : " << radius_l << endl;
35  os << "Small particle size : " << radius_s << endl;
36 
37 
38 
39 }
void write(std::ostream &os, bool writeAllParticles=true) const override
Writes all data into a restart file.
Definition: MercuryBase.cc:126

References MercuryBase::write().

◆ write() [2/4]

void SegregationPeriodic::write ( std::ostream &  os,
bool  print_all = false 
) const
inlineoverridevirtual

This is the info call.

Reimplemented from DPMBase.

40 {
41  os << "This is a density size-segregation chute code problem" << endl;
42  os << "\n \n \n"<< endl;
43 
44 
45  MercuryBase::write(os, print_all);
46  os << "particle specie-0 size : " << radius_0 << endl;
47  os << "particle specie-1 size : " << radius_1 << endl;
48  os << "particle specie-2 size : " << radius_2 << endl;
49  os << "particle specie-0 rho : " << rho_0 << endl;
50  os << "particle specie-1 rho : " << rho_1 << endl;
51  os << "particle specie-2 rho : " << rho_2 << endl;
52  os << "particle size-ratio : " << radius_2/radius_1 << endl;
53  os << "particle density-ratio : " << rho_2/rho_1 << endl;
54 }

References MercuryBase::write().

◆ write() [3/4]

void SegregationPeriodic::write ( std::ostream &  os,
bool  print_all = false 
) const
inlineoverridevirtual

This is the info call.

Reimplemented from DPMBase.

41 {
42  os << "This is a density size-segregation chute code problem" << "\n";
43  os << "\n \n \n" << "\n";
44 
45 
46  MercuryBase::write(os, print_all);
47  os << "particle specie-0 size : " << radius_0 << "\n";
48  os << "particle specie-1 size : " << radius_1 << "\n";
49  os << "particle specie-2 size : " << radius_2 << "\n";
50  os << "particle specie-0 rho : " << rho_0 << "\n";
51  os << "particle specie-1 rho : " << rho_1 << "\n";
52  os << "particle specie-2 rho : " << rho_2 << "\n";
53  os << "particle size-ratio : " << radius_2 / radius_1 << "\n";
54  os << "particle density-ratio : " << rho_2 / rho_1 << endl;
55 }

References MercuryBase::write().

◆ write() [4/4]

void SegregationPeriodic::write ( std::ostream &  os,
bool  print_all = false 
) const
inlineoverridevirtual

This is the info call.

Reimplemented from DPMBase.

40 {
41  os << "This is a density size-segregation chute code problem" << "\n";
42  os << "\n \n \n" << "\n";
43 
44 
45  MercuryBase::write(os, print_all);
46  os << "particle specie-0 size : " << radius_0 << "\n";
47  os << "particle specie-1 size : " << radius_1 << "\n";
48  os << "particle specie-2 size : " << radius_2 << "\n";
49  os << "particle specie-0 rho : " << rho_0 << "\n";
50  os << "particle specie-1 rho : " << rho_1 << "\n";
51  os << "particle specie-2 rho : " << rho_2 << "\n";
52  os << "particle size-ratio : " << radius_2 / radius_1 << "\n";
53  os << "particle density-ratio : " << rho_2 / rho_1 << endl;
54 }

References MercuryBase::write().

Member Data Documentation

◆ densityRatio_

double SegregationPeriodic::densityRatio_
private

◆ inflowParticle_

SphericalParticle SegregationPeriodic::inflowParticle_
private

◆ radius_0

double SegregationPeriodic::radius_0
private

◆ radius_1

double SegregationPeriodic::radius_1
private

◆ radius_2

double SegregationPeriodic::radius_2
private

◆ radius_l

double SegregationPeriodic::radius_l
private

◆ radius_s

double SegregationPeriodic::radius_s
private

◆ rho_0

double SegregationPeriodic::rho_0
private

◆ rho_1

double SegregationPeriodic::rho_1
private

◆ rho_2

double SegregationPeriodic::rho_2
private

◆ sizeRatio_

double SegregationPeriodic::sizeRatio_
private

The documentation for this class was generated from the following files: