SilbertPeriodic Class Reference

#include <GlasPeriodic.h>

+ Inheritance diagram for SilbertPeriodic:

Public Member Functions

 SilbertPeriodic ()
 
virtual void createBaseSpecies ()
 
void set_study (int study_num)
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime () const override
 Displays the current simulation time and the maximum simulation duration. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
 SilbertPeriodic ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (std::vector< int > study_num)
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (double new_)
 
double get_H ()
 
void printTime () const override
 Displays the current simulation time and the maximum simulation duration. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Interprets the i^th command-line argument. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
 SilbertPeriodic ()
 
void fix_hgrid ()
 
double getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (double new_)
 
void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (vector< int > study_num)
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (double new_)
 
double get_H ()
 
void printTime ()
 
int readNextArgument (unsigned int &i, unsigned int &argc, char *argv[])
 
 SilbertPeriodic ()
 
void fix_hgrid ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
void set_study (vector< int > study_num)
 
void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime ()
 
int readNextArgument (unsigned int &i, unsigned int argc, char *argv[])
 
 SilbertPeriodic ()
 
Mdouble getSlidingFrictionCoefficientBottom ()
 
void setSlidingFrictionCoefficientBottom (Mdouble new_)
 
virtual void createBaseSpecies ()
 
void set_study ()
 
void set_study (int study_num)
 
virtual void actionsBeforeTimeStep () override
 A virtual function which allows to define operations to be executed before the new time step. More...
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void add_flow_particles ()
 
void create_inflow_particle ()
 
void set_H (Mdouble new_)
 
Mdouble get_H ()
 
void printTime () const override
 Displays the current simulation time and the maximum simulation duration. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Interprets the i^th command-line argument. More...
 
int getNCreated () const
 
void increaseNCreated ()
 
- Public Member Functions inherited from Chute
 Chute ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Chute (const DPMBase &other)
 Copy constructor, converts an existing DPMBase problem into a Chute problem. More...
 
 Chute (const MercuryBase &other)
 Copy constructor, converts an existing MercuryBase problem into a Chute problem. More...
 
 Chute (const Mercury3D &other)
 Copy constructor, converts an existing Mercury3D problem into a Chute problem. More...
 
 Chute (const Chute &other)
 Default copy constructor. More...
 
void constructor ()
 This is the actual constructor METHOD; it is called by all constructors above (except the default copy constructor). More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 This method can be used for reading object properties from a string. More...
 
void setupSideWalls ()
 Creates chute side walls (either solid or periodic) More...
 
void makeChutePeriodic ()
 This makes the chute periodic in Y. More...
 
bool getIsPeriodic () const
 Returns whether the chute is periodic in Y. More...
 
void setupInitialConditions () override
 Creates bottom, side walls and a particle insertion boundary. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads all chute properties from an istream. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 This function writes the Chute properties to an ostream, and adds the properties of ALL chute particles as well. More...
 
void setFixedParticleRadius (Mdouble fixedParticleRadius)
 Sets the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
Mdouble getFixedParticleRadius () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom. More...
 
void setFixedParticleSpacing (Mdouble fixedParticleSpacing)
 Sets the spacing of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
Mdouble getFixedParticleSpacing () const
 Returns the particle radius of the fixed particles which constitute the (rough) chute bottom; used in triangular packing only. More...
 
void setRoughBottomType (RoughBottomType roughBottomType)
 Sets the type of rough bottom of the chute. More...
 
void setRoughBottomType (std::string roughBottomTypeString)
 Sets the type of rough bottom of the chute, using a string with the EXACT enum type as input. More...
 
RoughBottomType getRoughBottomType () const
 Returns the type of (rough) bottom of the chute. More...
 
void setChuteAngle (Mdouble chuteAngle)
 Sets gravity vector according to chute angle (in degrees) More...
 
void setChuteAngleAndMagnitudeOfGravity (Mdouble chuteAngle, Mdouble gravity)
 Sets gravity vector according to chute angle (in degrees) More...
 
Mdouble getChuteAngle () const
 Returns the chute angle (in radians) More...
 
Mdouble getChuteAngleDegrees () const
 Returns the chute angle (in degrees) More...
 
void setMaxFailed (unsigned int maxFailed)
 Sets the number of times a particle will be tried to be added to the insertion boundary. More...
 
unsigned int getMaxFailed () const
 Returns the number of times a particle will be tried to be added to the insertion boundary. More...
 
void setInflowParticleRadius (Mdouble inflowParticleRadius)
 Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow). More...
 
void setInflowParticleRadius (Mdouble minInflowParticleRadius, Mdouble maxInflowParticleRadius)
 Sets the minimum and maximum radius of the inflow particles. More...
 
void setMinInflowParticleRadius (Mdouble minInflowParticleRadius)
 sets the minimum radius of inflow particles More...
 
void setMaxInflowParticleRadius (Mdouble maxInflowParticleRadius)
 Sets the maximum radius of inflow particles. More...
 
Mdouble getInflowParticleRadius () const
 Returns the average radius of inflow particles. More...
 
Mdouble getMinInflowParticleRadius () const
 returns the minimum radius of inflow particles More...
 
Mdouble getMaxInflowParticleRadius () const
 Returns the maximum radius of inflow particles. More...
 
void setInflowHeight (Mdouble inflowHeight)
 Sets maximum inflow height (Z-direction) More...
 
Mdouble getInflowHeight () const
 Returns the maximum inflow height (Z-direction) More...
 
void setInflowVelocity (Mdouble inflowVelocity)
 Sets the average inflow velocity. More...
 
Mdouble getInflowVelocity () const
 Returns the average inflow velocity. More...
 
void setInflowVelocityVariance (Mdouble inflowVelocityVariance)
 Sets the inflow velocity variance. More...
 
Mdouble getInflowVelocityVariance () const
 Returns the inflow velocity variance. More...
 
void setChuteWidth (Mdouble chuteWidth)
 Sets the chute width (Y-direction) More...
 
Mdouble getChuteWidth () const
 Returns the chute width (Y-direction) More...
 
virtual void setChuteLength (Mdouble chuteLength)
 Sets the chute length (X-direction) More...
 
Mdouble getChuteLength () const
 Returns the chute length (X-direction) More...
 
void setInsertionBoundary (InsertionBoundary *insertionBoundary)
 Sets the chute insertion boundary. More...
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< intget1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
void initialiseSolve ()
 Beginning of the solve routine, before time stepping. More...
 
void finaliseSolve ()
 End of the solve routine, after time stepping. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
virtual Mdouble getInfo (const BaseParticle &P) const
 A virtual function that returns some user-specified information about a particle. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURYDPM_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURYDPM_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURYDPM_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURYDPM_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURYDPM_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURYDPM_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURYDPM_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURYDPM_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 Returns a constant reference to an Interactions file. More...
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setVTKOutputDirectory (const std::string &dir)
 Sets the output directory of the VTK files. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
MERCURYDPM_DEPRECATED FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Mdouble getXCenter () const
 
Mdouble getYCenter () const
 
Mdouble getZCenter () const
 
Vec3D getCenter () const
 get center of domain More...
 
Vec3D getMin () const
 Returns the minimum coordinates of the problem domain. More...
 
Vec3D getMax () const
 Returns the maximum coordinates of the problem domain. More...
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 Sets the number of omp threads. More...
 
int getNumberOfOMPThreads () const
 Returns the number of omp threads. More...
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setBackgroundDrag (Mdouble backgroundDrag)
 Simple access function to turn on a background drag. The force of particleVelocity*drag is applied (note, it allowed to be negative i.e. create energy) More...
 
const Mdouble getBackgroundDrag () const
 Return the background drag. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy (Vec3D origin={0, 0, 0}) const
 Returns the global gravitational potential energy stored relative to a user-defined origin in the system. Note, if no origin is specified the real origin i.e. (0,0,0) is taken. More...
 
Mdouble getRotationalEnergy () const
 Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsignedgetNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 Handles the addition of particles to the particleHandler. More...
 
void writePythonFileForVTKVisualisation () const
 writes .py file for ParaView More...
 
void setWritePythonFileForVTKVisualisation (bool forceWritePythonFileForVTKVisualisation)
 
bool getWritePythonFileForVTKVisualisation () const
 
WallVTKWritergetWallVTKWriter ()
 

Public Attributes

int nCreated_
 
bool randomiseSpecies
 
SphericalParticle inflowParticle_
 
LinearViscoelasticSpeciesspecies
 
LinearViscoelasticMixedSpeciesbaseSpecies
 
LinearViscoelasticFrictionSpeciesspecies
 
LinearViscoelasticFrictionMixedSpeciesbaseSpecies
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum class  ReadOptions : int { ReadAll , ReadNoInteractions , ReadNoParticlesAndInteractions }
 
enum class  DomainSplit {
  X , Y , Z , XY ,
  XZ , YZ , XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Protected Member Functions inherited from Chute
void actionsBeforeTimeStep () override
 Calls Chute::cleanChute(). More...
 
void cleanChute ()
 Deletes all outflow particles once every 100 time steps. More...
 
virtual void createBottom ()
 Creates the chute bottom, which can be either flat or one of three flavours of rough. More...
 
virtual void addFlowParticlesCompactly ()
 Add initial flow particles in a dense packing. More...
 
virtual SphericalParticle createFlowParticle ()
 
void printTime () const override
 prints time, max time and number of particles More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeAllForces ()
 Computes all the forces acting on the particles using the BaseInteractable::setForce() and BaseInteractable::setTorque() More...
 
virtual void computeInternalForce (BaseParticle *, BaseParticle *)
 Computes the forces between two particles (internal in the sense that the sum over all these forces is zero i.e. fully modelled forces) More...
 
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
virtual void computeForcesDueToWalls (BaseParticle *, BaseWall *)
 Computes the forces on the particles due to the walls (normals are outward normals) More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
virtual void actionsAfterTimeStep ()
 A virtual function which allows to define operations to be executed after time step. More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void disableSoftStop ()
 This prevents the initialisation of the soft stop feature. More...
 
void discontinueSolve ()
 This discontinues the solve loop after the current time step is finished. More...
 

Constructor & Destructor Documentation

◆ SilbertPeriodic() [1/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
17  {
18  // Problem parameters
19  setName("silbert");
20 
21  //time stepping
22  setTimeStep(1e-4);
23  setTimeMax(2000);
24 
25  //output parameters
26  setSaveCount(50e4);
27 
28  //particle radii
30  setFixedParticleRadius(.5);//getInflowParticleRadius());
32 
33 
34  //particle properties
35  baseSpecies = nullptr;
38  species->setStiffness(2e5);
39  species->setDissipation(25.0);
41 
42  //chute properties
44  setChuteLength(20);
45  setChuteWidth(10);
47  set_H(20);
48 
49  randomiseSpecies=false;
50  nCreated_=0;
51 
56  }
@ MULTILAYER
Definition: Chute.h:32
Array< double, 1, 3 > e(1./3., 0.5, 2.)
@ MULTIPLE_FILES_PADDED
each time-step will be written into/read from separate files numbered consecutively,...
@ NO_FILE
file will not be created/read
@ ONE_FILE
all data will be written into/ read from a single file called name_
Species< LinearViscoelasticNormalSpecies > LinearViscoelasticSpecies
Definition: LinearViscoelasticSpecies.h:11
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:360
virtual void setSpecies(const ParticleSpecies *species)
Definition: BaseParticle.cc:798
void setChuteWidth(Mdouble chuteWidth)
Sets the chute width (Y-direction)
Definition: Chute.cc:1018
void setInflowParticleRadius(Mdouble inflowParticleRadius)
Sets the radius of the inflow particles to a single one (i.e. ensures a monodisperse inflow).
Definition: Chute.cc:827
void setRoughBottomType(RoughBottomType roughBottomType)
Sets the type of rough bottom of the chute.
Definition: Chute.cc:693
virtual void setChuteLength(Mdouble chuteLength)
Sets the chute length (X-direction)
Definition: Chute.cc:1038
void setChuteAngleAndMagnitudeOfGravity(Mdouble chuteAngle, Mdouble gravity)
Sets gravity vector according to chute angle (in degrees)
Definition: Chute.cc:768
void setInflowVelocity(Mdouble inflowVelocity)
Sets the average inflow velocity.
Definition: Chute.cc:962
void setFixedParticleRadius(Mdouble fixedParticleRadius)
Sets the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:632
void setSaveCount(unsigned int saveCount)
Sets File::saveCount_ for all files (ene, data, fstat, restart, stat)
Definition: DPMBase.cc:386
File eneFile
An instance of class File to handle in- and output into a .ene file.
Definition: DPMBase.h:1494
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1433
File fStatFile
An instance of class File to handle in- and output into a .fstat file.
Definition: DPMBase.h:1489
void setName(const std::string &name)
Allows to set the name of all the files (ene, data, fstat, restart, stat)
Definition: DPMBase.cc:400
File dataFile
An instance of class File to handle in- and output into a .data file.
Definition: DPMBase.h:1484
File restartFile
An instance of class File to handle in- and output into a .restart file.
Definition: DPMBase.h:1499
void setTimeStep(Mdouble newDt)
Sets a new value for the simulation time step.
Definition: DPMBase.cc:1225
void setTimeMax(Mdouble newTMax)
Sets a new value for the maximum simulation duration.
Definition: DPMBase.cc:864
void setFileType(FileType fileType)
Sets the type of file needed to write into or read from. File::fileType_.
Definition: File.cc:193
void setDissipation(Mdouble dissipation)
Allows the normal dissipation to be changed.
Definition: LinearViscoelasticNormalSpecies.cc:96
void setStiffness(Mdouble new_k)
Allows the spring constant to be changed.
Definition: LinearViscoelasticNormalSpecies.cc:72
void setDensity(Mdouble density)
Definition: ParticleSpecies.cc:88
LinearViscoelasticMixedSpecies * baseSpecies
Definition: flowRuleDiego_HeightAngle.cpp:245
LinearViscoelasticSpecies * species
Definition: flowRuleDiego_HeightAngle.cpp:244
void set_H(Mdouble new_)
Definition: flowRuleDiego_HeightAngle.cpp:210
SphericalParticle inflowParticle_
Definition: flowRuleDiego_HeightAngle.cpp:242
int nCreated_
Definition: flowRuleDiego_HeightAngle.cpp:240
bool randomiseSpecies
Definition: flowRuleDiego_HeightAngle.cpp:241
const Mdouble pi
Definition: ExtendedMath.h:23

References baseSpecies, BaseHandler< T >::copyAndAddObject(), DPMBase::dataFile, e(), DPMBase::eneFile, DPMBase::fStatFile, inflowParticle_, MULTILAYER, MULTIPLE_FILES_PADDED, nCreated_, NO_FILE, ONE_FILE, constants::pi, randomiseSpecies, DPMBase::restartFile, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), ParticleSpecies::setDensity(), LinearViscoelasticNormalSpecies::setDissipation(), File::setFileType(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), Chute::setInflowVelocity(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), BaseParticle::setSpecies(), LinearViscoelasticNormalSpecies::setStiffness(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

◆ SilbertPeriodic() [2/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
15  {
16  // Problem parameters
17  setName("silbert");
18 
19  //time stepping
20  setTimeStep(1e-4);
21  setTimeMax(2000);
22 
23  //output parameters
24  setSaveCount(50e4);
25 
26  //particle radii
28  setFixedParticleRadius(.5);//getInflowParticleRadius());
30 
31  //particle properties
32  baseSpecies = nullptr;
35  //~ setStiffnessAndRestitutionCoefficient(2e5,0.97,1);
36  double tc=5e-3, r=0.97, beta=0.44, mu=0.092, mur=0.042;
37  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient(tc,r,beta,1.0);// need to consider effective mass
38  species->setSlidingFrictionCoefficient(mu);
39  species->setRollingFrictionCoefficient(mur);
40 
41  //chute properties
43  setChuteLength(20);
44  setChuteWidth(10);
45  set_H(20);
46  nCreated_=0;
47 
48  }
Species< LinearViscoelasticNormalSpecies, FrictionSpecies > LinearViscoelasticFrictionSpecies
Definition: LinearViscoelasticFrictionSpecies.h:12
Scalar beta
Definition: level2_cplx_impl.h:36
std::complex< double > mu
Definition: time_harmonic_fourier_decomposed_linear_elasticity/cylinder/cylinder.cc:52
r
Definition: UniformPSDSelfTest.py:20
list mur
Definition: plotDoE.py:18

References baseSpecies, beta, BaseHandler< T >::copyAndAddObject(), e(), Global_Parameters::mu, MULTILAYER, plotDoE::mur, nCreated_, constants::pi, UniformPSDSelfTest::r, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), ParticleSpecies::setDensity(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

◆ SilbertPeriodic() [3/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
13  {
14  // Problem parameters
15  setName("silbert");
16 
17  //time stepping
18  setTimeStep(1e-4);
19  setTimeMax(2000);
20 
21  //output parameters
22  setSaveCount(50e4);
23 
24  //particle radii
26  setFixedParticleRadius(.5);//getInflowParticleRadius());
28 
29  //particle properties
30  setDensity(6/pi);
31  //~ setStiffnessAndRestitutionCoefficient(2e5,0.97,1);
32  double tc=5e-3, r=0.97, beta=0.44, mu=0.092, mur=0.042;
33  setCollisionTimeAndNormalAndTangentialRestitutionCoefficient(tc,r,beta,1.0,1.0);
34  setSlidingFrictionCoefficient(mu);
35  setSlidingFrictionCoefficientr();
36 
37  //chute properties
38  setChuteAngle(24.0, 1.0);
39  setChuteLength(20);
40  setChuteWidth(10);
41  set_H(20);
42 
43  }
void setChuteAngle(Mdouble chuteAngle)
Sets gravity vector according to chute angle (in degrees)
Definition: Chute.cc:747

References beta, e(), Global_Parameters::mu, MULTILAYER, plotDoE::mur, constants::pi, and UniformPSDSelfTest::r.

◆ SilbertPeriodic() [4/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
13  {
14  // Problem parameters
15  setName("silbert");
16 
17  //time stepping
18  setTimeStep(1e-4);
19  setTimeMax(2000);
20 
21  //output parameters
22  setSaveCount(50e4);
23 
24  //particle radii
26  setFixedParticleRadius(.5);//getInflowParticleRadius());
28 
29  //particle properties
30  setDensity(6/constants::pi);
31  setStiffness(2e5);
32  setSlidingStiffness(2.0/7.0*getStiffness());
33  setDissipation(25.0);
34  //setSlidingDissipation(2.0/7.0*getDissipation());
35  setSlidingDissipation(getDissipation());
36  setSlidingFrictionCoefficient(0.5);
37 
38  //chute properties
39  setChuteAngle(24.0, 1.0);
40  setChuteLength(20);
41  setChuteWidth(10);
42  set_H(20);
43 
44  }

References e(), MULTILAYER, and constants::pi.

◆ SilbertPeriodic() [5/5]

SilbertPeriodic::SilbertPeriodic ( )
inline
17  {
18  // Problem parameters
19  setName("silbert");
20 
21  //time stepping
22  setTimeStep(1e-4);
23  setTimeMax(2000);
24 
25  //output parameters
26  setSaveCount(50e4);
27 
28  //particle radii
30  setFixedParticleRadius(.5);//getInflowParticleRadius());
32 
33 
34  //particle properties
35  baseSpecies = nullptr;
38  species->setStiffness(2e5);
39  species->setSlidingStiffness(2.0/7.0* species->getStiffness());
40  species->setDissipation(25.0);
41  //setSlidingDissipation(2.0/7.0*getDissipation());
42  species->setSlidingDissipation(species->getDissipation());
43  species->setSlidingFrictionCoefficient(0.5);
45 
46  //chute properties
48  setChuteLength(20);
49  setChuteWidth(10);
51  set_H(20);
52 
53  randomiseSpecies=false;
54  nCreated_=0;
55 
60  }
Mdouble getStiffness() const
Allows the spring constant to be accessed.
Definition: LinearViscoelasticNormalSpecies.cc:83
Mdouble getDissipation() const
Allows the normal dissipation to be accessed.
Definition: LinearViscoelasticNormalSpecies.cc:109

References baseSpecies, BaseHandler< T >::copyAndAddObject(), DPMBase::dataFile, e(), DPMBase::eneFile, DPMBase::fStatFile, LinearViscoelasticNormalSpecies::getDissipation(), LinearViscoelasticNormalSpecies::getStiffness(), inflowParticle_, MULTILAYER, MULTIPLE_FILES_PADDED, nCreated_, NO_FILE, ONE_FILE, constants::pi, randomiseSpecies, DPMBase::restartFile, set_H(), Chute::setChuteAngleAndMagnitudeOfGravity(), Chute::setChuteLength(), Chute::setChuteWidth(), ParticleSpecies::setDensity(), LinearViscoelasticNormalSpecies::setDissipation(), File::setFileType(), Chute::setFixedParticleRadius(), Chute::setInflowParticleRadius(), Chute::setInflowVelocity(), DPMBase::setName(), Chute::setRoughBottomType(), DPMBase::setSaveCount(), BaseParticle::setSpecies(), LinearViscoelasticNormalSpecies::setStiffness(), DPMBase::setTimeMax(), DPMBase::setTimeStep(), species, and DPMBase::speciesHandler.

Member Function Documentation

◆ actionsBeforeTimeStep() [1/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

92 { };

◆ actionsBeforeTimeStep() [2/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

124 { };

◆ actionsBeforeTimeStep() [3/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

120 { };

◆ actionsBeforeTimeStep() [4/5]

void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

174 { };

◆ actionsBeforeTimeStep() [5/5]

virtual void SilbertPeriodic::actionsBeforeTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed before the new time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

Reimplemented in SilbertHstop.

261 { };

◆ add_flow_particles() [1/5]

void SilbertPeriodic::add_flow_particles ( )
inline
145  {
146  //setHGridNumberOfBucketsToPower(particleHandler.getStorageCapacity());
150  unsigned int N=getChuteLength()*getChuteWidth()* getInflowHeight();
153  setZMax(1.0*getInflowHeight());
154  //uncomment the following line to achieve a high packing fraction
156 
158  //try to find new insertable particles
159  while (getNCreated()<N){
163  //duplicate particle
164  for (BaseBoundary* it : boundaryHandler)
165  it->createPeriodicParticle(p, particleHandler);
167  //duplicate duplicate particles (this is a hack which is needed as there are two boundaries, so the doubly periodic images are needed)
168  for (BaseBoundary* it : boundaryHandler)
169  it->createPeriodicParticle(p, particleHandler);
170  //hGridActionsBeforeTimeStep();
173  }
174  for (unsigned int i = particleHandler.getNumberOfObjects(); i >= 1; i--)
175  if (particleHandler.getObject(i - 1)->getPeriodicFromParticle() != nullptr)
176  {
177  while (!particleHandler.getObject(i - 1)->getInteractions().empty())
178  {
180  }
182  }
184  //setHGridNumberOfBucketsToPower();
185  write(std::cout,false);
186  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
MatrixXf H
Definition: HessenbergDecomposition_matrixH.cpp:4
float * p
Definition: Tutorial_Map_using.cpp:9
Definition: BaseBoundary.h:28
void setStorageCapacity(const unsigned int N)
Sets the storage capacity of this BaseHandler.
Definition: BaseHandler.h:677
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:621
T * getLastObject()
Gets a pointer to the last Object in this BaseHandler.
Definition: BaseHandler.h:642
const std::vector< BaseInteraction * > & getInteractions() const
Returns a list of interactions which belong to this interactable.
Definition: BaseInteractable.h:256
Definition: BaseParticle.h:33
Mdouble getRadius() const
Returns the particle's radius.
Definition: BaseParticle.h:331
BaseParticle * getPeriodicFromParticle() const
Returns the 'original' particle this one's a periodic copy of.
Definition: BaseParticle.h:324
Mdouble getMaxInflowParticleRadius() const
Returns the maximum radius of inflow particles.
Definition: Chute.cc:926
Mdouble getInflowHeight() const
Returns the maximum inflow height (Z-direction)
Definition: Chute.cc:953
Mdouble getChuteLength() const
Returns the chute length (X-direction)
Definition: Chute.cc:1048
void write(std::ostream &os, bool writeAllParticles=true) const override
This function writes the Chute properties to an ostream, and adds the properties of ALL chute particl...
Definition: Chute.cc:185
Mdouble getChuteWidth() const
Returns the chute width (Y-direction)
Definition: Chute.cc:1028
void setInflowHeight(Mdouble inflowHeight)
Sets maximum inflow height (Z-direction)
Definition: Chute.cc:936
BoundaryHandler boundaryHandler
An object of the class BoundaryHandler which concerns insertion and deletion of particles into or fro...
Definition: DPMBase.h:1458
virtual void writeRestartFile()
Stores all the particle data for current save time step to a "restart" file, which is a file simply i...
Definition: DPMBase.cc:2979
InteractionHandler interactionHandler
An object of the class InteractionHandler.
Definition: DPMBase.h:1473
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1443
void setZMax(Mdouble newZMax)
Sets the value of ZMax, the upper bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1208
void checkAndDuplicatePeriodicParticles()
For simulations using periodic boundaries, checks and adds particles when necessary into the particle...
Definition: DPMBase.cc:5108
Mdouble getZMin() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin.
Definition: DPMBase.h:628
void removeObjectKeepingPeriodics(unsigned int id)
Removes interactions of periodic particles when the periodic particles get deleted (see DPMBase::remo...
Definition: InteractionHandler.cc:296
void hGridActionsBeforeTimeLoop() override
This sets up the broad phase information, has to be done at this stage because it requires the partic...
Definition: MercuryBase.cc:73
bool checkParticleForInteraction(const BaseParticle &P) final
Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle.
Definition: MercuryBase.cc:573
void hGridActionsBeforeTimeStep() override
Performs all necessary actions before a time-step, like updating the particles and resetting all the ...
Definition: MercuryBase.cc:302
void removeObject(unsigned int index) override
Removes a BaseParticle from the ParticleHandler.
Definition: ParticleHandler.cc:388
unsigned int getNumberOfObjects() const override
Returns the number of objects in the container. In parallel code this practice is forbidden to avoid ...
Definition: ParticleHandler.cc:1323
void create_inflow_particle()
Definition: flowRuleDiego_HeightAngle.cpp:189
void increaseNCreated()
Definition: flowRuleDiego_HeightAngle.cpp:235
int getNCreated() const
Definition: flowRuleDiego_HeightAngle.cpp:230
@ N
Definition: constructor.cpp:22

References DPMBase::boundaryHandler, DPMBase::checkAndDuplicatePeriodicParticles(), MercuryBase::checkParticleForInteraction(), BaseHandler< T >::copyAndAddObject(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), BaseInteractable::getInteractions(), BaseHandler< T >::getLastObject(), Chute::getMaxInflowParticleRadius(), getNCreated(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getPeriodicFromParticle(), BaseParticle::getRadius(), DPMBase::getZMin(), H, MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), i, increaseNCreated(), inflowParticle_, DPMBase::interactionHandler, N, p, DPMBase::particleHandler, ParticleHandler::removeObject(), InteractionHandler::removeObjectKeepingPeriodics(), Chute::setInflowHeight(), BaseHandler< T >::setStorageCapacity(), DPMBase::setZMax(), Chute::write(), and DPMBase::writeRestartFile().

Referenced by setupInitialConditions().

◆ add_flow_particles() [2/5]

void SilbertPeriodic::add_flow_particles ( )
inline
173  {
174  //setHGridNumberBucketsToPower(get_Nmax());
178  //set_Nmax(N); // automated in the new version
179  double H = getInflowHeight();
180  setZMax(1.2*getInflowHeight());
181 
182  //writeRestartFile();
183  //try to find new insertable particles
189  }
191  //setHGridNumberOfBucketsToPower();
192  write(std::cout,false);
193  }

References MercuryBase::checkParticleForInteraction(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), Chute::getMaxInflowParticleRadius(), ParticleHandler::getNumberOfObjects(), H, MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), increaseNCreated(), inflowParticle_, N, DPMBase::particleHandler, Chute::setInflowHeight(), DPMBase::setZMax(), and Chute::write().

◆ add_flow_particles() [3/5]

void SilbertPeriodic::add_flow_particles ( )
inline
166  {
167  set_HGRID_num_buckets_to_power(get_Nmax());
170  unsigned int N=get_N()+getChuteLength()*getChuteWidth()*InflowHeight;
171  set_Nmax(N);
172  double H = InflowHeight;
173  setZMax(1.2*InflowHeight);
174 
176  //try to find new insertable particles
177  while (Particles.size()<N){
179  if (IsInsertable(P0)) {
180  num_created++;
181  } else InflowHeight += .0001* MaxInflowParticleRadius;
182  }
183  InflowHeight = H;
184  set_HGRID_num_buckets_to_power();
185  write(std::cout,false);
186  }
double P0
Definition: two_dim.cc:101

References H, N, Problem_Parameter::P0, and Eigen::TensorSycl::internal::write().

◆ add_flow_particles() [4/5]

void SilbertPeriodic::add_flow_particles ( )
inline
220  {
221  set_HGRID_num_buckets_to_power(particleHandler.getStorageCapacity());
224  unsigned int N=particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*InflowHeight;
225  particleHandler.set_StorageCapacity(N);
226  Mdouble H = InflowHeight;
227  setZMax(1.2*InflowHeight);
228 
230  //try to find new insertable particles
233  if (IsInsertable(P0)) {
234  num_created++;
235  } else InflowHeight += .0001* MaxInflowParticleRadius;
236  }
237  InflowHeight = H;
238  set_HGRID_num_buckets_to_power();
239  write(std::cout,false);
240  }
unsigned int getStorageCapacity() const
Gets the storage capacity of this BaseHandler.
Definition: BaseHandler.h:670

References H, N, Problem_Parameter::P0, and Eigen::TensorSycl::internal::write().

◆ add_flow_particles() [5/5]

void SilbertPeriodic::add_flow_particles ( )
inline
313  {
314  //setHGridNumberOfBucketsToPower(particleHandler.getStorageCapacity());
318  unsigned int N=getChuteLength()*getChuteWidth()* getInflowHeight();
321  setZMax(1.0*getInflowHeight());
322  //uncomment the following line to achieve a high packing fraction
324 
326  //try to find new insertable particles
327  while (getNCreated()<N){
331  //duplicate particle
332  for (BaseBoundary* it : boundaryHandler)
333  it->createPeriodicParticle(p, particleHandler);
335  //duplicate duplicate particles (this is a hack which is needed as there are two boundaries, so the doubly periodic images are needed)
336  for (BaseBoundary* it : boundaryHandler)
337  it->createPeriodicParticle(p, particleHandler);
338  //hGridActionsBeforeTimeStep();
341  }
342  for (unsigned int i = particleHandler.getNumberOfObjects(); i >= 1; i--)
343  if (particleHandler.getObject(i - 1)->getPeriodicFromParticle() != nullptr)
344  {
345  while (particleHandler.getObject(i - 1)->getInteractions().size() > 0)
346  {
348  }
350  }
352  //setHGridNumberOfBucketsToPower();
353  write(std::cout,false);
354  }

References DPMBase::boundaryHandler, DPMBase::checkAndDuplicatePeriodicParticles(), MercuryBase::checkParticleForInteraction(), BaseHandler< T >::copyAndAddObject(), create_inflow_particle(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getInflowHeight(), BaseInteractable::getInteractions(), BaseHandler< T >::getLastObject(), Chute::getMaxInflowParticleRadius(), getNCreated(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getPeriodicFromParticle(), BaseParticle::getRadius(), DPMBase::getZMin(), H, MercuryBase::hGridActionsBeforeTimeLoop(), MercuryBase::hGridActionsBeforeTimeStep(), i, increaseNCreated(), inflowParticle_, DPMBase::interactionHandler, N, p, DPMBase::particleHandler, ParticleHandler::removeObject(), InteractionHandler::removeObjectKeepingPeriodics(), Chute::setInflowHeight(), BaseHandler< T >::setStorageCapacity(), DPMBase::setZMax(), Chute::write(), and DPMBase::writeRestartFile().

◆ create_inflow_particle() [1/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
190  {
192  //inflowParticle_.computeMass();
193 
194  //The position components are first stored in a Vec3D, because if you pass them directly into setPosition the compiler is allowed to change the order in which the numbers are generated
195  Vec3D position;
196  position.X = random.getRandomNumber(getXMin(),getXMax());
197  position.Y = random.getRandomNumber(getYMin(),getYMax());
199  inflowParticle_.setPosition(position);
201  if (randomiseSpecies)
202  {
203  const unsigned int indSpecies = floor(
206  }
207  }
virtual unsigned int getNumberOfObjects() const
Gets the number of real Object in this BaseHandler. (i.e. no mpi or periodic particles)
Definition: BaseHandler.h:656
void setVelocity(const Vec3D &velocity)
set the velocity of the BaseInteractable.
Definition: BaseInteractable.cc:328
virtual void setPosition(const Vec3D &position)
Sets the position of this BaseInteractable.
Definition: BaseInteractable.h:218
virtual void setRadius(Mdouble radius)
Sets the particle's radius_ (and adjusts the mass_ accordingly, based on the particle's species)
Definition: BaseParticle.cc:548
Mdouble getMinInflowParticleRadius() const
returns the minimum radius of inflow particles
Definition: Chute.cc:917
Mdouble getInflowVelocity() const
Returns the average inflow velocity.
Definition: Chute.cc:979
Mdouble getXMin() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin.
Definition: DPMBase.h:603
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:610
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:616
RNG random
This is a random generator, often used for setting up the initial conditions etc.....
Definition: DPMBase.h:1438
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:622
Mdouble getRandomNumber()
This is a random generating routine can be used for initial positions.
Definition: RNG.cc:123
Definition: Kernel/Math/Vector.h:30
Mdouble Y
Definition: Kernel/Math/Vector.h:45
Mdouble Z
Definition: Kernel/Math/Vector.h:45
Mdouble X
the vector components
Definition: Kernel/Math/Vector.h:45
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 floor(const bfloat16 &a)
Definition: BFloat16.h:643

References e(), Eigen::bfloat16_impl::floor(), Chute::getInflowHeight(), Chute::getInflowVelocity(), Chute::getMaxInflowParticleRadius(), Chute::getMinInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getRadius(), RNG::getRandomNumber(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMin(), inflowParticle_, DPMBase::random, randomiseSpecies, BaseInteractable::setPosition(), BaseParticle::setRadius(), BaseParticle::setSpecies(), BaseInteractable::setVelocity(), DPMBase::speciesHandler, Vec3D::X, Vec3D::Y, and Vec3D::Z.

Referenced by add_flow_particles().

◆ create_inflow_particle() [2/5]

◆ create_inflow_particle() [3/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
190  {
191  P0.Radius = MaxInflowParticleRadius;
192  P0.computeMass(Species);
193 
194  P0.Position.X = random(getXMin()+2.0*P0.Radius,getXMax());
195  P0.Position.Y = random(getYMin()+2.0*P0.Radius,getYMax());
196  P0.Position.Z = random(getZMin()+2.0*P0.Radius,getInflowHeight());
197  P0.Velocity = Vec3D(0.0,0.0,0.0);
198  }
Contains material and contact force properties.
Definition: Species.h:14

References Problem_Parameter::P0.

◆ create_inflow_particle() [4/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
244  {
245  P0.setRadius(random.get_RN(MinInflowParticleRadius,MaxInflowParticleRadius));
246  P0.computeMass(Species);
247 
248  P0.getPosition().X = random.get_RN(getXMin()+2.0*P0.getRadius(),getXMax());
249  P0.getPosition().Y = random.get_RN(getYMin()+2.0*P0.getRadius(),getYMax());
250  P0.getPosition().Z = random.get_RN(getZMin()+2.0*P0.getRadius(),getInflowHeight());
251  P0.setVelocity(Vec3D(0.0,0.0,0.0));
252  }

References Problem_Parameter::P0.

◆ create_inflow_particle() [5/5]

void SilbertPeriodic::create_inflow_particle ( )
inline
358  {
360  //inflowParticle_.computeMass();
361 
362  //The position components are first stored in a Vec3D, because if you pass them directly into setPosition the compiler is allowed to change the order in which the numbers are generated
363  Vec3D position;
364  position.X = random.getRandomNumber(getXMin(), getXMax());
365  position.Y = random.getRandomNumber(getYMin(), getYMax());
367  inflowParticle_.setPosition(position);
369  if (randomiseSpecies)
370  {
371  int indSpecies = floor(random.getRandomNumber(0, speciesHandler.getNumberOfObjects() - 1e-200));
373  }
374  }

References e(), Eigen::bfloat16_impl::floor(), Chute::getInflowHeight(), Chute::getInflowVelocity(), Chute::getMaxInflowParticleRadius(), Chute::getMinInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseParticle::getRadius(), RNG::getRandomNumber(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMin(), inflowParticle_, DPMBase::random, randomiseSpecies, BaseInteractable::setPosition(), BaseParticle::setRadius(), BaseParticle::setSpecies(), BaseInteractable::setVelocity(), DPMBase::speciesHandler, Vec3D::X, Vec3D::Y, and Vec3D::Z.

◆ createBaseSpecies() [1/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual
68  {
69  //only create once
70  static bool created=false;
71  if (!created) {
72  auto species1 = speciesHandler.copyAndAddObject(species);
74  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++) {
76  }
77  }
78  }
bool isFixed() const override
Is fixed Particle function. It returns whether a Particle is fixed or not, by checking its inverse Ma...
Definition: BaseParticle.h:72
std::enable_if<!std::is_pointer< typename U::MixedSpeciesType >::value, typename U::MixedSpeciesType * >::type getMixedObject(const U *S, const U *T)
Definition: SpeciesHandler.h:52

References baseSpecies, BaseHandler< T >::copyAndAddObject(), SpeciesHandler::getMixedObject(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), i, BaseParticle::isFixed(), DPMBase::particleHandler, BaseParticle::setSpecies(), species, and DPMBase::speciesHandler.

Referenced by FlowRule::run(), and setSlidingFrictionCoefficientBottom().

◆ createBaseSpecies() [2/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual

◆ createBaseSpecies() [3/5]

void SilbertPeriodic::createBaseSpecies ( )
inline
65  {
66  //only create once
67  static bool created=false;
68  if (!created) {
70  created = true;
71  for (int i=0; i<get_N(); i++) {
72  if (Particles[i].is_fixed()) Particles[i].indSpecies=1;
73  }
74  }
75  }

References i.

◆ createBaseSpecies() [4/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual
66  {
67  //only create once
68  static bool created=false;
69  if (!created) {
71  created = true;
72  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++) {
74  }
75  }
76  }

References i.

◆ createBaseSpecies() [5/5]

virtual void SilbertPeriodic::createBaseSpecies ( )
inlinevirtual

◆ fix_hgrid() [1/2]

void SilbertPeriodic::fix_hgrid ( )
inline
45  {
46  //assume 1-2 levels are optimal (which is the case for mono and bidispersed) and set the cell size to min and max
47  // !this is not optimal for polydispersed
48  double minCell = 2.*min(getFixedParticleRadius(),getMinInflowParticleRadius());
49  double maxCell = 2.*max(getFixedParticleRadius(),getMaxInflowParticleRadius());
50  if ((minCell==maxCell)|(minCell==0.)) set_HGRID_max_levels(1);
51  else set_HGRID_max_levels(2);
52  set_HGRID_cell_to_cell_ratio (1.0000001*maxCell/minCell);
53  }
Mdouble getFixedParticleRadius() const
Returns the particle radius of the fixed particles which constitute the (rough) chute bottom.
Definition: Chute.cc:650
#define min(a, b)
Definition: datatypes.h:22
#define max(a, b)
Definition: datatypes.h:23

References max, and min.

◆ fix_hgrid() [2/2]

void SilbertPeriodic::fix_hgrid ( )
inline
46  {
47  //assume 1-2 levels are optimal (which is the case for mono and bidispersed) and set the cell size to min and max
48  // !this is not optimal for polydispersed
51  if ((minCell==maxCell)|(minCell==0.)) set_HGRID_max_levels(1);
52  else set_HGRID_max_levels(2);
53  set_HGRID_cell_to_cell_ratio (1.0000001*maxCell/minCell);
54  }

References max, and min.

◆ get_H() [1/5]

Mdouble SilbertPeriodic::get_H ( )
inline
217  { return getInflowHeight(); }

References Chute::getInflowHeight().

Referenced by SilbertHstop::IsAboveCurve().

◆ get_H() [2/5]

double SilbertPeriodic::get_H ( )
inline
216  { return getInflowHeight(); }

References Chute::getInflowHeight().

◆ get_H() [3/5]

double SilbertPeriodic::get_H ( )
inline
202 {return InflowHeight;}

◆ get_H() [4/5]

Mdouble SilbertPeriodic::get_H ( )
inline
256 {return InflowHeight;}

◆ get_H() [5/5]

Mdouble SilbertPeriodic::get_H ( )
inline
384  { return getInflowHeight(); }

References Chute::getInflowHeight().

◆ getNCreated() [1/3]

int SilbertPeriodic::getNCreated ( ) const
inline
231  {
232  return nCreated_;
233  }

References nCreated_.

Referenced by add_flow_particles().

◆ getNCreated() [2/3]

int SilbertPeriodic::getNCreated ( ) const
inline
240  {
241  return nCreated_;
242  }

References nCreated_.

◆ getNCreated() [3/3]

int SilbertPeriodic::getNCreated ( ) const
inline
414  {
415  return nCreated_;
416  }

References nCreated_.

◆ getSlidingFrictionCoefficientBottom() [1/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
60  {
61  if (baseSpecies!= nullptr)
62  return baseSpecies->getSlidingFrictionCoefficient();
63  else return species->getSlidingFrictionCoefficient();
64  }

References baseSpecies, and species.

Referenced by readNextArgument(), and set_study().

◆ getSlidingFrictionCoefficientBottom() [2/4]

double SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
55  {
56  if (speciesHandler.getNumberOfObjects()>1) return speciesHandler.getMixedObject(1,0)->getSlidingFrictionCoefficient();
57  else return getSlidingFrictionCoefficient();
58  }

◆ getSlidingFrictionCoefficientBottom() [3/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
56  {
57  if (speciesHandler.getNumberOfObjects()>1) return speciesHandler.getMixedObject(1,0)->getSlidingFrictionCoefficient();
58  else return getSlidingFrictionCoefficient();
59  }

◆ getSlidingFrictionCoefficientBottom() [4/4]

Mdouble SilbertPeriodic::getSlidingFrictionCoefficientBottom ( )
inline
72  {
73  if (baseSpecies!= nullptr)
74  return baseSpecies->getSlidingFrictionCoefficient();
75  else return species->getSlidingFrictionCoefficient();
76  }

References baseSpecies, and species.

◆ increaseNCreated() [1/3]

void SilbertPeriodic::increaseNCreated ( )
inline
236  {
237  nCreated_++;
238  }

References nCreated_.

Referenced by add_flow_particles().

◆ increaseNCreated() [2/3]

void SilbertPeriodic::increaseNCreated ( )
inline
245  {
246  nCreated_++;
247  }

References nCreated_.

◆ increaseNCreated() [3/3]

void SilbertPeriodic::increaseNCreated ( )
inline
419  {
420  nCreated_++;
421  }

References nCreated_.

◆ printTime() [1/5]

void SilbertPeriodic::printTime ( )
inline
204  {
205  cout << "t=" << setprecision(3) << left << setw(6) << getTime()
206  << ", tmax=" << setprecision(3) << left << setw(6) << getTimeMax()
207  << ", N=" << setprecision(3) << left << setw(6) << Particles.size()
208  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
209  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
210  << ". " << endl;
211  }
Mdouble getTime() const
Returns the current simulation time.
Definition: DPMBase.cc:799
Mdouble getTimeMax() const
Returns the maximum simulation duration.
Definition: DPMBase.cc:879

◆ printTime() [2/5]

void SilbertPeriodic::printTime ( )
inline
258  {
259  cout << "t=" << setprecision(3) << left << setw(6) << getTime()
260  << ", tmax=" << setprecision(3) << left << setw(6) << getTimeMax()
261  << ", N=" << setprecision(3) << left << setw(6) << particleHandler.getNumberOfObjects()
262  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
263  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
264  << ". " << endl;
265  }

◆ printTime() [3/5]

void SilbertPeriodic::printTime ( ) const
inlineoverridevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

220  {
221  logger(INFO, "t=%3.6"
222  ", tmax=%3.6"
223  ", N=%3.6"
224  ", theta=3.6",
226  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
227  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
228  }
Logger< MERCURYDPM_LOGLEVEL > logger("MercuryKernel")
Definition of different loggers with certain modules. A user can define its own custom logger here.
@ INFO
Mdouble getChuteAngleDegrees() const
Returns the chute angle (in degrees)
Definition: Chute.cc:795

References Chute::getChuteAngleDegrees(), ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

Referenced by SilbertHstop::continueSolve().

◆ printTime() [4/5]

void SilbertPeriodic::printTime ( ) const
inlineoverridevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

219  {
220  logger(INFO, "t=%3.6"
221  ", tmax=%3.6"
222  ", N=%3.6",
224  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
225  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
226  }

References ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

◆ printTime() [5/5]

void SilbertPeriodic::printTime ( ) const
inlineoverridevirtual

Displays the current simulation time and the maximum simulation duration.

Gets and prints the current simulation time (getTime()) and the currently set maximum simulation time (getTimeMax()) .

Reimplemented from DPMBase.

Reimplemented in vibratedBed.

387  {
388  logger(INFO, "t=%3.6"
389  ", tmax=%3.6"
390  ", N=%3.6"
391  ", theta=%3.6",
393  //<< ", time left=" << setprecision(3) << left << setw(6) << timer.getTime2Finish(t)
394  //~ << ", finish by " << setprecision(3) << left << setw(6) << timer.getFinishTime(t)
395  }

References Chute::getChuteAngleDegrees(), ParticleHandler::getNumberOfObjects(), DPMBase::getTime(), DPMBase::getTimeMax(), INFO, logger, and DPMBase::particleHandler.

◆ readNextArgument() [1/4]

bool SilbertPeriodic::readNextArgument ( int i,
int  argc,
char argv[] 
)
inlineoverridevirtual

Interprets the i^th command-line argument.

Reads, recognises and applies all valid flags passed when starting or restarting a Mercury simulation.

For all of the N = argc (argument count) command line arguments passed when starting/restarting a code (e.g. -tmax, -tmin ...), compares them to the "known" arguments understood by Mercury (note that further recognised arguments can be added in derived classes). If a match is found, the relevant parameter is set to the corresponding value(s) following the flag and true is returned. Otherwise, false is returned.

For instance, if the flag -xmin 0 is passed, the code's second if statement will recognise the flag, convert the subsequent string in argv to a double, and then call the setXMin() function to implement the new value (0) of XMin.

For developers: note the use of strcmp here. This cannot be replaced with a simpler ==, as we are comparing c-style strings (char*), instead of std::string. Thus, == would return equality of the pointers instead of the contents of the string. strcmp returns 0 if the strings are the same, and another number if they are different. This is then implicitly cast to a bool, where 0->false and other numbers will give true. Finally, the !-operator makes sure that the expression in the if-statements are true if the strings are the same, and false otherwise.

Parameters
[in]ithe position of the element that will be read, note that the count starts at 1, as element 0 is the name of the executable
[in]argcnumber of arguments the user has given
[in]*argv[]the command-line arguments the user has given when calling the executable
Returns
true if the argument is successfully read, and false otherwise.

-gravity_ requires three arguments

-restart or -r loads a restart file. By default, it loads <name>.restart. If an argument "arg" is given it loads the file "arg", or "arg".restart (if the ending is not given).

Reimplemented from DPMBase.

229  {
230  if (!strcmp(argv[i], "-muBottom"))
231  {
232  setSlidingFrictionCoefficientBottom(atof(argv[i + 1]));
234  }
235  else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
236  return true; //returns true if argv[i] is found
237  }
bool readNextArgument(int &i, int argc, char *argv[]) override
This method can be used for reading object properties from a string.
Definition: Chute.cc:534
void setSlidingFrictionCoefficientBottom(Mdouble new_)
Definition: GlasPeriodic.h:65
Mdouble getSlidingFrictionCoefficientBottom()
Definition: GlasPeriodic.h:60

References getSlidingFrictionCoefficientBottom(), i, INFO, logger, Chute::readNextArgument(), and setSlidingFrictionCoefficientBottom().

Referenced by FlowRule::readNextArgument().

◆ readNextArgument() [2/4]

bool SilbertPeriodic::readNextArgument ( int i,
int  argc,
char argv[] 
)
inlineoverridevirtual

Interprets the i^th command-line argument.

Reads, recognises and applies all valid flags passed when starting or restarting a Mercury simulation.

For all of the N = argc (argument count) command line arguments passed when starting/restarting a code (e.g. -tmax, -tmin ...), compares them to the "known" arguments understood by Mercury (note that further recognised arguments can be added in derived classes). If a match is found, the relevant parameter is set to the corresponding value(s) following the flag and true is returned. Otherwise, false is returned.

For instance, if the flag -xmin 0 is passed, the code's second if statement will recognise the flag, convert the subsequent string in argv to a double, and then call the setXMin() function to implement the new value (0) of XMin.

For developers: note the use of strcmp here. This cannot be replaced with a simpler ==, as we are comparing c-style strings (char*), instead of std::string. Thus, == would return equality of the pointers instead of the contents of the string. strcmp returns 0 if the strings are the same, and another number if they are different. This is then implicitly cast to a bool, where 0->false and other numbers will give true. Finally, the !-operator makes sure that the expression in the if-statements are true if the strings are the same, and false otherwise.

Parameters
[in]ithe position of the element that will be read, note that the count starts at 1, as element 0 is the name of the executable
[in]argcnumber of arguments the user has given
[in]*argv[]the command-line arguments the user has given when calling the executable
Returns
true if the argument is successfully read, and false otherwise.

-gravity_ requires three arguments

-restart or -r loads a restart file. By default, it loads <name>.restart. If an argument "arg" is given it loads the file "arg", or "arg".restart (if the ending is not given).

Reimplemented from DPMBase.

398  {
399  if (!strcmp(argv[i], "-muBottom"))
400  {
401  setSlidingFrictionCoefficientBottom(atof(argv[i + 1]));
403  }
404  else if (!strcmp(argv[i], "-oldValues"))
405  {
406  species->setSlidingDissipation(species->getDissipation());
407  logger(INFO, "getSlidingDissipation()=%", species->getSlidingDissipation());
408  }
409  else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
410  return true; //returns true if argv[i] is found
411  }

References LinearViscoelasticNormalSpecies::getDissipation(), getSlidingFrictionCoefficientBottom(), i, INFO, logger, Chute::readNextArgument(), setSlidingFrictionCoefficientBottom(), and species.

◆ readNextArgument() [3/4]

int SilbertPeriodic::readNextArgument ( unsigned int i,
unsigned int argc,
char argv[] 
)
inline
213  {
214  if (!strcmp(argv[i],"-muBottom")) {
215  setSlidingFrictionCoefficientBottom(atof(argv[i+1]));
216  cout << "muB=" << getSlidingFrictionCoefficientBottom() << endl;
217  } else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
218  return true; //returns true if argv[i] is found
219  }

References i, and Chute::readNextArgument().

◆ readNextArgument() [4/4]

int SilbertPeriodic::readNextArgument ( unsigned int i,
unsigned int  argc,
char argv[] 
)
inline
267  {
268  if (!strcmp(argv[i],"-muBottom")) {
269  setSlidingFrictionCoefficientBottom(atof(argv[i+1]));
270  cout << "muB=" << getSlidingFrictionCoefficientBottom() << endl;
271  } else return Chute::readNextArgument(i, argc, argv); //if argv[i] is not found, check the commands in Chute
272  return true; //returns true if argv[i] is found
273  }

References i, and Chute::readNextArgument().

◆ set_H() [1/5]

void SilbertPeriodic::set_H ( double  new_)
inline

◆ set_H() [2/5]

void SilbertPeriodic::set_H ( double  new_)
inline
201 {InflowHeight=new_; setZMax(InflowHeight);}

◆ set_H() [3/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline
211  {
212  setInflowHeight(new_);
214  }

References Chute::getInflowHeight(), Chute::setInflowHeight(), and DPMBase::setZMax().

Referenced by SilbertPeriodic().

◆ set_H() [4/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline
255 {InflowHeight=new_; setZMax(InflowHeight);}

◆ set_H() [5/5]

void SilbertPeriodic::set_H ( Mdouble  new_)
inline

◆ set_study() [1/12]

void SilbertPeriodic::set_study ( )
inline
81  {
82  std::stringstream name;
83  name << "H" << getInflowHeight()
84  << "A" << getChuteAngleDegrees()
85  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
86  << "M" << species->getSlidingFrictionCoefficient()
88  dataFile.setName(name.str().c_str());
89  //set_data_filename();
90  }
void setName(const std::string &name)
Sets the file name, e.g. "Name.data".
Definition: File.cc:176
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 round(const bfloat16 &a)
Definition: BFloat16.h:646
string name
Definition: plotDoE.py:33

References DPMBase::dataFile, Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), getSlidingFrictionCoefficientBottom(), plotDoE::name, Eigen::bfloat16_impl::round(), File::setName(), and species.

Referenced by FlowRule::run(), vibratedBed::run(), and set_study().

◆ set_study() [2/12]

void SilbertPeriodic::set_study ( )
inline
77  {
78  stringstream name;
79  name << "H" << getInflowHeight()
80  << "A" << getChuteAngleDegrees()
81  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
82  << "M" << getSlidingFrictionCoefficient()
84  setName(name.str().c_str());
85  set_data_filename();
86  }

References plotDoE::name, and Eigen::bfloat16_impl::round().

◆ set_study() [3/12]

void SilbertPeriodic::set_study ( )
inline
78  {
79  stringstream name;
80  name << "H" << getInflowHeight()
81  << "A" << getChuteAngleDegrees()
82  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
83  << "M" << getSlidingFrictionCoefficient()
85  setName(name.str().c_str());
86  set_data_filename();
87  }

References plotDoE::name, and Eigen::bfloat16_impl::round().

◆ set_study() [4/12]

void SilbertPeriodic::set_study ( )
inline
94  {
95  std::stringstream name;
96  name << "H" << getInflowHeight()
97  << "A" << getChuteAngleDegrees()
98  << "L" << round(100.*getFixedParticleRadius()*2.)/100.
99  << "M" << species->getSlidingFrictionCoefficient()
101  setName(name.str().c_str());
102  //set_data_filename();
103  }

References Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), getSlidingFrictionCoefficientBottom(), plotDoE::name, Eigen::bfloat16_impl::round(), DPMBase::setName(), and species.

◆ set_study() [5/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
80  {
81  logger(INFO, "using mu=0, r=0.5");
83  (50. * getTimeStep(), 0.5, 1);
84  std::stringstream name;
85  name << "H" << getInflowHeight()
86  << "A" << getChuteAngleDegrees()
87  << "L" << round(100. * getFixedParticleRadius() * 2.) / 100.;
88  setName(name.str().c_str());
89  }
Mdouble getTimeStep() const
Returns the simulation time step.
Definition: DPMBase.cc:1241
void setCollisionTimeAndRestitutionCoefficient(Mdouble tc, Mdouble eps, BaseParticle *p)
Sets k, disp such that it matches a given tc and eps for a collision of two copies of particle p.
Definition: LinearViscoelasticNormalSpecies.cc:191

References Chute::getChuteAngleDegrees(), Chute::getFixedParticleRadius(), Chute::getInflowHeight(), DPMBase::getTimeStep(), INFO, logger, plotDoE::name, Eigen::bfloat16_impl::round(), LinearViscoelasticNormalSpecies::setCollisionTimeAndRestitutionCoefficient(), DPMBase::setName(), and species.

◆ set_study() [6/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
92  {
93  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
94  //S=6-8: mu = 0, 1, inf
95  //S=9-13: mub = 0,1,inf,1/4,1/8
96  //S=14-15: mu = 1/4, 1/8
97  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
98  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
99  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
100  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
101 
102  if (study_num < 6) {
103  // set mu_all = 0.5, vary lambda
104  double Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
105  setFixedParticleRadius(Lambdas[study_num]/2.);
106  } else {
107  //If study_num is complete quit
108  logger(VERBOSE, "Study is complete ");
109  exit(0);
110  }
111  //Note make sure h and a is defined
112  set_study();
113  }
@ VERBOSE
void set_study()
Definition: GlasPeriodic.h:81

References logger, set_study(), Chute::setFixedParticleRadius(), and VERBOSE.

◆ set_study() [7/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
88  {
89  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
90  //S=6-8: mu = 0, 1, inf
91  //S=9-13: mub = 0,1,inf,1/4,1/8
92  //S=14-15: mu = 1/4, 1/8
93  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
94  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
95  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
96  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
97 
98  if (study_num < 6) {
99  // set mu_all = 0.5, vary lambda
100  double Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
101  setFixedParticleRadius(Lambdas[study_num]/2.);
102  } else {
103  //If study_num is complete quit
104  cout << "Study is complete " << endl;
105  exit(0);
106  }
107  //Note make sure h and a is defined
108  set_study();
109  }

◆ set_study() [8/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
89  {
90  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
91  //S=6-8: mu = 0, 1, inf
92  //S=9-13: mub = 0,1,inf,1/4,1/8
93  //S=14-15: mu = 1/4, 1/8
94  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
95  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
96  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
97  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
98 
99  if (study_num < 6) {
100  // set mu_all = 0.5, vary lambda
101  Mdouble Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
102  setFixedParticleRadius(Lambdas[study_num]/2.);
103  setSlidingFrictionCoefficient(0.5);
104  } else if (study_num < 9) { //Case 6,7,8
105  // set lambda = 1, vary mu_all
106  Mdouble MuAll[] = {0, 1., 1e20};
107  setSlidingFrictionCoefficient(MuAll[study_num-6]);
109  } else if (study_num < 12) { //Case 9,10,11
110  // set lambda = 1, mu_all = 0.5, vary mu_bottom
111  Mdouble MuBottom[] = {0, 1., 1e20};
112  setSlidingFrictionCoefficient(0.5);
113  setSlidingFrictionCoefficientBottom(MuBottom[study_num-9]);
115  } else if (study_num < 14) { //Case 12,13
116  // set lambda = 1, mu_all = 0.5, vary mu_bottom
117  Mdouble MuBottom[] = {0.25, 0.125};
118  setSlidingFrictionCoefficient(0.5);
119  setSlidingFrictionCoefficientBottom(MuBottom[study_num-12]);
121  } else if (study_num < 16) { //Case 14,15
122  // set lambda = 1, vary mu_all
123  Mdouble MuAll[] = {0.25, 0.125};
124  setSlidingFrictionCoefficient(MuAll[study_num-14]);
126  } else if (study_num < 21) { //Case 16,17,18,19,20
127  // set mu_all = 0.5, vary lambda
128  Mdouble Lambdas[] = {1./6., 2./6., 1.5, 4, 1./12};
129  setFixedParticleRadius(Lambdas[study_num-16]/2.);
130  setSlidingFrictionCoefficient(0.5);
131  } else if (study_num < 26) { //Case 21 22 23 24 25
132  // set lambda = 1, mu_all = 0.5, vary mu_bottom
133  Mdouble MuBottom[] = {1./16.,1./32.,1./64.,1./128.,1./1024.};
134  setSlidingFrictionCoefficient(0.5);
135  setSlidingFrictionCoefficientBottom(MuBottom[study_num-21]);
137  } else if (study_num < 29) { //Case 26 27 28
138  // set lambda = 1/2, mu_all = 0.5, vary mu_bottom
139  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.};
140  setSlidingFrictionCoefficient(0.5);
141  setSlidingFrictionCoefficientBottom(MuBottom[study_num-26]);
143  } else if (study_num < 33) { //Case 29 30 31 32
144  // set lambda = 0, mu_all = 0.5, vary mu_bottom
145  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.,0};
146  setSlidingFrictionCoefficient(0.5);
147  setSlidingFrictionCoefficientBottom(MuBottom[study_num-29]);
149  } else if (study_num < 37) { //Case 33-36
150  cout << "S" << study_num << endl;
151  // set lambda = 1, mu_b = 0.5, vary mu
152  Mdouble Mu[] = {1e20,1,1./64,0};
153  setSlidingFrictionCoefficient(Mu[study_num-33]);
156  } else {
157  //If study_num is complete quit
158  cout << "Study is complete " << endl;
159  exit(0);
160  }
161  //Note make sure h and a is defined
162  set_study();
163  }
double Mu
Definition: axisym_linear_elasticity/cylinder/cylinder.cc:53

References Global_Parameters::Mu.

◆ set_study() [9/12]

void SilbertPeriodic::set_study ( int  study_num)
inline
Todo:
Thomas: Hertzian does not appear in the restart file
Todo:
TW: can we switch species from SlidingFriction to Friction only in the case rolling friction is needed?
Todo:
turn on rolling friction only at the wall
105  {
106  //S=0-5: lambda = 0, 3./6., 4./6., 5./6., 1, 2
107  //S=6-8: mu = 0, 1, inf
108  //S=9-13: mub = 0,1,inf,1/4,1/8
109  //S=14-15: mu = 1/4, 1/8
110  //S=16-19: lambda = 1./6., 2./6., 1.5, 4
111  //S=21-25: mub=1/16,1/32,1/64,1/128,1/1024
112  //S=26-28: lambda=1/2, mub=1/16,1/128,1/1024
113  //S=29-32: lambda=0, mub=1/16,1/128,1/1024,0
114  //Case 37 set getSlidingDissipation()=0
115  //Case 38 set eps=0.97
116  //Case 39 set hertzian = true
117  //Case 40, 41, 42: set Foerster glass, Lorenz steel, Lorenz glassv
118  //Case 43, 44, 45, 46: set Silbert, Foerster glass, Lorenz steel, Lorenz glass with rolling friction
119  logger(INFO, "Study %", study_num);
120 
121  if (study_num < 6) {
122  // set mu_all = 0.5, vary lambda
123  Mdouble Lambdas[] = {0, 3./6., 4./6., 5./6., 1, 2};
124  setFixedParticleRadius(Lambdas[study_num]/2.);
125  species->setSlidingFrictionCoefficient(0.5);
126  } else if (study_num < 9) { //Case 6,7,8
127  // set lambda = 1, vary mu_all
128  Mdouble MuAll[] = {0, 1., 1e20};
129  species->setSlidingFrictionCoefficient(MuAll[study_num-6]);
131  } else if (study_num < 12) { //Case 9,10,11
132  // set lambda = 1, mu_all = 0.5, vary mu_bottom
133  Mdouble MuBottom[] = {0, 1., 1e20};
134  species->setSlidingFrictionCoefficient(0.5);
135  setSlidingFrictionCoefficientBottom(MuBottom[study_num-9]);
137  } else if (study_num < 14) { //Case 12,13
138  // set lambda = 1, mu_all = 0.5, vary mu_bottom
139  Mdouble MuBottom[] = {0.25, 0.125};
140  species->setSlidingFrictionCoefficient(0.5);
141  setSlidingFrictionCoefficientBottom(MuBottom[study_num-12]);
143  } else if (study_num < 16) { //Case 14,15
144  // set lambda = 1, vary mu_all
145  Mdouble MuAll[] = {0.25, 0.125};
146  species->setSlidingFrictionCoefficient(MuAll[study_num-14]);
148  } else if (study_num < 21) { //Case 16,17,18,19,20
149  // set mu_all = 0.5, vary lambda
150  Mdouble Lambdas[] = {1./6., 2./6., 1.5, 4, 1./12};
151  setFixedParticleRadius(Lambdas[study_num-16]/2.);
152  species->setSlidingFrictionCoefficient(0.5);
153  } else if (study_num < 26) { //Case 21 22 23 24 25
154  // set lambda = 1, mu_all = 0.5, vary mu_bottom
155  Mdouble MuBottom[] = {1./16.,1./32.,1./64.,1./128.,1./1024.};
156  species->setSlidingFrictionCoefficient(0.5);
157  setSlidingFrictionCoefficientBottom(MuBottom[study_num-21]);
159  } else if (study_num < 29) { //Case 26 27 28
160  // set lambda = 1/2, mu_all = 0.5, vary mu_bottom
161  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.};
162  species->setSlidingFrictionCoefficient(0.5);
163  setSlidingFrictionCoefficientBottom(MuBottom[study_num-26]);
165  } else if (study_num < 33) { //Case 29 30 31 32
166  // set lambda = 0, mu_all = 0.5, vary mu_bottom
167  Mdouble MuBottom[] = {1./16.,1./128.,1./1024.,0};
168  species->setSlidingFrictionCoefficient(0.5);
169  setSlidingFrictionCoefficientBottom(MuBottom[study_num-29]);
171  } else if (study_num < 37) { //Case 33-36
172  logger(INFO, "S %", study_num);
173  // set lambda = 1, mu_b = 0.5, vary mu
174  Mdouble Mu[] = {1e20,1,1./64,0};
175  species->setSlidingFrictionCoefficient(Mu[study_num-33]);
178  } else if (study_num < 38) { //Case 37
179  // set getSlidingDissipation()=0
180  species->setSlidingDissipation(0);
181  } else if (study_num < 39) { //Case 38
182  // set eps=0.97
183  Mdouble eps = 0.97;
185  species->setSlidingDissipation(species->getDissipation());
186  } else if (study_num < 40)
187  { //Case 39
188  // set hertzian = true
189  logger(INFO, "Hertzian implementation has been changed");
190  exit(-1);
191  //set_Hertzian(true);
193  } else if (study_num < 43) { //Case 40, 41, 42
194  // set Foerster glass, Lorenz steel, Lorenz glass
195  Mdouble eps[] = {0.97 , 0.95 , 0.972};
196  Mdouble beta[]= {0.44 , 0.32 , 0.25 };
197  Mdouble mu[] = {0.092, 0.099, 0.177};
198  species->setSlidingFrictionCoefficient(mu[study_num-40]);
199  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
200  (50.*getTimeStep(), eps[study_num-40], beta[study_num-40], 1);
201  } else if (study_num < 47) { //Case 43, 44, 45, 46
202  // set Silbert, Foerster glass, Lorenz steel, Lorenz glass with rolling friction
203  Mdouble eps[] = {0.97 , 0.95 , 0.972};
204  Mdouble beta[]= {0.44 , 0.32 , 0.25 };
205  Mdouble mu[] = {0.092, 0.099, 0.177};
206  if (study_num!=43) {
207  species->setSlidingFrictionCoefficient(mu[study_num-44]);
208  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
209  (50.*getTimeStep(), eps[study_num-44], beta[study_num-44], 1);
210  }
212  species->setRollingStiffness(0.4*species->getStiffness());
213  species->setRollingFrictionCoefficient(0.05);
214  } else if (study_num < 48) { //Case 47
215  // set lambda = 1, mu_all = 0.5, vary mu_half
216  Mdouble MuHalf[] = {0};
217  species->setSlidingFrictionCoefficient(MuHalf[study_num-47]);
220  randomiseSpecies = true;
221  } else if (study_num < 52) { //Case 48, 49, 50, 51
222  // set vary eps
223  Mdouble eps[] = {0.001, 0.01, 0.1, 1};
224  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
225  (50.*getTimeStep(), eps[study_num-48], eps[study_num-48], 1);
226  species->setSlidingFrictionCoefficient(0.0);
227  } else if (study_num < 53) { //Case 52
229  } else if (study_num < 54) { //Case 53
230  logger(INFO, "using mu=0.3, r=0.1");
231  species->setSlidingFrictionCoefficient(0.3);
232  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
233  (50.*getTimeStep(),0.1,0.1,1);
234  } else if (study_num < 55) { //Case 54
235  logger(INFO, "using mu=0.3, r=0.88");
236  species->setSlidingFrictionCoefficient(0.3);
237  species->setCollisionTimeAndNormalAndTangentialRestitutionCoefficient
238  (50.*getTimeStep(),0.88,0.88,1);
239  } else
240  {
241  //If study_num is complete quit
242  logger(VERBOSE, "Study is complete ");
243  exit(0);
244  }
245  //Note make sure h and a is defined
246  if (study_num < 37 || (study_num>=53&&study_num<=55))
247  {
248  set_study();
249  }
250  else
251  {
252  std::stringstream name;
253  name << "S" << study_num;
254  dataFile.setName(name.str().c_str());
255  //set_data_filename();
256  }
257 
258  }
void setStiffnessAndRestitutionCoefficient(Mdouble k_, Mdouble eps, Mdouble mass)
Sets k, disp such that it matches a given tc and eps for a collision of two copies of P.
Definition: LinearViscoelasticNormalSpecies.cc:165
double eps
Definition: crbond_bessel.cc:24

References beta, DPMBase::dataFile, CRBond_Bessel::eps, LinearViscoelasticNormalSpecies::getDissipation(), LinearViscoelasticNormalSpecies::getStiffness(), DPMBase::getTimeStep(), INFO, logger, Global_Parameters::Mu, Global_Parameters::mu, plotDoE::name, randomiseSpecies, set_study(), Chute::setFixedParticleRadius(), File::setName(), setSlidingFrictionCoefficientBottom(), LinearViscoelasticNormalSpecies::setStiffnessAndRestitutionCoefficient(), species, and VERBOSE.

◆ set_study() [10/12]

void SilbertPeriodic::set_study ( std::vector< int study_num)
inline
115  {
116  double Heights[] = {10, 20, 30, 40};
117  double Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
118  setInflowHeight(Heights[study_num[1]-1]);
119  setChuteAngle(Angles[study_num[2]-1]);
120  set_study(study_num[0]);
121  }

References set_study(), Chute::setChuteAngle(), and Chute::setInflowHeight().

◆ set_study() [11/12]

void SilbertPeriodic::set_study ( vector< int study_num)
inline
111  {
112  double Heights[] = {10, 20, 30, 40};
113  double Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
114  setInflowHeight(Heights[study_num[1]-1]);
115  setChuteAngle(Angles[study_num[2]-1]);
116  set_study(study_num[0]);
117  }

◆ set_study() [12/12]

void SilbertPeriodic::set_study ( vector< int study_num)
inline
165  {
166  Mdouble Heights[] = {10, 20, 30, 40};
167  Mdouble Angles[] = {20, 22, 24, 26, 28, 30, 40, 50, 60};
168  setInflowHeight(Heights[study_num[1]-1]);
169  setChuteAngle(Angles[study_num[2]-1]);
170  set_study(study_num[0]);
171  }

◆ setSlidingFrictionCoefficientBottom() [1/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( double  new_)
inline
60  {
62  speciesHandler.getMixedObject(1, 0)->setSlidingFrictionCoefficient(new_);
63  }
virtual void createBaseSpecies()
Definition: flowRuleDiego_HeightAngle.cpp:68

◆ setSlidingFrictionCoefficientBottom() [2/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
65  {
67  baseSpecies->setSlidingFrictionCoefficient(new_);
68  }

References baseSpecies, and createBaseSpecies().

Referenced by readNextArgument(), and set_study().

◆ setSlidingFrictionCoefficientBottom() [3/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
61  {
63  speciesHandler.getMixedObject(1, 0)->setSlidingFrictionCoefficient(new_);
64  }

◆ setSlidingFrictionCoefficientBottom() [4/4]

void SilbertPeriodic::setSlidingFrictionCoefficientBottom ( Mdouble  new_)
inline
77  {
79  baseSpecies->setSlidingFrictionCoefficient(new_);
80  }

References baseSpecies, and createBaseSpecies().

◆ setupInitialConditions() [1/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

todo{I(Dinant) had to clear the WallHandler to prevent it from inserting the same wall twice, why?}

Reimplemented from DPMBase.

95  {
96  //fix_hgrid();
98 
99  createBottom();
100  //~ write(std::cout,false);
101  //cout << "correct fixed" << endl;
103  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
106  }
107 
109  wallHandler.clear();
110  InfiniteWall w0;
112  {
113  w0.set(Vec3D(0, 0, -1), Vec3D(0, 0, -3.4 * getMaxInflowParticleRadius()));
114  }
115  else
116  {
117  w0.set(Vec3D(0, 0, -1), Vec3D(0, 0, 0));
118  }
120 
121  PeriodicBoundary b0;
122  b0.set(Vec3D(1.0, 0.0, 0.0), getXMin(), getXMax());
124  b0.set(Vec3D(0.0, 1.0, 0.0), getYMin(), getYMax());
126 
128 
129  logger(INFO, "\nStatus before solve:");
130 // std::cout
131 // << "tc=" << getCollisionTime()
132 // << ", eps=" << getRestitutionCoefficient()
133 // << ", vmax=" << getInflowParticle()->calculateMaximumVelocity(getSpecies())
134 // << ", inflowHeight/zMax=" << getInflowHeight()/getZMax()
135 // << std::endl << std::endl;
136  //~ timer.set(t,tmax);
137 
138  //optimize number of buckets
140  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
141  }
virtual void clear()
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: BaseHandler.h:536
virtual void createBottom()
Creates the chute bottom, which can be either flat or one of three flavours of rough.
Definition: Chute.cc:302
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1453
Mdouble getZMax() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax.
Definition: DPMBase.h:634
A infinite wall fills the half-space {point: (position_-point)*normal_<=0}.
Definition: InfiniteWall.h:27
void set(Vec3D normal, Vec3D point)
Defines a standard wall, given an outward normal vector s.t. normal*x=normal*point for all x of the w...
Definition: InfiniteWall.cc:97
Defines a pair of periodic walls. Inherits from BaseBoundary.
Definition: PeriodicBoundary.h:20
void set(Vec3D normal, Mdouble distanceLeft, Mdouble distanceRight)
Defines a PeriodicBoundary by its normal and positions.
Definition: PeriodicBoundary.cc:63
void add_flow_particles()
Definition: flowRuleDiego_HeightAngle.cpp:144

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::clear(), BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseHandler< T >::getStorageCapacity(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), i, INFO, BaseParticle::isFixed(), logger, DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), BaseHandler< T >::setStorageCapacity(), DPMBase::speciesHandler, and DPMBase::wallHandler.

◆ setupInitialConditions() [2/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

128  {
129  //fix_hgrid();
130  //set_Nmax(particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
131 
132  createBottom();
133  //~ write(std::cout,false);
134  //cout << "correct fixed" << endl;
136  for (int i=0; i<particleHandler.getNumberOfObjects(); i++)
139  }
140 
141  //set_NWall(1);
142  InfiniteWall w0;
143  if (getFixedParticleRadius()) {
144  w0.set(Vec3D(0,0,-1), Vec3D(0,0,-3.4* getMaxInflowParticleRadius()));
145  } else {
146  w0.set(Vec3D(0,0,-1), Vec3D(0,0,0));
147  }
149 
150  PeriodicBoundary b0;//set_NWallPeriodic(2);
151  b0.set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
153  b0.set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
156 
157 // std::cout << std::endl << "Status before solve:" << std::endl;
158 // std::cout
159 // << "tc=" << getCollisionTime()
160 // << ", eps=" << getRestitutionCoefficient()
161 // //<< ", vmax=" << getMaximumVelocity()
162 // << ", getInflowHeight()/zmax=" << getInflowHeight()/getZMax()
163 // << std::endl << std::endl;
164  //~ timer.set(t,tmax);
165 
166  //optimize number of buckets
167  //std::cout << "Nmax" << get_Nmax() << std::endl;
168  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
169  }

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), i, BaseParticle::isFixed(), DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), DPMBase::speciesHandler, and DPMBase::wallHandler.

◆ setupInitialConditions() [3/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

124  {
125  fix_hgrid();
126  set_Nmax(get_N()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
127 
128  createBottom();
129  //~ write(std::cout,false);
130  //cout << "correct fixed" << endl;
131  if (Species.size()>1) {
132  for (int i=0; i<get_N(); i++)
133  if (Particles[i].is_fixed())
134  Particles[i].indSpecies=1;
135  }
136 
137  set_NWall(1);
138  if (getFixedParticleRadius()) {
139  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 3.4*MaxInflowParticleRadius);
140  } else {
141  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 0.);
142  }
143 
144  set_NWallPeriodic(2);
145  WallsPeriodic[0].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
146  WallsPeriodic[1].set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
147 
149 
150  cout << endl << "Status before solve:" << endl;
151  cout
152  << "tc=" << getCollisionTime()
153  << ", eps=" << getRestitutionCoefficient()
154  << ", vmax=" << getMaximumVelocity()
155  << ", InflowHeight/zmax=" << getInflowHeight()/getZMax()
156  << endl << endl;
157  //~ timer.set(t,tmax);
158 
159  //optimize number of buckets
160  cout << "Nmax" << get_Nmax() << endl;
161  set_HGRID_num_buckets_to_power(get_N()*1.5);
162  }
void fix_hgrid()
Definition: obsolete_codes/GlasPeriodic.h:45
MERCURYDPM_DEPRECATED Mdouble getMaximumVelocity(Mdouble k, Mdouble disp, Mdouble radius, Mdouble mass)
Calculates the maximum relative velocity allowed for a normal collision of two particles of radius r ...
Definition: FormulaHelpers.cc:47

References helpers::getMaximumVelocity(), and i.

◆ setupInitialConditions() [4/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

178  {
179  fix_hgrid();
180  particleHandler.set_StorageCapacity(particleHandler.getNumberOfObjects()+getChuteLength()*getChuteWidth()*getZMax());//why is this line needed?
181 
182  createBottom();
183  //~ write(std::cout,false);
184  //cout << "correct fixed" << endl;
185  if (Species.size()>1) {
186  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
189  }
190 
191  set_NWall(1);
192  if (getFixedParticleRadius()) {
193  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 3.4*MaxInflowParticleRadius);
194  } else {
195  wallHandler.getObject(0)->set(Vec3D(0,0,-1), 0.);
196  }
197 
198  set_NWallPeriodic(2);
199  WallsPeriodic[0].set(Vec3D( 1.0, 0.0, 0.0), getXMin(), getXMax());
200  WallsPeriodic[1].set(Vec3D( 0.0, 1.0, 0.0), getYMin(), getYMax());
201 
203 
204  cout << endl << "Status before solve:" << endl;
205  cout
206  << "tc=" << getCollisionTime()
207  << ", eps=" << getRestitutionCoefficient()
208  << ", vmax=" << getMaximumVelocity()
209  << ", InflowHeight/zmax=" << getInflowHeight()/getZMax()
210  << endl << endl;
211  //~ timer.set(t,tmax);
212 
213  //optimize number of buckets
214  cout << "Nmax" << particleHandler.getStorageCapacity() << endl;
215  set_HGRID_num_buckets_to_power(particleHandler.getNumberOfObjects()*1.5);
216  }

References helpers::getMaximumVelocity(), and i.

◆ setupInitialConditions() [5/5]

void SilbertPeriodic::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

todo{I(Dinant) had to clear the WallHandler to prevent it from inserting the same wall twice, why?}

Reimplemented from DPMBase.

265  {
266  //fix_hgrid();
268 
269  createBottom();
270  //~ write(std::cout,false);
271  //cout << "correct fixed" << endl;
273  for (unsigned int i=0; i<particleHandler.getNumberOfObjects(); i++)
276  }
277 
279  wallHandler.clear();
280  InfiniteWall w0;
282  if (getFixedParticleRadius()) {
283  w0.set(Vec3D(0,0,-1), Vec3D(0,0,-3.4* getMaxInflowParticleRadius()));
284  } else {
285  w0.set(Vec3D(0,0,-1), Vec3D(0,0,0));
286  }
288 
289  PeriodicBoundary b0;
290  b0.set(Vec3D(1.0, 0.0, 0.0), getXMin(), getXMax());
292  b0.set(Vec3D(0.0, 1.0, 0.0), getYMin(), getYMax());
294 
296 
297  logger(INFO, "\nStatus before solve:");
298 // std::cout
299 // << "tc=" << getCollisionTime()
300 // << ", eps=" << getRestitutionCoefficient()
301 // << ", vmax=" << getInflowParticle()->calculateMaximumVelocity(getSpecies())
302 // << ", inflowHeight/zMax=" << getInflowHeight()/getZMax()
303 // << std::endl << std::endl;
304  //~ timer.set(t,tmax);
305 
306  //optimize number of buckets
308  //setHGridNumberOfBucketsToPower(particleHandler.getNumberOfObjects()*1.5);
309  }
void setSpecies(const ParticleSpecies *species)
Defines the species of the current wall.
Definition: BaseWall.cc:148

References add_flow_particles(), DPMBase::boundaryHandler, BaseHandler< T >::clear(), BaseHandler< T >::copyAndAddObject(), Chute::createBottom(), Chute::getChuteLength(), Chute::getChuteWidth(), Chute::getFixedParticleRadius(), Chute::getMaxInflowParticleRadius(), BaseHandler< T >::getNumberOfObjects(), ParticleHandler::getNumberOfObjects(), BaseHandler< T >::getObject(), BaseHandler< T >::getStorageCapacity(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), i, INFO, BaseParticle::isFixed(), logger, DPMBase::particleHandler, PeriodicBoundary::set(), InfiniteWall::set(), BaseParticle::setSpecies(), BaseWall::setSpecies(), BaseHandler< T >::setStorageCapacity(), DPMBase::speciesHandler, and DPMBase::wallHandler.

Member Data Documentation

◆ baseSpecies [1/2]

◆ baseSpecies [2/2]

LinearViscoelasticFrictionMixedSpecies* SilbertPeriodic::baseSpecies

◆ inflowParticle_

◆ nCreated_

int SilbertPeriodic::nCreated_

◆ randomiseSpecies

bool SilbertPeriodic::randomiseSpecies

◆ species [1/2]

◆ species [2/2]

LinearViscoelasticFrictionSpecies* SilbertPeriodic::species

The documentation for this class was generated from the following files: